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Non-Parametric Bayesian Subspace Models for
Acoustic Unit Discovery
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and Murat Saraclar

Abstract—This work investigates subspace non-parametric
models for the task of learning a set of acoustic units from unlabeled
speech recordings. We constrain the base-measure of a Dirichlet-
Process mixture with a phonetic subspace—estimated from other
source languages—to build an educated prior, thereby forcing the
learned acoustic units to resemble phones of known source lan-
guages. Two types of models are proposed: (i) the Subspace HMM
(SHMM) which assumes that the phonetic subspace is the same for
every language, (ii) the Hierarchical-Subspace HMM (H-SHMM)
which relaxes this assumption and allows to have a language-
specific subspace estimated on the unlabeled target data. These
models are applied on 3 languages: English, Yoruba and Mboshi
and they are compared with various competitive acoustic units
discovery baselines. Experimental results show that both subspace
models outperform other systems in terms of clustering quality and
segmentation accuracy. Moreover, we observe that the H-SHMM
provides results superior to the SHMM supporting the idea that
language-specific priors are preferable to language-agnostic priors
for acoustic unit discovery.

Index Terms—Unsupervised learning, non- parametric Bayesian
models, acoustic unit discovery.

I. INTRODUCTION

UILDING a speech recognition system requires a large
B collection of transcribed data. For instance, recent publi-
cations [1]-[3] report using tens of thousands hours of record-
ings paired with their corresponding textual transcription. Such
amounts of transcribed data are available for only a handful of
languages and stunt the development of speech technologies for
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many languages. While collecting audio data is relatively easy
in our digital world, human-based transcriptions are expensive
and too slow to keep pace with the daily production of multi-
media content. A tremendous step would be made if one could
automatically transcribe this data as it would drastically increase
the amount of available resources to build speech technologies
in many languages.

In parallel, there is a keen interest to understand how infants
learn to recognize speech. Indeed, whereas speech recognition
systems are built upon human-transcribed data, toddlers learn
seamlessly to structure speech with very distant and noisy su-
pervision. As a remarkable example of this learning capability,
children born blind are perfectly able to learn to recognize speech
despite being deprived of any visual supervision. In an attempt to
explain this capability using the “reverse-engineering approach”
[4], many models for automatic labeling of the data have been
proposed by the machine learning community [S]-[7].

These two research ideas, while having very distinct objec-
tives, share a common interest: to build a machine learning
algorithm that automatically learns a discrete representation of
the speech signal in an unsupervised fashion. For the former,
this would allow automatic labeling of large collection of data,
for the latter, it would serve as a simulation of how infants learn
to process speech.

Current acoustic unit discovery (AUD) studies follow two
major approaches:

1) non-parametric Bayesian models [8]-[11] which are usu-
ally infinite mixture of time series models such as Hidden
Markov Model (HMM)

2) neural-network-based models [12]-[14] using quantiza-
tion layers with template vectors that represent the acous-
tic units’ vocabulary.

Note that these approaches are not mutually exclusive and can

be combined as was shown in [15], [16].

This work focuses on subspace model techniques applied to
non-parametric Bayesian models on the task of discovering a set
of pseudo-phones (called acoustic units) from unlabeled audio
recordings.'

Preliminary results on subspace models for AUD have been
published in [17], [18] giving rise to two models: the Subspace
HMM (SHMM) and Hierarchical-Subspace HMM (H-SHMM).
In this paper, we provide a more comprehensive theoretical

T All the models and algorithms presented in this work are implemented at:
https://github.com/beer-asr/beer
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coverage of these models, their relationship with the Dirich-
let process and a complete inference scheme. In addition, we
conduct an in-depth performance analysis of the subspace mod-
els as well as a comparison with state-of-the-art baselines. Note
that we assume readers’ familiarity with the Dirichlet process
and variational inference [19].

The rest of the paper is organized as follows: in Section II, we
introduce a formal Bayesian formulation of the AUD problem,
as well as the Dirichlet process HMM model upon which the
subspace models are built; in Section III, we introduce the
subspace models as HMM-based AUD models with specific
prior forcing the model’s parameters to dwell in a “phonetic”
subspace; in Section IV, we detail the inference and we present
experimental results in Section V.

II. BAYESIAN AUD
A. Probabilistic Interpretation of AUD

We first introduce a probabilistic formulation of the AUD task
which will motivate the Bayesian approach of this work. Given

a speech utterance of N observations X = (x1,...,Xy), the
AUD task amounts to finding:
1) acollection of U vectors H = {7y, ..., ny} best describ-

ing the observations, where each 7 represents the param-
eters of a distribution of observations for a specific sound
(these sounds are called acoustic units as they represent
the basic elements of speech)
2) the sequence of indices u = uq,...,ur, L < N where
u; € {1,...,U} is the index of an acoustic unit.
Rather than the maximum a posteriori estimate H*, u* =
arg maxg ,p(H, u|X), we seek to obtain the posterior distri-
bution over the embeddings H and label sequence u:

DL X — PO wp(u[EpE)

Ju 2w P(X[H, u)p(u[H)p(H)dH

This allows us to have an estimate of uncertainty. The Bayesian
statement of AUD in (1) is analogous to the statistical formu-
lation of ASR [20] with, however, one major difference: in the
case of AUD, the inventory of units is unknown and needs to be
inferred from the data along with the acoustic unit embeddings
m,n2,....

It is important to understand the different roles played by the

three factors in the numerator of (1):

1) p(X|H,u): the likelihood of the observations given the
collection of acoustic unit parameters and the sequence of
labels; this term, referred to as the acoustic model, tells
how plausible the sequence of observations is given the
sequence of acoustic units

2) p(u|H): the prior over the label sequence is the language
model over the acoustic units’ labels. It models the phono-
tactic constraints of the discovered units.

3) p(H): the prior over the collection of embeddings, this
term is essential as it defines, before observing data, what
are the potential acoustic unit candidates. This term will
be the focus of this work.
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Under the Bayesian AUD interpretation, the collection of
vectors H bears a particular meaning: they are the parameters
of the acoustic model.

B. Non-Parametric AUD

In practice, the size of the acoustic units inventory U is not
known and we have to pick an appropriate value. This is not an
easy task since every language has a unique set of phones and we
would like to infer the value of U in light of the data. We achieve
this behavior by letting U — oo and adding a distribution P
over the parameters of p(u, H). This approach, referred to as
non-parametric Bayesian [21], lets the model learn its own
complexity from the data. Following [8], [11] we set P to be a
Dirichlet Process DP (7, G) [22] with concentration ~y and base
measure Go(n) over the acoustic unit embeddings. The choice of
using the Dirichlet Process is mainly motivated by mathematical
convenience: since the Dirichlet Process is, loosely speaking, an
infinite-dimensional generalization of the Dirichlet distribution.
It allows us to build distribution over infinite set (in this context
the infinite set of acoustic units) while maintaining a tractable
inference scheme.

To enable a variational treatment of the Dirichlet Process [19],
we use the stick-breaking construction expressed as the follow-
ing generative process:

v ~ G(ao,bo) (2)

v, ~B(l,y), i={1,2,...} 3)

nZNGO(n)7 Z:{laQa} (4)
i1

di =0 [J(1 =) Q)
j=1

Gn) = > by, (n), 6)

=1

where B is a Beta distribution, G is a Gamma distribution and d,,
is the Dirac delta function centered at ;. Note that we have added
a Gamma prior over the concentration of the Dirichlet Process
so that we learn the concentration parameter directly from the
data. This extension of the classical stick-breaking construction
has a minimal impact on the inference complexity as the Gamma
distribution is conjugate to the stick-breaking construction of the
Dirichlet Process (see Appendix B).

Finally, we use the base measure Go(n) and the constructed
distribution G(7) to form the prior p(u|H)p(H) in the following
way:

L 00
puE)pHE) = | [ o) | [T] Golnw) )
n=1 "\ Lk=1
p(un H)
H
p(ulH) Py

One more time, we highlight the different roles played by the two
terms in (7). G(n) is a continuous density over the embedding
space: it defines which embeddings are likely to be selected
as acoustic units. G(n,,, ), on the other hand, is a discrete
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distribution over an infinite set of atoms (i.e. the samples from
the base measure) and it defines how frequently a unit occurs in
speech. In other words, G (7, ) is a (unigram) language model
of the units.

C. Acoustic Model

We now turn to the definition of the acoustic model
p(X|H, u). We denote by X, the sub-sequence of the observed
data that belongs to the acoustic unit with index w; such that
X =Xy, Xy, ). We assume the following factorization
of the likelihood:

L L
PXH,u) = [[p X, [H,w) = [[p X)) ®
=1 =1
Following [8], we model the likelihood p(X,, |7, ) by a left-to-

right HMM with S hidden states where each state has a GMM
emission density with C' components:

Xy 1) = E § P (Xuys Cuys Suy [7uy)
Su; Cu
ul ul ul uy
—§ § H p nl7cm nl’nul) ( ‘Snl 1)
Su; Cuy M= 1
)]
where:
1) sy, =870, s%l is the sequence of indices of the HMM

states for acoustic unit u;

2) ¢y, =cf',...,cy, is the sequence of indices of the mix-

ture components for the acoustic unit wu;

3) p(sit]sp!) = p(s}") is the probability of the initial state,
4) Nj is the length of the sequence of observations X, .
Finally, the acoustic unit embedding 7,,, encapsulates the

parameters of the HMM model {7} },{py ), {25} Vs €
{1,. S}, c € {1,...,C}, where:
1) T, are the mixing weights of the GMM associated with
the sth state of the HMM of the acoustic unit u;

2) pf, 35 are the mean and the covariance matrix of the
cth Normal component of the GMM associated with the
sth state of the HMM of the acoustic unit u;.

We have not included any parameters for the within-unit
transition probabilities p(sy;! |s,,! ;) as it has been empirically
observed that they play no significant role when modeling
speech [23]. Therefore, we assume the transition probabilities
are fixed so that there is a 0.75 probability of remaining in
the same state and a 0.25 probability of exiting to the next
state of the HMM. Note that this only concerns the transition
probabilities within the unit; transition probabilities between
units are governed by the distribution sampled from the Dirichlet
process.

D. Acoustic Unit Embeddings

We detail now the relation between the embedding 7,,, and
the HMM parameters. To keep the notation uncluttered, we drop
the subscripts and superscripts u; and n;, therefore, we write
X,1,... instead of x};!, 7y, . ... Observe that the distribution
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of p(x,c|s,n) is a product of a Normal and a Categorical
distribution, each of which is a member of the exponential family
of distributions [24]. Consequently, we have:

p(x,cls,n) = p (x|p*, %) p (c|7*) (10)
plclm®) = p(clw®)
= exp {w* T(c) — A(w®)} (11)
Pl 55) = p(x]6°)
= e (TR - B} (1)

where w®, T'(¢) and A(w®) are the natural parameters, the
sufficient statistics and the log-normalizer of the Categorical
distribution over the GMM components of the sth HMM state.
Similarly, 65¢, T'(x) and A(6°°) are the natural parameters,
the sufficient statistics and the log-normalizer of the Normal
distribution associated with state s and the mixture component
c. For both distributions, the natural parameters and the sufficient

statistics can be derived from their respective definitions [24]:

() [ e
w’ = : T(c) =
n (752) [I[e=C—1]
) (13)
s,c __ (2570)71us’c o [ X
o = _ffvec((zs b T(x) = _vec(xxT)l » (19

where “vec” is the vectorization operation and 1 is the indi-
cator function. Note that because 7 is constrained such that
25:1 7. = 1, the natural parameter wis a (C' — 1)-dimensional
vector whereas 7 is a C'-dimensional vector. Finally, the log-
normalizers A(w?®) and A(6%¢) are given by:

c-1
Aw®) = In <1 +> exp{w3}> (15)

k=1

A(07)= — %9?” mat (03°) " 9;’6—% In| — 2mat(05°) |,

(16)

where wj, is the kth element of w?, mat is the inverse of the vec
operation, 07 = (3*) ' p*, and 05° = —3 vec((Eé )by,
Finally, we define the embedding 7 to be a “super-vector”
obtained by concatenating the natural parameters of the Nor-
mal and Categorical distributions of all S states of the HMM
modeling of an acoustic unit. It has the following layout:

n
: w?®
n=|n*=|6""|], (17
QS’C
7S

where 7)° is the concatenation of the natural parameters of the
Normal and Categorical distributions for the sth state of the
HMM of an acoustic unit.

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 29,2022 at 15:32:32 UTC from IEEE Xplore. Restrictions apply.



ONDEL et al.: NON-PARAMETRIC BAYESIAN SUBSPACE MODELS FOR ACOUSTIC UNIT DISCOVERY

DR O

Stick-breaking
process

1905

Acoustic unit
labels

i

HMM states

GMM compo-
nents

Fig. 1.

Observations

Bayesian network of the non-parametric acoustic unit clustering model. The model is composed of 3 layers of hidden variables: (i) the GMM components

which acts as a quantization layer, (ii) the HMM states layer which captures the temporal dynamic of the data, and (iii) the acoustic units’ layer which encodes the

phonetic information.

E. Joint Distribution

To conclude the description of the model, we present the
complete joint distribution. For simplicity, we introduce the
variable z, = (uy, s,,) which encodes an acoustic unit index
u; and a particular HMM state s,,,. Notice that the time in-
dex n in z,—which combines the relative time indices [ and
n;—is absolute with respect to the sequence of observations,
ie.n € {1,..., N}. Similarly, we introduce ¢,, to represent the
index of a GMM component at time n. We write 7., = 7.,
which corresponds to the natural parameters of the s,,,th HMM
state of the acoustic unit with index u;. With this notation, the
joint distribution is given by:

p(X7 C,z, Ha Vv, rY)
p(X,c,z[H,v)

p(Vp(vIV)p(X, ¢, z[H,v) (18)
)p(X; c|z, H) (19)

p(H
p(z|v

N
H Zn|zn 1,V )p(xnacnlnzn)v (20)

where v = {v1,v2,...} is the set of stick breaking weights.
This is the likelihood of a “phone-loop” HMM [25] where z
is the sequence of hidden states. As explained in [26], this
interpretation of the model allows an efficient dynamic program-
ming algorithm to evaluate all possible sequences of units (see
Appendix Al). The per-state emission likelihood in (20) is given
by:

21

P (Xn, Cn|77zn) =D (anx) p(cn |Wzn) )

where 67" is the vector of natural parameters of the c;,th mixture
component of the s,th state, and the two factors on the right
hand side are defined in (11) and (12). The transition probability
combines the within and across units’ transition in the following
way:

N L N;
[T palza-1ov) = [T ptulv) T ptstilsi ), @2
n=1 =1 n=1

where the transition probability within a unit’s HMM is fixed:
p(Sn|$n-1) = const and the probability of the unit index
p(ug|v) is given by the stick-breaking process as defined in
Section II-B:

u;—1

plunlv) = vu, [T (1= ).

=1

(23)

The priors over the stick-breaking process parameters v and the
prior over the concentration parameter - are given by:

p(vly) = [[pwily) (24)
=1

p(vily) = B(1,7) (25)

p(y) = G(ao, bo), (26)

the prior over embeddings H is defined from the base measure:

) = H Go(ﬁuﬁ

and its exact construction will be addressed in the next section.

Finally, Fig. 1 gives a graphical perspective of the complete
model. It is composed of 3 layers of hidden variables: (i) the
GMM components layer which acts as a quantization layer, i.e.
it transduces a sequence of continuous features into a sequence
of discrete symbols, (ii) the HMM states layer which captures
the temporal dynamic of the data, and (iii) the acoustic units’
layer which encodes phonetic information.

27)

III. PRIOR OVER THE EMBEDDINGS

We have formulated a probabilistic interpretation of the AUD
problem. From this, we have seen that 3 terms emerge: (i) the
likelihood defining the acoustic model, (ii) the language model
and (iii) the prior over the embeddings. We have detailed the
two first terms in the previous section and, now, we draw our
attention to the last term: the prior over the embeddings G (7).
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Ilustration of the concept of phonetic subspace: each phone is represented as a vector ) encoding the parameters of a probabilistic model (an HMM

Fig. 2.
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—— phonetic subspace
—— speaker subspace

in this example). Ideally, moving away from the subspace only changes the characteristics of the phone (speaker, channel, loudness,...) but not the phone itself.
For illustration purposes, the red line represents one of such factor of variability: the speaker subspace. Note that in this example, the parameter space has only 2
dimensions (n; and 72) but in practice it will have several thousands of dimensions. .

A. Conjugate Prior

Early Bayesian AUD models [8], [11], [16] set Go(n) to be
the conjugate prior of the conditional HMM likelihood:

S C
Go(n) = [ »(w*) [T p(6>) (28)
s=1 c=1
p(w®) = exp {EJ :(;S) - A(fo)} (29)
p(0) = exp{ﬂg e —A(%)}, 60)

where £( and ¥ are the natural parameters of the conjugate prior
of the states’ emission density. The conjugacy implies that the
prior p(w®) over the natural form of the mixing weights is a
Dirichlet distribution and the prior p(6*:¢) over the natural form
of the mean and the precision matrix (inverse of the covariance
matrix) is a Normal-Wishart distribution. This choice is con-
venient since it greatly simplifies the inference; it is, however,
difficult to control precisely which type of sounds the prior will
emphasize. In previous works, p(w?®) and p(6%°) were set to be
vague priors (i.e. priors that play a mininal role in the estimation
of the posterior distribution) leading the AUD model to initially
consider, say, the phone /aw/ and the sound of a slamming door
as equally good candidate acoustic units.

B. Phonetic Subspace

Vague priors are easy to define but they fail to provide a
reasonable selection of “good” candidates. Recent works [17],
[18] have proposed to remedy this shortcoming by introducing
subspace-based priors which act as informative (or educated)
priors over the space of acoustic unit embeddings. These works
rely upon the concept of phonetic subspace which generalizes the
approach of joint-factor analysis [27] for speaker identification
and Subspace GMM [28] for speech recognition. We illustrate
this idea with an example.

Let’s consider that we fit an HMM to a set of recordings
of the English phone /aw/ which gives the embedding vector
Naw- MoVving 7,y in any direction in the embedding space will
affect the parameters of the HMM and, consequently, the phone
it represents. As an example, a particular displacement may
lead to changing the phone /aw/ to /ow/. Moving the 7,, even
further will change the original /aw/ phone more profoundly
and yield, say, the consonant /z/. In this thought experiment, we
have assumed that there is a continuum between all phones or,
expressed in another way, that we can smoothly transition from
one phone to another. Generally, we can envision all the phones
of a language as points on a low-dimensional manifold which
represents this continuum. This manifold is depicted by the blue
line in Fig. 2 and it is what we call the phonetic subspace. It is
noteworthy that this concept of phonetic subspace is independent
of the choice of the phone model: GMM, HMM, Linear Dynam-
ical Model, etc. However, the type of model used will influence
how well the continuity between phones is represented.

C. SHMM

The Subspace HMM (SHMM) [17] defines the base measure
Go(n) as the probability distribution induced by the following
sampling process:

W~ p(W) = [[p(W:..) 3D
p(W,..) =N(0,1) (32)

b ~ p(b) = N(0,I) (33)
e, ~ p(e,) = N(0,1I) (34)
M = f(Wey + b), (35)

where e,, is a ()-dimensional embedding of the acoustic unit u
on the subspace, the weights matrix W and the bias vector b are
the parameters of the phonetic subspace, and f(-) is a function
that takes a real vector and projects it to the HMM parameter
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space. In this work, it is set such that:

s exp {W3 -e, + b3},
e = o1 (36)
' 1+ exp{Ws -e, +bs};
2¢ = diag (exp {Wx“ - e, + b3 }) 37)
ot =2y (Wi -ew +bpe), (38)

where diag(-) returns a diagonal matrix from an input vector,
exp is the element-wise exponential function and exp{...}; is
the jth element of the resulting vector. W, is the subset of
rows of matrix W assigned to the mixing weights 7° of the sth
HMM state. Matrices W, and W are similarly defined for
the mean and covariance matrix of the cth Gaussian component
and sth HMM state. Note that (36) holds forc € {1,...,C — 1}
andro =1- S 7.

Importantly, the construction of an acoustic unit embedding
7, relies upon a phonetic subspace parameterized by W and b.
Since these parameters are unknown in practice, they need to
be inferred prior to utilizing them for AUD. This issue will be
addressed in Section I'V-B.

D. H-SHMM

The SHMM introduced in the above section has made the
implicit assumption that the phonetic subspace is universal, i.e. it
is the same for all the languages. [ 18] argues that this assumption
is unrealistic and proposes to have a language-specific base
measure G§(n) defined by the following generative process:

M ={M,,...,Mg,mg,..., mg} (39)

ot ~ N(0,1) (40)

M; ~p(M;) = [[p(Mire), p(Miye) =N(0,1) (41)

m; ~ p(m;) = /\}(0,1) (42)

W* =M, + EG: ayMy, b*=mg+ Z apm, (43)
g=1 g=1

w ~N(0,1), 1, =f(W*-e, +Db). (44)

This generative process incorporates a G-dimensional lan-
guage embedding o which is used to built a language specific
phonetic subspace by a linear combination of bases {IM;} and
{m;}. These bases define a hyper-subspace of languages, as
depicted in Fig. 3. Because of the hierarchical nature of the gen-
erative process, the resulting model is termed the Hierarchical
Subspace HMM (H-SHMM). Equation (43) is reminiscent of
the work of [29] where the authors use a bilinear operation to
model within-speaker and across-speaker variability.

The bases {M, } and {m;} are shared across languages and
actas “template” phonetic subspaces. In this view, each language
specific phonetic subspace is a weighted combination of these
generic subspaces. Similar to the SHMM subspace parameters,
these parameters are unknown in practice and need to be esti-
mated prior the AUD task.

1907

M, W/\:’) W)\z N
W 1

M,
Fig. 3. Illustration of a hierarchical subspace model. For each language A,
acoustic unit embeddings (encoding the parameters of a probabilistic model)
are assumed to live in a language-specific subspace of the total parameter
space spanned by W*. This subspace is given by a weighted sum of matrix

bases M, M2 (shared across languages) with language-specific weights
ot W = al M1 +a2 M, +.

IV. INFERENCE

We now turn to the problem of inference for the SHMM and
the H-SHMM. Since these models include many parameters, the
derivation of the update equations is long and tedious. Therefore,
we have opted to only give a general overview of the training in
the main text with more technical details left to Appendix A.

A. Variational Bayes Inference

As discussed in Section II-A, from a Bayesian perspective,
the AUD task amounts to finding the a posteriori distribution:

p (X7 C7 Z7 Ha Vv ,7)
p(X) '
Note that H refers to the acoustic unit parameters, incorpo-
rating the subspace parameters as well as the low-dimensional
embeddings. Since the denominator p(X) = [ p(X|-)p(-)d- is
intractable, we resort to the Variational Bayes framework [30]

to find an approximate posterior ¢(c,z, H, v, ). This entails
maximizing the following lower-bound:

p(X‘7 C7 Z7 H7 V7 /-Y)
>
Inp(X) 2 <ln (c z,H,v,7)

where we write: (f(2))42) = [, f(z
To be able to maximize (46), we use the following structured
mean-field factorization:

q(-) = q(clz)q lHq i ] [H Q(Ui)]}Q(’Y)- (47)

This leads to an optimization algorithm analogous to the
Expectation-Maximization (EM) algorithm [31] where we al-
ternately estimate ¢(c|z) and ¢(z) (E-step) and ¢(H), ¢(v) and
q(v) M-step).
From a general perspective, the optimization scheme goes
along the following steps:
1) randomly initialize all the variational posteriors
2) estimate the optimal variational posteriors of the latent
variables (¢(c|z), ¢(z)) while keeping the others fixed
(Appendix Al). Because of the Markovian nature of the
model, the marginal posteriors ¢(z; ), necessary for the
next step, are evaluated with the forward-backward algo-
rithm
3) estimate the optimal variational posteriors of the parame-
ter variables (¢(H), ¢(v), ¢(v)) while keeping the others

p(c,z,H,v,7|X) =

(45)

2L, (46)

>q(c,z,H,v,v)
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Algorithm 1: Training of Phone-Loop Model for Acoustic
Unit Discovery. Detailed Coverage of the Update Equations
can be Found in Appendix A.

1: Function vb_mstepX, ¢*(c|z), ¢*(2), ¢" (7)

2: > No closed-form solution, stochastic optimization

described in Appendix A2

q"(H) < arg max g L

> Update defined in (68)

q*(v) < arg max (£

> Update defined in (71)

q*(y) + arg max (V)E

return ¢*(H), ¢"(v), ¢ (7)

Functlon vb_estepX, q(H) q(v)

10: > Update defined in (51)

11: g*(c|z) < arg max (.|, L

12: > Update defined in (56)

13: ¢"(z) < arg max,,) L

14:  return ¢*(c|z), ¢*(z)

15: procedure trainX, F/

16: > E: number of epochs (i.e. 1 epoch = E-step +
M-step)

17: > initialize the variational posteriors (Appendix AS)

18: ¢*(v),q"(v), ¢"(H) ...

19: fore <+ 1to E do

A A

o

20:  g*(c|z),q"(z) < vb_estepX, ¢"(H),¢"(v)
21: " (H),q"(v),q"(7) +
22: vb_mstepX, ¢*(c|z), ¢*(z), ¢*(7)

fixed (Appendix A3). The factor ¢(H) has no closed-form
solution and requires numerical optimization with the
“re-parameterization trick” (Appendix A2).
4) iterate over step 2 and 3 until convergence
The complete training procedure is summarized in Algo-
rithm 1.

B. Learning From Other Languages

The idea behind the SHMM is to supply prior information
via the subspace parameters {W, b} to the AUD system before
observing the data. Hence, training the subspace parameters on
the target language defeats the purpose of the model. In practice,
we infer a set of variational posteriors go({z}), ¢o({e.}) and
qo(W, b) on phonetically transcribed source languages. This is
the supervised phase of the training, where the system learns the
notion of phone from transcribed data. At this stage, the phone-
loop of the AUD model is replaced with a forced alignment graph
since the variable u is observed in this case. Then, on the target
language, we infer new variational posteriors g1 ({z}), ¢1 ({ey})
using ¢o (W, b). Note that go(W, b) is not updated during this
stage, but transferred from the source languages as is. The H-
SHMM is trained with a similar procedure: first we estimate
qo(M) on several languages and then we use this posterior to
learn q; ({ey }, @*) (and the other variational posteriors) on the
target language A while keeping go (M) fixed.
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TABLE I
AMOUNT OF DATA FOR EACH SOURCE LANGUAGES, I.E. LANGUAGES USED TO
PRETRAIN THE SHMM AND H-SHMM

Language AM FR GE PO SP SW WO
Data size (hours) 2.73 3.84 271 345 272 143 181
V. RESULTS

In this section, we experimentally validate the benefits of
subspace models on the AUD task. In Sections V-A and V-B,
we describe the experimental setup and the evaluation metrics
respectively. Then we analyze the improvement brought by the
SHMM and the H-SHMM compared to a Bayesian HMM AUD
baseline in Sections V-D and V-E. In Section V-F, we compare
the SHMM and the H-SHMM models with two alternative
approaches: cross-lingual phone recognizers, i.e. phone recog-
nizers each trained on a different language than the target one,
and neural-networks with discretization layers. In Section V-G,
we analyze the impact of subspace dimensionality on acoustic
unit discovery. Finally, in Section V-H, we present the results
of using the subspace models to cluster various neural-network
features in lieu of traditional MFCC.

To account for model stochasticity, we run each AUD system
5 times and report the mean and standard deviation of the results.

A. Data and Features

We use the following languages to evaluate the performance
of our models:

1) Mboshi [32]: 4.4 hours with 5130 utterances by 3 speakers.

2) Yoruba [33]: 4 hours with 3583 utterances by 36 speakers.

In keeping with the AUD problem definition, we assume that
we lack any transcribed data at training time, and our test data
constitute our training data. Specifically, we do not assume the
existence of a separate, transcribed development set for the target
language for hyper-parameter selection. Therefore, we train and
test on the entirety of each corpus as we would have to do for a
real target language.

In place of a language-specific development set, we use
English (from TIMIT [34] excluding the sa utterances) as a
development language. Any hyper-parameter selection is done
by picking the model which maximizes the task metrics on
this set, and we transfer the model directly to any new target
languages. The use of English as a development language has the
added advantage that it facilitates comparison with baselines that
can only be constructed for English, e.g. because they require
training data that is only available for English.

In addition to the target languages, we also need a set of source
languages for training the subspace of the SHMM and the hyper-
subspace of the H-SHMM. We use seven transcribed source
languages: German, Spanish, French and Polish from Global-
phone [35]; and Amharic [36], Swahili [37] and Wolof [38]
from the ALFFA project [39]. For each of these, we use only a
subset of 1500 utterances; the resulting durations are shown in
Table I. The difference in durations is due to the varying length
of utterances for each corpus.
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Finally, unless where otherwise stated, each system is trained
on 13-dimensional MFCC features (12 coefficients and the per-
frame energy) along with their first and second order derivatives.
After training, we use the model to label the data by finding the
most likely sequence of units using the Viterbi algorithm.

B. Metrics

We use F-score and normalize mutual information (NMI) as

the metrics for evaluating AUD performance.

1) F-score measures phone segmentation performance. We
get precision and recall rates by comparing phone bound-
aries detected by the system of interest to reference phone
boundaries with a tolerance +20 milliseconds. We report
the harmonic mean of precision and recall as the F-score.

2) Normalized mutual information measures phone cluster-
ing quality. We compute the NMI from a frame level align-
ment of discovered units U and actual reference phones
P, resulting in a matrix containing the joint probabilities
p(U, P). From this, we compute NMI as:

I(P;U)

NMI(P,U) = 200 x D+ 50

%, (48)
where H(-) is the Shannon entropy functional [40] and
I(P;U) is the mutual information [40]. Since 0 <
I(P;U) < min(H(P),H(U)), the NMI takes on val-
ues between 0 and 100. An NMI of 0 is obtained when
I(P;U) = 0 and the discovered acoustic units are com-
pletely unrelated to the actual phones. An NMI of 100
is obtained when I(P;U) = H(P) = H(U) which only
occurs when discovered units have a one-to-one corre-
spondence with the actual phones. Note that the H(U)
term in the denominator penalizes representations with
too many units. Without it, we could artificially inflate the
NMI by increasing the number of units.

C. Hyper-Parameters

Unless stated otherwise, the hyper-parameters of the SHMM

and H-SHMM are set as follows:

1) each acoustic unit HMM has a 3-state left-to-right topol-
ogy with 4 Gaussians per state with diagonal covariance
matrix

2) the truncation 7 (Appendix A4)—the upper bound on the
number of units discovered—is set to 100

3) the parameters of the concentration prior in (2) are set to
ag = 1 and bo = %

4) the dimension of the phonetic subspace () is set to 100

5) the dimension of the language embedding G is set to 5

6) the Normal-Wishart distributions of the non-informative
conjugate prior of HMM system (Section III-A) are set
as: mog=f, fo=1, Wy = diag(f]) and vg =D +1,
wher /i, 3 are the empirical mean, covariance of the data
and D is the dimension of the observed data. Similarly,
the Dirichlet distributions are set to have concentration
parameters equal to 1

7) for the HMM baseline, the variational posteriors are ini-
tialized to have the same parameters as the prior, and
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TABLE II
AUD PERFORMANCE OF THE SHMM

Language System NMI F-score
English HMM 3542 £ 0.18  63.50 £ 0.81
SHMM 38.96 £ 0.07 74.03 £+ 0.49
Topline-U ~ 44.02 4+ 0.20  78.67 = 0.13

Topline-S 45.24 74.66
Mboshi HMM 37.14 £ 026  48.63 £ 0.91
SHMM 38.95 £ 0.60 60.13 £ 0.43
Topline-U ~ 52.14 £+ 037  77.01 = 0.11

Topline-S 55.52 78.05
Yoruba HMM 36.20 & 0.31 5397 £+ 0.22
SHMM 3898 £ 0.15  63.77 £ 0.39
Topline-U 4525 + 022 74.10 = 0.21

Topline-S 48.71 71.73

we break the symmetry of the mixture components by
perturbing their means with Gaussian noise with standard
deviation of 0.01.

D. SHMM

Our first experiment compares the effect of using an edu-
cated prior—as implemented by the SHMM—against the non-
informative conjugate prior as described in Section III-A. We
refer to the later model as the HMM-based AUD system or
simply HMM. Our implementation of the HMM follows [11].

From Table II, we observe that the SHMM outperforms the
HMM baseline in terms of clustering quality and segmentation
accuracy. We also report the results of two oracle systems:

1) Topline-U, the unsupervised topline, is an SHMM AUD
system whose phonetic subspace is pretrained on the
target language using the reference transcription. The
concomitant phone embeddings are discarded and new
embeddings are inferred with the AUD procedure without
any transcription. This “cheating” experiment shows us
the best performance achievable if we could estimate the
perfect phonetic subspace

2) Topline-S, the supervised topline, is an HMM phone-
recognizer with a uniform phonotactic language model
trained on the target data. This model reveals the best
clustering results we could obtain by using an HMM to
model each acoustic unit.

In terms of clustering quality (NMI metric), we observe
that Topline-U is quite close to Topline-S. This highlights the
soundness of using a phonetic subspace. However, it also shows
that estimating the phonetic subspace from other languages is
not optimal and leaves room for improvement.

The goal of an educated prior is to provide the system with
some information before observing the data. In the context of the
SHMM, this prior information is the phonetic subspace which
encodes the notion of phone for the AUD system. To verify that
the phonetic subspace brings relevant information a priori, we
report in Table III the performance of the HMM and the SHMM
AUD systems at initialization. For the SHMM, this means after
the subspace has been pretrained on the source languages; for the
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TABLE III
EFFECT OF THE PHONETIC SUBSPACE AT INITIALIZATION

Language  System NMI F-score

English HMM 1.80 + 0.03 0.20 + 0.00
SHMM 18.50 + 1.14  54.06 + 2.08

Mboshi HMM 1.60 £ 0.08 0.05 £ 0.00
SHMM  21.04 = 1.11  36.19 + 1.97

Yoruba HMM 1.43 + 0.05 0.46 + 0.03
SHMM  22.84 + 0.81 44.31 £+ 1.70

TABLE IV

ADAPTING THE PHONETIC SUBSPACE TO THE TARGET LANGUAGE

Language System NMI F-score
English SHMM 38.96 + 0.07 74.03 £ 0.49
SHMM-finetune ~ 37.66 4 0.29  72.28 £ 0.56
H-SHMM 39.75 + 1.14  76.38 £ 0.49
Mboshi SHMM 38.95 £ 0.60 60.13 £ 043
SHMM-finetune ~ 37.50 4 0.37  54.30 £ 0.63
H-SHMM 42.73 £ 097 64.63 £ 1.74
Yoruba SHMM 3898 £0.15 63.77 £ 0.39
SHMM-finetune  36.86 £ 0.24  58.12 £ 0.72
H-SHMM 39.52 + 046  66.27 £+ 0.6

HMM, this means after random initialization of the variational
posteriors). As expected, the SHMM has much better perfor-
mance at initialization compared to the HMM system which has
a vague prior.

E. H-SHMM

We have seen that building an AUD system with an educated
prior such as the SHMM brings a significant improvement.
This performance boost can be explained partly by the added
information brought by the phonetic subspace. However, this
information may not always be accurate: for instance, the set of
languages used for learning the phonetic subspace may not be
“relevant” (phonetically speaking) for the target languages. This
phonetic mismatch between the source languages and the target
language results in the observed performance gap between the
SHMM model and Topline-U (see Table II).

As explained in previous sections, the H-SHMM attempts to
reduce the mismatch between the source and target language by
adapting the phonetic subspace to the target data. In Table IV,
we compare the H-SHMM to the SHMM. We observe that if
we update the SHMM phonetic subspace posterior go(W, b)
on the target language rather than freezing it as learned from the
source languages, the clustering and segmentation performance
degrades (“SHMM-finetune” in Table IV). The H-SHMM, on
the other hand, by constraining the adaptation of the phonetic
subspace by its hyper-subspace, successfully adapts the phonetic
subspace on the target data. However, despite the improvement
brought by the H-SHMM, our best system remains far from
Topline-U suggesting that there is still potential for adapting the
subspace to the target language.
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TABLE V
CROSS-LINGUAL PHONE RECOGNIZER FOR AUD

NMI F-Score
System English ~ Mboshi  Yoruba English ~ Mboshi  Yoruba
Cross-AM 27.94 25.49 25.69 53.18 43.02 48.39
Cross-FR 35.34 33.58 30.19 70.82 54.16 56.21
Cross-GE 32.69 29.44 25.57 68.43 48.57 53.75
Cross-PO 33.30 31.05 28.15 66.90 56.16 56.78
Cross-SP 33.43 29.83 25.58 67.20 54.10 55.20
Cross-SW 31.93 30.01 24.40 67.10 44.66 49.46
Cross-WO 30.37 35.66 33.03 60.18 59.82 61.12

F. Comparison With Other Methods

‘We have shown that subspace models, as implemented by the
SHMM and the H-SHMM, offer a significant improvement over
the Bayesian HMM baseline. We now broaden the comparison
with non-Bayesian approaches.

1) Cross-Lingual Phone Recognizers: We compare our sub-
space AUD models with cross-lingual phone recognizers. To
make the comparison fair, the cross-lingual phone recognizers
are structurally equivalent to the AUD models: each of them
is an HMM phone-loop (with the same number of Gaussians
per state) trained on phonetically transcribed data. We use the
same languages and data (Table I) as for estimating the phonetic
subspace for the SHMM and H-SHMM models. Results are
shown in Table V: we observe that these cross-lingual phone
recognizers are much less accurate both in terms of clustering
and segmentation. Note that the SHMM and H-SHMM use the
data of all source languages whereas the cross-lingual phone
recognizers are trained on a single language. To assess that the
benefits of the subspace methods are not due to having more
data, we report in Table VI the performance of the SHMM?
using only one language to estimate the phonetic subspace, we
observed that for any given language, the SHMM AUD system
outperforms the cross-lingual phone recognizers trained on the
same source languages.

Additionally, an interesting insight is highlighted by the re-
sults in Table VI: for Mboshi, we observe that training the
phonetic subspace of the SHMM on a single source language
is better than training on all source languages. This indicates
that some combination of source languages can be detrimental
for the AUD SHMM. However, the H-SHMM, which adapts
the phonetic subspace (in an unsupervised fashion) to the target
language achieves better results than any SHMM.

2) Neural-Network Based AUD Systems: In recent years,
several neural-network-based systems have been proposed for
discovering acoustic units from speech. While architecture and
objective function differ across models, all of them follow the
same principle: an encoding-decoding architecture with one or
more discretization hidden layers. We compare our subspace-
based models against the following neural-network baselines:

1) VQ-VAE [41]: a variational auto-encoder with a quantiza-

tion layer; variations of this model were successfully used
for AUD by several teams in recent iterations of the Zero

2We make this comparison only with the SHMM, as it is not sensible to
estimate the “hyper-subspace” of the H-SHMM with only one lanugage.
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TABLE VI
SHMM PERFORMANCE WHEN PRETRAINED WITH ONLY ONE SOURCE LANGUAGE

NMI F-Score

System English Mboshi Yoruba English Mboshi Yoruba

SHMM-AM  36.60 £ 0.39 41.17 £ 036  38.22 + 0.15 68.11 £ 0.33 5790 £ 1.02 62.12 £ 0.29

SHMM-FR 37.13 £ 0.08 41.36 & 040  36.70 £ 0.42 7627 £0.13  63.66 + 1.03  65.73 + 0.70

SHMM-GE 3579 + 0.08 4191 + 0.56 34.64 + 0.44 7697 £ 0.52 6527 = 1.07  63.62 + 0.59

SHMM-PO 3821 £ 0.10 42.04 £0.14 37.34 £ 0.10 7693 + 023 6434 £ 0.78 6494 £ 0.28

SHMM-SP 38.01 £ 0.14  41.27 =041 3554 + 0.31 75.00 £ 0.15 6482 +0.44 6495 + 0.20

SHMM-SW 3457 £0.19 40.63 £ 0.16 3391 + 3.16 7583 £0.13  62.16 £ 042 6230 £ 1.17

SHMM-WO 3219 £ 0.74 4270 £ 0.17  34.02 + 0.08 70.78 &+ 1.18  67.62 £ 0.43  66.77 £ 0.16

TABLE VII
COMPARISON WITH NEURAL-NETWORK-BASED AUD
NMI F-Score

System English Mboshi Yoruba English Mboshi Yoruba
VQ-VAE 3530 £ 0.50 3588 £ 0.69 31.74 £+ 0.65 5250 +3.17 3474 £2.76 3526 + 0.94
constrained VQ-VAE 36.01 £0.59 3649 £0.79 32.30 £ 0.62 7133 £298 5047 £ 1.39 49.04 £ 1.44
constrained VQ-VAE (BNF) 36.44 £ 0.13 3274 £ 0.19  33.88 4+ 0.08 5692 + 0.20  39.61 & 0.28  42.07 &+ 0.29
constrained VQ-VAE (pretrained)  34.27 4+ 0.58  36.61 4+ 0.40  33.26 4+ 0.47 7490 + 031 4853 + 1.01  54.00 & 0.82
ResDAVEnet-VQ 34.39 33.67 34.07 64.36 52.85 50.90
VQ-WAV2VEC 35.20 28.79 30.66 26.84 14.94 15.84
SHMM 38.96 + 0.07 3895 + 0.60 3898 £ 0.15 74.03 £ 049 60.13 043  63.77 + 0.39
H-SHMM 39.75+ 058  42.73 £ 097 39.52 £ 0.46 76.38 £ 0.49  64.63 = 1.74  66.27 £ 0.60

Resource Challenge [7], [12], [42], [43]. Keeping with
our theme of using English as a development language,
we tuned the VQ-VAE hyper-parameters to maximize
the NMI on English and transferred them to the other
languages

2) constrained VQ-VAE [44]: a recently proposed post-
processing method for VQ-VAE which encourages tempo-
rally consecutive frames to be quantized to the same class;
this was shown to provide a significant improvement over
the the plain VQ-VAE [44]

3) ResDAVEnet-VQ [14]: neural network with quantization
layers trained to correlate images with their associated
audio captions; we choose this baseline to compare our
method against an AUD system with a weak supervision
signal

4) VQ-WAV2VEC [13]: a convolutional neural network with
a quantization layer trained with a contrastive prediction
objective on the 960 h Librispeech corpus [45].

The VQ-VAE?® and the constrained VQ-VAE are trained on
the same target data as the SHMM and the H-SHMM. For
ResDAVENet and VQ-WAV2VEC, we used the respective au-
thors” own pretrained models directly and use their quantization
output for evaluation purposes. Note that ResDAVENet and VQ-
WAV2VEC were trained only on English data which explains
some of the degradation in performance when they are used for
AUD for other languages.

The results are presented in Table VII. We observe that the best
performing neural network baseline is the constrained VQ-VAE,
showing that a temporal constraint is an important feature in

3Implementation and training details for the VQ-VAE can be found at https:
//github.com/BUTSpeechFIT/vg-aud

any AUD models. Nevertheless, the Bayesian subspace models
perform significantly better.

Since our models utilize data from other languages, we equip
the constrained VQ-VAE with data from other languages in two
ways: (i) pretraining the VQ-VAE with data from the source
languages, and (ii) using multilingual bottleneck features (BNF)
from [46] instead of MFCC. In both cases, there are slight but in-
consistent NMI gains over the base constrained VQ-VAE. Where
the former approach occasionally improves the segmentation,
the segmentation from the latter is far worse than the baseline.
Overall, both fall decidedly short of matching the improvements
brought by the SHMM.

The Bayesian AUD models may seem simple compared to
large convolutional neural networks. However, they benefit from
a well-structured prior which guides them during the cluster-
ing. Conversely, the neural network-based AUD models are
very potent but lack structured priors and are easily trapped in
sub-optimal solutions, limiting how well they can utilize their
potential.

G. Effect of the Subspaces Dimensionality

In this last part, we provide an analysis of the effect of phonetic
and language subspace dimensionality.

1) SHMM: In Fig. 4(a), we illustrate the effect of the sub-
space dimensionality for the SHMM. We observe that, in terms
of clustering, the behavior varies by target language. For English
and Yoruba, the optimal subspace dimension is around 250 while
for Mboshi, it is between 50 and 100.

This performance variance highlights the major drawback of
the SHMM: the assumption of a universal phonetic subspace.
Indeed, we see that there is no unique setting that fits well for
all possible languages.
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Fig. 4. NMI and F-Score metrics when varying the (a) dimension the phonetic subspace of SHMM, (b) dimension of the language subspace of the H-SHMM,

and (c) dimension of the phonetic subspace of the H-SHMM.

Segmentation wise, a low (50-100) dimensional subspace
leads to more accurate segmentation. This suggests that a coarser
phonetic representation is preferable when the segmentation
accuracy is concerned.

2) H-SHMM: The H-SHMM has two subspaces: the lan-
guage subspace and the phonetic subspace. Fig. 4(b) shows
the performance of the H-SHMM as the language subspace
dimension is varied (the phonetic subspace dimension is fixed
to 100). We observe that having larger dimension is globally
preferable though the effect is only significant for the Mboshi
data. Notice that the curves in Fig. 4(b) are somewhat noisy,
indicating that the H-SHMM is affected by random initialization.

The performance of the H-SHMM as the phonetic subspace
dimension is varied is shown in Fig. 4(c). In this experiment, the
language dimension is fixed to 5. We observe that the behavior
is now homogeneous across languages: both for the clustering
and segmentation the optimal phonetic subspace dimension is
between 50 and 100 dimensions. This shows the benefit of adapt-
ing the phonetic subspace on the target language: we can have
better clustering and segmentation while using lower dimension
to represent each language-specific phonetic subspace.

H. Subspace Models With Neural Representations

In the experiments described so far, the subspaces have been
used to constrain the parameters of MFCC features. However,
the subspace models constitute a clustering method that should
work for a wide variety of feature representations provided
those representations follow distributions which are consistent
across languages. Moreover, with the advent and popularity of
neural representation learning methods, a natural question arises
whether the subspace models can leverage the improvements

brought by neural representation learning methods for better
clustering.

Table VIII shows the results of replacing MFCC features with
aset of publicly available neural representations: (i) multilingual
bottleneck features, (ii) intermediate representations extracted
from HuBERT [47], and (iii) XLS-R [48] which is a scaled up
version of XLSR [49]. We include k-means as it has recently
been used to cluster HuBERT features for downstream applica-
tions that require discrete representations; we set the number of
k-means clusters 100 to match the truncation parameter of our
Dirichlet process-based models. For both HuBERT and XLS-R,
we use the base versions of the respective models, and extract
features from the 11th and 15th layers respectively. These layers
were chosen as they maximized the NMI on the English data
when clustered with k-means.

Bottleneck features, when used with the unconstrained HMM
baseline, give worse results than MFCC in terms of both NMI
and F-score, an indication that the HMM-GMM struggles to
directly model phonetic variability in the BNF space. SHMM
improves significantly upon the HMM, even outperforming the
MEFCC equivalent on Yoruba clustering and Mboshi segmen-
tation. The H-SHMM provides further improvements across
the board for Yoruba and Mboshi; for English however, the
H-SHMM exhibits high variance in performance with sub-
optimal initializations resulting in worse average performance
than SHMM.

The features from HuBERT thoroughly outperform MFCC,
even with k-means as the clustering technique. Using an HMM
instead of k-means results in worse NMI but, as expected, signif-
icantly improves the segmentation precision with its Markovian
constraint on the units. SHMM with HuBERT representation
provides substantial gains over the HMM, surpassing by far
the improvements observed on MFCC. Adapting the subspace
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TABLE VIII
AUD PERFORMANCE WHEN USING NEURAL FEATURES WITH SUBSPACE MODELS

NMI F-Score
Feature System English Mboshi Yoruba English Mboshi Yoruba
MFCC k-means 31.01 30.20 28.27 41.32 22.30 23.19
HMM 3542 £ 0.18 37.14 £ 026 36.20 £ 0.31 63.50 + 0.81  48.63 £ 091  53.97 £ 0.22
SHMM 38.96 + 0.07 3895 £ 0.60 3898 £ 0.15 74.03 £ 049 60.13 £ 043  63.77 £ 0.39
H-SHMM  39.75+ 0.58  42.73 + 097  39.52 + 0.46 76.38 £ 049 64.63 £ 1.74  66.27 + 0.60
BNF k-means 36.63 33.79 34.33 45.62 32.24 32.69
HMM 3511 £ 049 3339 £ 049 35.05 £ 0.73 5796 & 141 4441 £ 159 4494 £ 1.56
SHMM 37.99 + 0.11 3891 + 0.34 40.80 + 0.14 69.72 £ 0.62 61.65 + 047 6225 + 0.61
H-SHMM 3649 + 0.96 41.32 + 044  41.26 + 0.39 67.62 =275 65.05 £ 0.64 63.78 £ 0.97
HuBERT  k-means 51.63 39.35 38.93 58.76 37.59 37.74
HMM 4482 + 036 3777 £ 0.66  38.16 + 0.79 66.05 £ 0.79 5524 + 138 5821 + 1.14
SHMM 4697 £ 043 5194 £ 0.16 4628 + 0.26 71.84 £ 0.64 77.58 £ 043  73.90 + 0.37
H-SHMM 4504 + 1.23  52.44 + 0.78  46.63 + 0.55 70.74 £0.24 77.88 £ 0.54 73.84 £ 0.44
XLS-R k-means 46.76 38.65 41.44 52.93 35.26 38.61
HMM 4454 £ 0.62 3779 £ 1.14 4259 + 0.93 67.94 &£ 1.17 5552 £ 1.73  57.98 £+ 2.07
SHMM 49.86 + 0.84 5336 + 049 53.26 + 0.34 7597 £ 0.51 7438 £ 0.80  74.49 + 0.59
H-SHMM 4725 £ 0.96 53.97 + 034 5273 + 0.24 75.10 £ 0.07  75.65 £ 0.55 74.56 + 0.67

MFCC Results are Repeated to Facilitate Ease of Comparison.

with the H-SHMM slightly improves over the SHMM for
Mboshi and Yoruba. For English, however, we observe the
same high-variance behavior, resulting from sensitivity to ini-
tialization, that plagued the H-SHMM with bottleneck features.
Neither subspace model gave better NMI than k-means on
English.

The results with XLS-R features follow a similar trend to
the HUBERT ones. The HMM by itself gives similar NMI to
k-means but improves the segmentation significantly. With the
subspace models, we get further substantive improvements in
all metrics and languages with the SHMM providing the best
NMI for English and Yoruba, and the H-SHMM having better
F-score for Mboshi and Yoruba.

Overall, we find that the subspace models are able to model
a variety of features and leverage the potential advantages dif-
ferent representations. Moreover, they alleviate the need for the
arduous task of manually optimizing the acoustic model. For
instance, the HMM baseline struggles when the features are
changed from MFCC, often performing worse than k-means.
This suggests that the choice of 4 Gaussians is suboptimal for
modeling each state in those feature spaces. Moreover, with
HuBERT and XLS-R having 50 Hz frame rate, the duration
model induced by a 3-stated left-to-right Markov chain becomes
ill-fitting. However, by using the subspace models, which con-
strain the parameters to only the relevant part of the model
space, we capture the salient advantages of new representations
to obtain truly substantial improvements despite the inadequate
duration model.

VI. CONCLUSION

This work provides a theoretical treatment of subspace models
for the task of Acoustic Units Discovery (AUD). It shows how
the paradigm of subspace models naturally fits within the non-
parametric Bayesian framework: an educated prior is formed
by constraining the base measure to a subspace that is estimated
on phonetically transcribed data from a set of source languages.

Thus, the acoustic unit parameters are constrained to live in a
phonetic subspace forcing the model to learn units that resemble
the phones of the source languages.

This work focuses on two specific models: the Subspace
HMM (S-HMM) and the Hierarchical Subspace HMM (H-
SHMM). The SHMM assumes that the phonetic subspace is
language-agnostic: it is the same for every language, whereas
the H-SHMM assumes that the phonetic subspace is language
dependent and has to be adapted to the target language.

Experimental results show that both the SHMM and the H-
SHMM outperform state-of-the-art AUD baselines in terms of
clustering quality and segmentation accuracy in three different
languages: English, Yoruba and Mboshi. Furthermore, the H-
SHMM proves to be superior to the SHMM which supports the
idea that each language has a unique phonology that needs to be
learned specifically.

Finally, the concept of subspace models for AUD can be
expanded in several ways; we list here potential future research
on subspace modeling for AUD:

1) the quality of the phonetic subspace—how well the sub-
space models the continuum of phone in a language—is
highly dependent on the choice of the acoustic model,
an HMM in the present work. Building more refined
generative models of phones would allow a qualitatively
better acoustic unit embeddings

2) this works uses a single subspace of all the phones assum-
ing implicitly a continuum between any pair of phones.
This continuity may not be relevant between phones of
distinct category, e.g. vowels and fricatives. To bypass
this issue, one can have a specific subspace for different
phonetic categories. This would have the added advantage
of easing the interpretation of the final acoustic units (for
instance an acoustic unit embedding on a vowel-specific
subspace is a vowel)

3) adding a speaker subspace to model explicitly the speaker
variability would help the AUD model adapt to the speaker
and avoid having speaker-specific clusters.
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APPENDIX A
INFERENCE

In this appendix, we detail the optimization of the variational
posterior defined in (47). Note that ¢(H) and ¢(v) are distri-
butions over infinite set of variables and, therefore, cannot be
used directly in any practical implementation. We derive the
optimal factors ignoring this issue and we address it specifically
in Appendix A4.

A. Latent Variables z, c

We assume ¢(H), ¢(v) and ¢(~) are fixed and we derive the
optimal variational posteriors ¢*(c|z) and ¢*(z) of the Gaussian
mixture components and HMM states respectively. For ¢*(c|z):

Ing*(clz) = Z (Inp(xn; nln20)) g, ) 5 (49)

where £ means equality up to a constant. Furthermore, (49)
implies that:

N

¢ (clz) = [ ¢ (cnlzn) (50)
n=1

¢ (enlzn) = exp {(Inp(xn, cnln2 ) g(n.,) } 651

e : .
Zj:l eXp { (Inp(xy,,J |77Zn)>q(7]z" ) }
From (10), the expected likelihood has the following form:

.
(Inp(xn; cnlnz, ) gm..) = _<f:)(zl>q)> T(lcn)
)0 | [Txn)
A, 1

(52)

In practice, the expectations are estimated empirically using the
variational posterior q(7),,, ) derived in appendix A2.

Using (51), we derive the optimal posterior of the HMM state
sequence:

Y (Xns €nl12,)
Ing'(z) = > <ln P Cnllzn )

q(Cn|Zn) >q(cnzn)(1(712n,)

n=1

+ <lnp(zn|2’n—1, V))q(v)'

For conciseness, we introduce the following placeholders:

(33)

Onzn) = <1n P ol C“'”Z")> (54)
d(enlzn)  / gtealzn)atne)
Azt iz = (I0p(2n|2n-1,V))g(v) - (55)
Rewriting (53) with ¢,,(z,) and A, _, . we get:

H exp {¢n(zn) + Az, 2, } (56)

n=1

N

¢= Z H exp {¢n(zn) + Azn,l,zn} . (57)

z n=1
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The normalization constant ¢ in (57) requires a summation over
all possible state sequences z. Despite the astronomical number
of possible sequences, this sum can be computed exactly and
efficiently using dynamic programming [26], [50], [51].

B. Acoustic Units’ Embeddings

We focus now on deriving the acoustic units’ posterior ¢(H)
first for the SHMM and then for the H-SHMM. In both cases,
we assume the other variational factors ¢(c|z), ¢(z), ¢(v) and
q(7y) to be fixed.

1) SHMM: Recall from Section III-C that each acoustic unit
vector is constructed from a low-dimensional embedding in a
subspace. Because the prior and the likelihood are not conjugate,
we cannot obtain a closed-form solution. Therefore, we add the
following parametric constraints to the variational posterior:

(S, E) £ N (v, diag(exp{¢})) (58)
S = (W,b), (59)

where v and ¢ are the mean and logarithm of the diagonal
covariance matrix of the vectorized form of S and E. We
optimize the empirical expectation of (46) with respect to the
parameters v and &:

J N
+
= Z Z hlp Xn, Cn|772n,j)>q(cn|zn)q(zn)

K‘ \

- IDQ(SJ7EJ) _lnp(Sj7Ej) (60)
point-wise KL divergence
(S5, Ej) =v+exp{} O¢;, ¢ ~N(0,I), (61)

where © represents element-wise multiplication and .J is the
number of samples used to estimate the empirical expectation
(J was set to 25 in all our experiments). This re-parametrization
trick for estimating gradients of intractable expectation integrals
from finite samples is commonly employed for training deep
generative models [52], [53]. In (60), the expectation of the log-
likelihood can be computed exactly using (51) and ¢(z,):

q(c1lzn)
.
Wy, 4 :
(Inp(|ns, ))g =alza) | 7 '
o —A(wz,,5) q(co-1lzn)
1
en T(xn)
+ q(zn)a(cnl2n) i )
—A(0 ;) 1
(62)

which we optimize (60) using stochastic gradient ascent.

2) H-SHMM: Optimization of the acoustic units’ posterior
in the H-SHMM is very similar to the SHMM case. However,
we need to take into account that each subspace is language
specific. Let’s consider that we have a set of L languages and
we would like to learn an inventory of acoustic units H* for each
language A € {1, ..., L}. From the definition of the H-SHMM
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(40)—(44), we have:

«({H'}) 24

(63)

L 0
H lH q(éﬁ)] g(a*).

As with the SHMM, we introduce the following parametric
constraint:

q (M {E*}, {o"}) = N (v, diag(exp{&})),  (64)
and we optimize the empirical expectation of (46):
o A
= ;; Z:: (I (x5, nln2, 5)) gen 122 yaen
[lnq(E ,Qr) — lnp(E;?,a;?)]
— [Ing(M;) —Ing(M;)] (65)
My, {EfL{af}) = v +exp{€} O¢;, ¢ ~ N(O, I)(766)

using stochastic gradient ascent.

C. Update of the Stick-Breaking Process

We address now the last part of the inference: the update of
the variational posteriors of the stick-breaking process. For this
stage, we consider that the variational posteriors ¢(c|z), ¢(z),
q(H) are fixed. The following updates equations are based on the
the variational treatment of the stick-breaking process presented
in [19].

1) Stick-Breaking Parameters: We first start to estimate the
optimal ¢*(v) assuming ¢(7) is fixed:

g (v) £ (p(z[v)g + (Mp(vIV)g)- (67

From (22) and (23) we have p(z|v) = p(s|u)p(u|v) which leads
to:

= H (o, Br) (68)

= <Z I[u > (69)

u;EU q(u)
Br = (Mt + <Z Mu; > k]> ), (70)
ticu q(u)
where 1].. ] is the indicator function. The expectations in (69)

and (70) require summing over all the units of all possible
sequences u from ¢(z). Once again, this large summation can
be calculated exactly using dynamic programming [26].

2) Concentration Parameters: Finally, the optimal varia-
tional posterior ¢* () with fixed ¢(v) is given by:

q*(v) = G(a,b) (71)
a=a+ Y 1, 0= Y ({1 = vg)) gy - (72)
k=1 k=1
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Note that we are able to obtain a closed-form solution thanks
to the conjugacy between the Gamma distribution and the stick-
breaking construction of the Dirichlet Process (see Appendix
B). Note that the summation in (71) is infinite, the resulting
posterior Gamma distribution is degenerate and will have, in the
limit, a variance of 0. Intuitively, one can say that by observing
infinitely many “stick breaks” we can guess the exact value of
the concentration parameters without uncertainty. By truncating
this infinite sum (Appendix A4) we add some uncertainty and
obtain a non-degenerate posterior distribution.

D. Truncation

In our derivation of the optimal variational posteriors, we
have ignored issues raised by the sum or product of infinitely
many terms. Following [19], we address this by introducing a
truncation parameter 7 such that ¢(v, = 1) = 1. This approxi-
mation, motivated by the almost sure truncation of the Dirichlet
Process [54], ensures that g(u; > 7) = 0, Vi and, therefore,
truncates all infinite sum and product to 7 terms in the solution
of the optimal variational posteriors.

E. Initialization

Because of the constraints imposed on on the variational
posterior (47), the optimization is prone to converging to local
optima. To avoid this, we initialize the model for the supervised
phase of the training by the following procedure:

1) we train a standard HMM with C-components GMM
emissions for each phone using Baum-Welch training and
the provided phonetic transcription.

2) for each state of each phone’s HMM

a) we set the mixing weights 7 such that 7, = %

b) we compute the per-state global mean [ = % chzl e
and global diagonal covariance matrix > = % Zle e

c) we set each Gaussian component to have mean /i and
covariance matrix 3.

3) using the HMM estimated in step 1, we initialize ¢*(z,,)
using the Baum-Welch algorithm and we set ¢* (¢, |z,,) =
const

4) we set v =0 and exp{¢} = 51 then, we burn-in the
model by optimizing v and ¢ until convergence while
keeping other factors fixed.

The initialization for the wunsupervised phase—the actual

AUD task—is easier:

1) we initialize the posterior of the stick-breaking process by
setting ¢*(v) := p(v) and ¢*(7) := p(7)

2) we use the variational posteriors estimated during the su-
pervised phase to initialize the new variational posteriors
as explained in Section IV-B.

3) finally, we set v, & such that ¢;(E) = N(0,1I) (respec-
tively ¢1 (E, o) = N(0, 1) for the H-SHMM).

APPENDIX B
CONJUGATE PRIOR OF THE STICK-BREAKING PROCESS

We show that the Gamma distribution is the conjugate prior
of the concentration parameter of the the stick-breaking con-
struction of the Dirichlet Process. A distribution p(x) is said
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to be conjugate to another distribution p(y|x) if the posterior
distribution p(x|y) is in the same distribution family as p(x).
Our proof is done in two steps: (i) we show that the posterior
of the concentration parameter depends only on the breaking
points v and (ii) we show that the Beta distribution B(1,~) is
conjugate to the Gamma distribution.

Let v be the concentration of the Dirichlet Process, v the
breaking points of the stick-breaking process and u the se-
quence of indices sampled from the mixing weights 1, 1; =
v; H;;ll(l — v;). By definition of the stick-breaking Dirichlet
Process, the joint distribution of these three variables is given
by:

p(u,v,7) = pulv)p(v|y)p(7)- (73)
Therefore, the posterior distribution p(~y|-) is given by:
p(uv)p(v,)
S S C L 74
p(vhr(v)
= = . 75
DD =) s)

Since the posterior of the concentration depends solely on v
and p(v) = [[;2; B(v;|1,7), it is sufficient to prove that the
Gamma distribution is conjugate to B(v;|1,) to establish the
conjugacy of the Gamma distribution and the stick-breaking
Dirichlet Process and.

Now, we show that B(v;|1,~) is conjugate to a Gamma
distribution. From the definition of the Beta distribution we have:

_ F(l + ’7) ,U_lfl(]_ o ,U_)'yfl'

p(vily) = NORGK (76)

Using the properties of the T" function: T'(z + 1) = zT'(z) and
I'(1) = 1, (76) simplifies to:
p(vily) =~v(1 —vi) 7

Multiplying (77) with a Gamma distribution p(~y) = G(ao, bo)

yields:
bao,yao*le*bo'y
v) o< |y(1—wv; 71} {O
Pl o [2(1 - 09 o

o 0 e*(bO*ln(lfvzi))’Y )

] (78)

(719)

In the last equation, we recognize an (un-normalized) Gamma
distribution with parameters a = ag + 1 and b = by — In(1 —
v; ) proving that the Gamma distribution is conjugate to the stick-
breaking Dirichlet-Process.
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