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Abstract
Conversations stored as mono data is a common problem in
many real world speaker recognition applications. In this pa-
per, we focus on investigative scenarios, where a number of
mono telephone conversations are available for a speaker of in-
terest. For example, a human operator may have verified that
the speaker is present in these conversations. We propose sev-
eral approaches for automatically creating enrollment models
for the speaker of interest from such data. We then use the en-
rollment models to search for appearances of the speaker of in-
terest in other calls. We analyze the performance of the different
method on two dataset that matches our scenario, one is from a
simulated case and one is from a real case.

1. Introduction
In many practical applications of speaker verification, the
recordings for both enrollment and verification contain the
speech from more than one speaker. This problem has been
adressed in several speaker recognition evaluations, e.g. Speak-
ers In The Wild (SITW) [1] and NIST SRE18 [2]. Our interest
in this paper is telephony data where the two sides of the call
have been mixed and stored as one mono recording. In our sce-
nario, we need to create enrollment models from mono record-
ings as well as verify whether a specific speaker is present in a
test utterance. This scenario is common in criminal investiga-
tions involving lawfully intercepted telephone calls.

Assuming that an enrollment model exists, a common and
straight-forward approach to do verification, used e.g. in [3], is
to first apply speaker diarization to the test utterance and then
score each of the obtained speaker embeddings found by the di-
arization against the enrollment model. As the final verification
score, the maximum of the obtained scores is used. This simple
approach works well and has sound mathematical justification
as will be explained later in this paper.

Creating the enrollment model is a much more difficult
problem. In SITW [3], multiple speakers exist in the enroll-
ment recording, and a segment where the speaker to enroll is
speaking is marked (referred to as the assist segment). The rest
of the enrollment recording was diarized, all resulting speakers
were scored against the assist segment. The best scoring seg-
ment was used in addition to the assist segment to create the
enrollment model.

In our scenario, no assist segments are available. However,
we do have several calls for the enrollment speaker where it can
be assumed that the conversation partners are different in the
different calls. In this paper, we compare different methods to

create speaker models from such data. It should be noted that in
our scenario, it is important to create a model for the speaker of
interest while excluding the conversation partners in the enroll-
ment calls because some of them may occur in the test record-
ing speaking with someone else than the enrollment speaker
and therefore generate a false positive. We cannot simply di-
arize/cluster the enrollment recordings and score every obtained
model from the enrollment data with the test recording to verify
whether at least one speaker in the enrollment recordings is the
same as one speaker in the test recordings.

To the best of our knowledge, the problem of enrolling spe-
cific speakers from several multi-speaker recordings is seldom
addressed. However, this type of data has been utilized for
training a neural network based speaker identification system
in [4]. In that work, utterances where the identity of at least
one speaker was known were diarized and segmented to chunks
from which i-vectors [5] were extracted. The speaker identifi-
cation system was trained using a novel objective function that
took into account the properties of the data.

The paper is organized as follows: in Section 2, we discuss
diarization approaches used in this work, especially explaining
how to constrain the number of detected speakers which is im-
portant in our scenario. In Section 3, we describe the proposed
approaches for creating enrollment models. In Section 4, we
suggest the verification procedure and justify it. In Section 5,
we present experiments done on two datasets. Finally, in Sec-
tion 6 we summarize our conclusions and outline some direc-
tions for future work.

2. Diarization
In this work, we use diarization in the verification phase as well
as for for some of the methods for creating enrollment models.
Since we are dealing with telephony recordings, we assume that
there are two speakers in the recordings1. We explore two di-
arization approaches in particular that achieves this. These are
described in the following two subsections.

2.1. PCA based diarization

A simple approach to diarization of two speakers was intro-
duced in [6, 7, 8]. This method implements an implicit seg-

1Of course this is not always the case. There can be three speakers if
one of the phones is handed over to another person in the middle of the
call, or there can be only one speaker if someone makes a call only to
give a short instruction. However, having two speakers in the recording
is by far the most common and in this work we restrict ourselves to this
case.
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mentation (at the vector level), fitted for a subsequent verifi-
cation step, since no explicit diarization at the speech signal
is performed. It was originally applied to GMM supervectors
but it can be naturally applied to any type of speaker embed-
ding. The embeddings used in this paper are x-vectors (DNN
based speaker embeddings) produced from short speech chunks
(1.44s in our case) with some overlap (0.24s in our case). These
embeddings are then centered and projected into their first prin-
cipal component (the eigenvector corresponding to the largest
eigenvalue) and those that obtain a value larger than t are as-
signed to one speaker, and to the other speaker otherwise. Here
t is a tunable threshold which can be the average of the con-
versation projection scores or simply set to 0, as in our exper-
iments. Furthermore, some floor threshold could be used to
eliminate borderline (possibly unreliable) projected x-vectors.
Intuitively, the main eigenvector retains the direction of maxi-
mum embedding variability which is associated to the speaker
separability, while more refined phonetic separability would be
manifested along higher order eigenvectors. Note that this di-
arization method results in exactly two speakers.

2.2. VBx diarization

Variational Bayes diarization on top of speaker embeddings
(VBx) is a state-of-the- art method for diarization described in
detail in [9]. In short, it is a first order hidden Markov model
for transitions between speakers where the output probabili-
ties are modeled by probabilistic linear discriminant analysis
(PLDA) [10]. As the method described in the previous subsec-
tion, VBx takes speaker x-vector embeddings from short seg-
ments of an utterance (hence the x in VBx since it was first
applied to x-vectors). Usually, and in this paper, agglomera-
tive hierarchical clustering (AHC) is applied for initializing the
method.

The standard VBx recipe does not provide a mechanism for
constraining the number of detected speakers. Given a mini-
mum, and maximum on the number of speakers, we therefore
modify the recipe as follows:

1. The AHC used for intitialization is stopped if the mini-
mum number of speakers is reached. As usual, it is also
stopped if a threshold in the similarity score for the two
most similar clusters is reached.

2. The VB diarization then outputs the best solution that
does not have less than the minimum number of required
speakers.

3. In a post-processing step, if there are more than the max-
imum number of required speakers, the speakers with
most segments are selected and the remaining segments
are reassigned to one of these speaker based on the poste-
rior probability of them belonging to the different speak-
ers.

Note that AHC always reduces the number of speakers in every
iteration and that the VB diarization cannot increase the number
of speakers to more than what is available in its initialization. In
our experiments, both the minimum and maximum number of
speakers is set to two which means that exactly two speakers
will be obtained.

3. Methods for enrollment
In this section, we describe three methods for automatically
building a target speaker model given some multi-speaker con-
versations where the target speaker occurs. In particular, we

focus on mono (two-wire) telephone conversations. Assume
we have n mono conversations where speaker S was identified,
for example by a human operator or by the telephone number.
Supposing that S speaks to different partners in each of the n
conversations, the conversations would contain n + 1 clusters
corresponding to each of the different speakers. An obvious
solution for modeling S would be to manually label the conver-
sations and isolate his/her speech chunks to derive the model.
This procedure leads to an optimal speaker model but at high
time and effort costs. Our goal is to limit human workload by
proposing alternative techniques to automatically produce ap-
proximate models.

We propose three methods for automatic speaker enroll-
ment from mono-channel calls, ”median embedding”, ”eigen-
vector intersection” and ”Complete cluster search”, where the
bold denotes how we refer to them in figures and tables. The
proposed methods are described in detail in the subsections be-
low. An illustration of the methods is provided in Figure 1.
It shows a 2D PCA visualization of segmental embeddings
extracted from three conversations, each involving the target
speaker and one other speaker (red, green and blue dots for
each of the three conversations). The overall median, the in-
tersection and the top cluster embedding are plotted as different
(yellow) symbols. For completeness, each of the (2n) initial
clusters and the conversations eigenvectors (black dots) are also
plotted. Note that the intersection and cluster methods produced
similar speaker models, in contrast to the median, which was bi-
ased by the relatively high amount of x-vectors from of the other
speaker in the “green” conversation.

Figure 1: Illustration of the Median, Intersection and Cluster
methods for three calls. The dots represents the embeddings
from the short segments described in Section 2. Each color de-
notes a call. For illustrative purposes, the data has been pro-
jected on the two first principal components (PC) estimated on
all data. (Distinct color Cluster symbols refer to the centers ob-
tained by PCA diarization for different conversations.)

3.1. Median embedding

Possibly the most trivial model for speaker S is simply the
element-wise median (or mean) embedding calculated from the
whole set of embeddings extracted from his/her n enrollment
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conversations. The rational behind this approach is that the
”center of mass” of this set should be representative of the fea-
ture space region concentrating most of the embeddings of S,
while the embeddings from the (at most) n partners should be
spread over different directions of the feature space. In our ex-
periments, we use the median rather than the mean because,
as opposed to the mean, the median is less influenced by the
embeddings of the partner speakers (since the target speaker is
present in all enrollment calls and therefore has many more em-
beddings than the conversation partners). In fact, this method si-
multaneously operates at the whole enrollment data for a certain
speaker and not on his individual conversations. More sophis-
ticated strategies separately processing each enrollment conver-
sation will be presented in the next subsections.

3.2. Eigenvectors intersection

Inspired by the previously described PCA diarization, we as-
sume that the main eigenvector ”connects” the partner speakers
embeddings in a conversation. Therefore, given n conversations
of speaker S, the intersection of their eigenvectors would point
to the concentration of his embeddings, since S is the common
speaker in each of the conversations. We can then approximate
the speaker’s model by p, the closest point from the eigenvec-
tors intersection, which can be found through the following re-
lation:

∑

i

[
nin

T
i − I

]
p =

∑

i

[
nin

T
i − I

]
ai, (1)

where I is the identity matrix, ai is the mean embedding for
conversation i and ni is the normalized main eigenvector of
this conversation. The eigenvectors most certainly won’t have
a unique intersection and the pseudo-inverse should be used to
calculate the ”best fit” (in the least squares sense) solution to
p. (The formula derivation for general line-to-line intersections
can be found in [11].)

3.3. Complete cluster search

In this method we first diarize the enrollment calls so that we
obtain two speaker embeddings per call. We take for granted
that one out of the two clusters formed for each enrollment con-
versation belongs to the speaker of interest. For n enrollment
recordings there are therefore 2n ways to combine the embed-
dings belonging to the target speaker. Each of the 2n combi-
nations is then evaluated according to some objective and the
best one is selected. In this work we explore two objectives.
The first is simply the average standard deviation of the em-
beddings. The second objective is the likelihood according to
the PLDA model. Let c ∈ [1, 2n] denote a combination of
one embedding per utterance. If c is the correct combination,
these embeddings belong to the target speaker. Let them be de-
noted E(c) = [e

(c)
1 , . . . e

(c)
n ]. The remaining embeddings are

assume to belong to n different speakers. Let them be denoted
E(c̄) = [e

(c̄)
1 , . . . e

(c̄)
n ]. The likelihood for cluster c is then

L(c) = P (e
(c)
1 , . . . , e(c)

n )
n∏

i=1

P (e
(c̄)
i ), (2)

where P (x1, . . . ,xm) denotes the probability of observing the
embeddings x1, . . . ,xm if they are from the same speaker and
is given by Eq. (6) in [10]. If all combinations have equal prior
probability, their posterior probabilities can be obtained by ap-
plying a softmax over all likelihoods.

It should be noted that this approach is only feasible as long
as n is reasonably small. For example, with n = 20 there are
approximately 106 combinations. In this case it takes 1 to 2
minutes to search for the best combination and increasing n
by 1 doubles the processing time. On the other hand, it is un-
likely that using more than 20 calls is needed for creating a good
speaker model.

4. Verification
As discussed earlier, in this work we assume there will always
be two speakers in the call. Using the methods described in
Section 2, we diarize the utterance and obtain an average em-
bedding for each of the speakers (A,B) in the test call.

Given these test utterance embeddings are obtained, a stan-
dard approach for verification used e.g. in [3] is to score the
enrollment embedding against each test embedding and use the
maximum score as the verification score. This process is illus-
trated in Figure 2.

mono
conversation

xvector
extraction

xvec1 
xvec2 

 
xvecn

segmentation spk_A 
spk_B

spk_model

maxscoring score

Figure 2: General verification scheme. In the diarization stage,
the mono conversation to test is divided into short chunks from
which x-vectors are extracted. These segmental x-vectors are
then clustered (segmentation) into two speakers and one x-
vector for each speaker is obtained by averaging. In scoring,
each of the two x-vector is compared against the speaker model
and the maximum score is used as the final score.

Let tA be the embedding from speaker A in the test record-
ing and tB be the embedding from speaker B in the test record-
ing. Let T = {tA, tB}. Further, let E = {e1, . . . , en} be the
enrollment embeddings for the speaker of interest, i.e., one per
enrollment utterance.

In the following, we show that using the maximum of the
two scores can be seen as an approximation to the LLR of be-
tween the following two hypothesis

• H1: One of the embeddings (tA, tB) from the test utter-
ance is from the same speaker as the enrollment embed-
dings

• H0: None of the embeddings from the test utterance is
from the same speaker as the enrollment embeddings.
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These two hypothesis are the only possible given the assump-
tion that the system have detected the correct number of speak-
ers.

The LR is

LR =
P (E, T |H1)

P (E, T |H0)
=

P (H1|E, T )

P (H0|E, T )

P (H0)

P (H1)
(3)

To derive the first term, we consider for simplicity the case of
two test embeddings tA and tB . We then divide H1 into

• H11: The speaker in embedding tA is from the same
speaker as the enrollment embeddings

• H12: The speaker in embedding tB is from the same
speaker as the enrollment embeddings.

We then have

P (H1|E, tA, tB)

P (H0|E, tA, tB)
=

P (H11|E, tA, tB) + P (H12|E, tA, tB)

P (H0|E, tA, tB)

=
P (E, tA, tB |H11)P (H11)

P (E, tA, tB |H0)P (H0)
+

P (E, tA, tB |H12)P (H12)

P (E, tA, tB |H0)P (H0)

=
P (E, tA|H11)P (H11)

P (E, tA|H0)P (H0)
+

P (E, tB |H12)P (H12)

P (E, tB |H0)P (H0)
(4)

where the last simplification comes because e.g.,
P (E, tA, tB |H11) = P (tB)P (E, tA|H11) and similarly
for other parts. Without more detailed information about the
recording, each embedding is equally likely to be the one from
the enrollment speaker so ptar is therefore distributed uniformly
over the test embedding, i.e., P (H11) = P (H12) = P (H1)/2.
This, together with Eq. (3) and Eq. (4), gives the LR:

LR =
P (E, T |H1)

P (E, T |H0)

=
1

2

[
P (E, tA|H11)

P (E, tA|H0)
+

P (E, tB |H12)

P (E, tB |H0)

]
, (5)

i.e., it is simply the sum of the LR for the individual test embed-
dings. Accordingly, the LLR can then be obtained by

LLR = log

[
P (E, tA|H11)

P (E, tA|H0)
+

P (E, tB |H12)

P (E, tB |H0)

]
− log(2)

= log (exp s (tA, E) + exp s (tB , E))− log(2), (6)

where

s(t, E) = log
P (E, t)

P (E)P (t)
(7)

is the ”standard” LLR score. Except for the constant term, this
can be approximated with the max operation. In initial exper-
iments we observed no difference (for calibration insensitive
evaluation metrics) between using the maximum or the formula
in Eq. (6) so we use the maximum for simplicity.

5. Experiments
In this section, we first introduce the backbone models (embed-
ding extractor and PLDA) used in the experiments. We then
present experiments on one simulated and one real dataset from
a closed and completed criminal investigation.

5.1. Models

In all experiments we used the 8kHz embedding extractor and
PLDA model used and described in [9]. This model is publicly
available as part of the VBx recipe2. In short, the embedding ex-
tractor is a ResNet101 architecture, extracting 256 dimensional
embeddings. Before PLDA, the embeddings are subjected to a
rather involved preprocessing step as follows,

x =
∥∥∥xo − µ1∥2D− µ2

∥∥
2

(8)

where ∥ · ∥2 is the L2-norm, xo is the original embedding of
dimension 1× 256, D is an 256× 128 dimensional LDA pro-
jection matrix, µ1 and µ2 are row vectors, and x is the pre-
processed embedding. The paramameters D, µ1 and µ2 are
estimated from the PLDA training data. The PLDA model has
full (rank 128) within and between class covariance matrix.

5.1.1. A note on PLDA scoring

In most of our experiments, we use the log-likelihood ratio from
a PLDA model for scoring which can be computed in closed
form. The formulas for this is given in, e.g., [10]. The PLDA
LLR computation is based on the number of enrollment utter-
ances, the mean of the embeddings from the enrollment utter-
ances and the embedding from the test utterance. The median
and intersection method do not, strictly speaking, produce a
mean vector and it is somewhat unclear what should be con-
sidered the number of enrollment utterances. Further, since the
preprocessing step described in Eq (8) is non-affine, it makes
a difference if it is applied before or after ”merging” embed-
dings. For the median and intersection method we therefore
produce the enrollment embedding, then apply the PLDA pre-
processing and then in scoring we set the number of enrollment
utterances to 1. For the complete cluster search, we obtain a
set of enrollment embeddings. Therefore we can also apply the
preprocessing before merging them by taking their mean. In the
experiments we try both ways as well as setting the number of
enrollment utterances to 1 (referred to as ”mean scoring”) and
the actual number (referred to as ”by-the-book” scoring).

5.1.2. Evaluation metric

For a given enrollment model and test call, the task is to tell
whether the speaker of the enrollment model is present in the
test call regardless of which side of the test call he/she is in.
This is a detection task. For simplicity, we use equal error rate
(EER) as evaluation metric.

5.2. Roxanne simulated data

The Roxanne simulated data set (ROXSD) data set [12] was
collected within the Roxanne project3 to aid the development
of speech, NLP, video and network analysis tools for crimini-
nal investigations4. It contains partially scripted calls between
member of a three connected criminal networks. The scenarios
are inspired by real criminal cases. In the ROXSD scenario, ten

2https://github.com/BUTSpeechFIT/VBx
3Real time network, text, and speaker analytics for combating orga-

nized crime (Roxanne), https://roxanne-euproject.org
4The authors do not see any significant ethical or privacy concerns

that would prevent the processing of the data used in the study. These
data were collected from consenting volunteers, whose participation
was approved by a research ethics committee. The dataset do contain
personal data, and these are processed in compliance with the GDPR
and national law.
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Table 1: Statistics for ROXSD data. Two of the intercepted
speakers had only one intercepted call and were not used. Note
that the sum of the last two rows equals 236−8 = 228 for each
speaker.

Speaker ID #Target calls #Non-target calls
G03 M - -
V02 M - -
C04 M 27 201
R06 F 6 222
C07 F 37 191

G01 M 27 201
R05 M 7 221
R01 M 25 203
V01 M 3 225
C01 M 48 180

Sum 180 1644

volunteers playing the role of fictitious criminals having their
phone numbers intercepted. There are in total 236 calls in the
data set. We use the eight chronologically first calls of each
intercepted speaker to create enrollment models. The rest of
their calls are used as target calls. The non-target calls for each
speaker are taken from the rest of the speakers in the data in-
cluding calls that are used to create enrollment models for other
speakers. The statistics are shown in Table 1.

5.2.1. Results and discussion

In the first experiment, we compare the different enrollment
and diarization methods. From each speaker’s eight enrollment
calls, we create one enrollment model from the first four calls
and one enrollment model from the last four calls so that we
have two enrollment models per speaker. The latter is not par-
ticularly realistic from a scenario point of view, since it means
the user would use the fifth to the eight intercepted call for creat-
ing the enrollment model. However, using the data in this way,
doubles the number of test trials compared to the amount given
in Table 1, i.e., we have 360 target trials and 3288 non-target
trials. Since the number of trials are few, we believe this is
more important then following the most realistic scenario of the
dataset. The results are in Tables 2 and 3. The most noticeable
observations are

• The Complete cluster search with PLDA likelihood ob-
jective is the best in most cases.

• It is better to apply preprocessing before the mean oper-
ation.

• The intersection method is comparable to the Cluster
method

• Generally, PCA diarization works better than VBx both
for enrollment and verfication.

It is surprising that the PCA diarization method performed bet-
ter than VBx. However, it should be noted that VBx has many
tunable parameters that we did not explore (we used the default
settings in the recipe). Also, the methods for constraining the
number of speakers may not be the best.

In the second experiment, we analyse the impact of the
number of enrollment calls. Based in the conclusions from the
previous experiment, we consider only PCA based diarization
in both enrollment and verification. For the Cluster method, we
use only PLDA score with preprocessing before the mean oper-
ation for the enrollment embeddings. The results are in Tables

Table 2: EER (%) for distinct enrollment and verification com-
binations using PLDA mean scoring. ”Cluster [std—plda]”
refers to the cluster method with average standard deviation or
PLDA likelihood as objective respectively. ”mean-pp” means
that embeddings for enrollment were averaged before the pre-
processing which is analogous to the Median and Intersection
method. ”pp-mean” means that the embeddings were prepro-
cessed before averaging which is the standard way in PLDA
scoring.

PCA VBx
Median 8.89 11.11
Intersection 5.00 7.78
Cluster std, pca diar, mean-pp 19.44 18.61
Cluster plda, pca diar, mean-pp 3.89 6.11
Cluster std, VBx diar, mean-pp 11.11 13.61
Cluster plda, VBx diar, mean-pp 5.00 6.94
Cluster std, pca diar, pp-mean 18.61 18.61
Cluster plda, pca diar, pp-mean 3.61 5.56
Cluster std, VBx diar, pp-mean 11.67 13.06
Cluster plda, VBx diar, pp-mean 4.17 6.39

Table 3: . EER (%) for distinct enrollment and verification com-
binations using PLDA by-the-book scoring. See Table 2 for ex-
planations of the notations.

PCA VBx
Median 9.44 11.39
Intersection 5.28 7.78
Cluster std, pca diar, mean-pp 18.33 18.06
Cluster plda, pca diar, mean-pp 4.17 6.39
Cluster std, VBx diar, mean-pp 11.67 13.89
Cluster plda, VBx diar, mean-pp 5.28 7.50
Cluster std, pca diar, pp-mean 16.67 17.22
Cluster plda, pca diar, pp-mean 3.33 5.56
Cluster std, VBx diar, pp-mean 11.67 12.50
Cluster plda, VBx diar, pp-mean 3.89 5.28

4 and 5. From these results we can see that the median method
can be a good choice if few enrollment calls are available. The
results of the median method may seem a bit random, changing
between 12.2 and 5.0. This is, however, not strange considering
the nature of the median method. Due to channel effects, it may
happen that a given embeddings from the same call are located
close to each other. The median may jump between such call
specific clusters when more enroll data is added.

It should be noted that due to the small number of trials, the
difference between the intersection and the cluster method is
most likely not significant. However, the main point of this ex-
periment is to provide some understanding of how the methods
depend on the number of enrollment calls.

5.3. Data from real case

We further evaluate the proposed methods using conversations
obtained from a real case5. The database consists of embedding
matrices of close to 200 mono conversations with varied lengths
(see Fig. 3), labeled with speakers pin code. We use speakers

5The recordings were fully anonymized to the GDPR and national
law standard and provided as x-vector matrices by a law enforcement
agency to the Roxanne consortium. The standard of anonymization was
checked by technical experts and legal advisers.
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Table 4: EER (%) for distinct enrollment and verification com-
binations using PLDA mean scoring.

2 4 6 8
Median 11.11 5.00 3.89 12.78
Intersection 4.44 3.33 2.78 3.33
Cluster 18.89 5.00 2.22 1.67

Table 5: EER (%) for distinct enrollment and verification com-
binations using multisession PLDA by-the-book scoring.

2 4 6 8
Median 12.22 5.00 5.00 12.22
Intersection 4.44 3.33 2.78 2.78
Cluster 19.44 5.00 1.67 1.67

with more than two conversations as potential targets, so that
we can build a minimal model with two conversations and test
in the remaining one. From a total of 87 unique speakers in
the database, 25 speakers qualify under this criterion. The other
speakers (with less than three conversations) participate both
as extra impostors for the target speakers or as a cohort set for
t-norm [13] score normalization. Cohort and Impostor set com-
positions are slightly different for each trial, since the cohort
must not contain conversations in which either model or test-
ing speaker participate and, in addition, both testing speakers
in an impostor conversation must be different from the model.
Moreover, the number of conversations of each of the 25 target
speaker is highly imbalanced (see the distribution in Figure 4).
Therefore to comply with this real scenario and due to the lim-
ited amount of data, the evaluation is performed through one-
leave-out cross-validation, i.e., for each target speaker, we use
all his available conversations for building models, except the
testing one. At all, there are 525 target trials and 6950 impostor
trials.

5.3.1. Results

Table 6 shows evaluation results for six enrollment/verification
combinations using the methods described earlier. Performance
in EER (%) for each of the Median, Intersection and Cluster-
ing enrollment methods are presented for either PCA and VBx
verification methods, using cosine similarity scoring optionally
followed by t-norm. The results clearly indicate the superiority
of the Intersection enrollment method and suggests that there’s
not much difference concerning the type of segmentation for
testing conversation. This observation is in line with similar ex-
periments using NIST benchmarks also suggesting that more re-
fined testing segmentation does not necessarily increase speaker
recognition performance [7]. Another interesting point is the
huge improvement t-norm adds to performance, comparing to
the improvement in regular single-channel conversation bench-
marks. The explanation seems to be that scores obtained for
the segmented speakers in the testing conversation are differ-
ently biased and it is important to reduce this effect before the
max operator (see Figure 2 and Equation 6). We also investi-
gated the effects of PLDA scoring on this evaluation and results
are shown in Table 7. We noted that t-norm score normaliza-
tion decreased performance (and results are omitted), possibly
because bias suppression is inherent in PLDA scoring. More-
over, we observe that the Intersection and Clustering enrollment
methods are quite competitive.

Table 6: EER (%) for distinct enrollment and verification com-
binations using cosine similarity.

PCA PCA+tnorm VBx VBx+tnorm
Median 21.4 17.3 20.6 17.4

Intersection 14.7 9.0 15.6 9.3
Cluster 18.3 14.7 19.2 15.4

Table 7: EER (%) for distinct enrollment and verification com-
binations using PLDA.

PCA VBx
Median 16.8 18.3

Intersection 14.1 16.8
Cluster 14.2 15.6

Figure 3: Conversations length in terms of number of segments.

Figure 4: Number of conversations per target speaker.

6. Conclusions and Future work
This paper approached the task of speaker enrolling and veri-
fication on multi-speaker (mono) recording scenarios. Specif-
ically, we assume that at least a few conversations of a target
speaker are available for building a model which is used to
search this speaker in other conversations. Methods for both
enrollment and verification are proposed and evaluated using
mock and real databases. We show that even simple meth-
ods not requiring tunable settings can perform well in these
challenging and unpredicted scenarios. Nevertheless, bigger
databases should be used to confirm these findings. The meth-
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ods proposed can be naturally extended to more than two speak-
ers in a single channel. Furthermore, more refined embedding
averaging schemes can be used. Those will be the focus of fu-
ture research.
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