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Abstract
In this paper, we apply the variational information bottleneck
approach to end-to-end neural diarization with encoder-decoder
attractors (EEND-EDA). This allows us to investigate what in-
formation is essential for the model. EEND-EDA utilizes attrac-
tors, vector representations of speakers in a conversation. Our
analysis shows that, attractors do not necessarily have to con-
tain speaker characteristic information. On the other hand, giv-
ing the attractors more freedom to allow them to encode some
extra (possibly speaker-specific) information leads to small but
consistent diarization performance improvements. Despite ar-
chitectural differences in EEND systems, the notion of attrac-
tors and frame embeddings is common to most of them and
not specific to EEND-EDA. We believe that the main conclu-
sions of this work can apply to other variants of EEND. Thus,
we hope this paper will be a valuable contribution to guide the
community to make more informed decisions when designing
new systems.

1. Introduction
End-to-end speaker diarization has gained considerable popu-
larity in the last few years with several works exploring differ-
ent frameworks [1]. Among them, end-to-end neural diarization
(EEND) [2] is one of the most studied ones. It formulates di-
arization as a per-speaker per-frame binary classification prob-
lem where the predictions are represented by a two-dimensional
matrix across time and speaker. Unlike modular diarization sys-
tems, this formulation effectively covers all aspects of the task
with a single system including voice activity detection and han-
dling of overlapped speech.

Several extensions have been proposed to this framework,
among which EEND with encoder-decoder-based attractors
(EEND-EDA) [3] was the first successful variant capable of
dealing with a variable number of speakers. In EEND-EDA,
frame embeddings are produced for the whole recording and
these are encoded into a single representation from which at-
tractors are decoded. Each attractor represents one speaker and
they are compared by means of dot-product with the frame
embeddings to determine which speakers are active at which
frames.

EEND-EDA has become the main variant capable of han-
dling multiple speakers and many modifications or alternatives
have been proposed. In the original version, long short-term
memory (LSTM) layers are used for the encoder and decoder.
The decoder’s initial hidden state is initialized with the final hid-
den state of the encoder and the decoder is fed with 0’s to de-
code attractors one by one. Different ideas have been proposed
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to improve the attractor-decoding scheme. Some works [4, 5]
have improved the model performance by feeding the LSTM
decoder with global representations drawn from the frames
rather than uninformative 0’s. Other works [6, 7, 8, 9, 10, 11,
12] have proposed replacing the encoder-decoder module by an
attention-based scheme using different approaches. All these
methods still rely on the notion of “attractors” which are com-
pared with frame embeddings through dot-product. Neverthe-
less, little analysis has been presented on the attractors and no
study until now has focused on understanding what information
is needed to be encoded in them. While in principle attractors
are assumed to encode speaker information necessary to iden-
tify which frames were “spoken” by a certain speaker, there is
no evidence of this or up to which extent they need to encode
speaker characteristic information.

In information theory, the concept of an information bot-
tleneck (IB) [13] was introduced to enforce the encoding to act
as a minimal sufficient statistic of the input for predicting the
target. To optimize the IB objective for deep neural networks,
the deep variational information bottleneck (VIB) [14] was pro-
posed. VIB utilizes variational inference to construct a lower
bound of the IB objective, which enables optimization through
stochastic gradient descent.

Given its capability to capture essential information within
neural networks, we applied VIB into EEND-EDA1 to better
understand the end-to-end diarization mechanism. Specifically,
we replace the point estimates of the frame embeddings and at-
tractors of the original EEND-EDA with normal distributions
with parameters estimated by VIB. Our results indicate that it
is possible to obtain similar performance to the original EEND-
EDA even if the attractors are regularized towards a standard
normal distribution, making them less discriminative. This sug-
gests that attractors might not need to encode specific speaker
identities but rather enough information to distinguish them in a
given conversation. At the same time, slight but consistent im-
provements can be obtained if the attractors have more freedom,
suggesting that some specific speaker information is relevant to
the model.

These findings could lead to more effective strategies
for training speaker diarization systems and more parameter-
efficient models. The analysis shows that competitive end-to-
end diarization models can be trained even if the frame em-
beddings and attractors do not contain much speaker-specific
information. While it was not the main focus of this work, the
strategies we utilized can also be used if privacy concerns are
relevant.

1https://github.com/BUTSpeechFIT/EENDEDA_VIB

The Speaker and Language Recognition Workshop (Odyssey 2024)
18-21 June 2024, Quebec City, Canada

123 10.21437/odyssey.2024-18



FC

Emb. 0[B, T, D]

[B, S+1, D]

[B, S+1, 1]

<latexit sha1_base64="ju3ZJUxJeLwEpQ9N/3wlKcSIFN4=">AAACTXicbVHPSxwxFM5stdrV1rUeewldBKXLMpFWexFEKfTQg0VXhc04ZDIZDWYmY/KmuIT5B70IvfW/6KUHpZRmdvfgrwchX77vveS9L0mppIUw/BW0XszMvpybf9VeWHz9Zqmz/PbI6spwMeBaaXOSMCuULMQAJChxUhrB8kSJ4+Rir9GPfwhjpS4OYVSKKGdnhcwkZ+CpuJPSnME5Z8p9q2OGtzHNDOOO1O7gA6mprfLY2W1Sn07OIK7A7e59qddUbHv4MrbrmNI2TbRK7Sj3m1O1v2VIepSnGmyP9MIo7nTDfjgO/BSQKeiiaezHnZ801bzKRQFcMWuHJCwhcsyA5ErUbVpZUTJ+wc7E0MOC5cJGbuxGjVc9k+JMG78KwGP2foVjuW169ZnN7Pax1pDPacMKss+Rk0VZgSj45KGsUhg0bqzFqTSCgxp5wLiRvlfMz5m3E/wHtL0J5PHIT8HRRp9s9j99/9jd2Z3aMY/eofdoDRG0hXbQV7SPBoija/Qb3aK74Cb4E/wN/k1SW8G0ZgU9iNbcfz4Osqk=</latexit>

La =
1

S + 1

S+1X

s=1

BCE(ls, qs)

l = [1, · · · , 1, 0]

<latexit sha1_base64="qEFnKx1jbSTe/BqrWBnDGveiFJ8=">AAACH3icbVDLSsNAFJ34rPUVdelmsAiCUBLR6kYounHhooJ9QBPKzXTaDp08mJkIJeRP3PgrblwoIu76N07aLPrwwMCZc+7l3nu8iDOpLGtsrKyurW9sFraK2zu7e/vmwWFDhrEgtE5CHoqWB5JyFtC6YorTViQo+B6nTW94n/nNFyokC4NnNYqo60M/YD1GQGmpY1YcH9SAAE8eU3yLZ36dpJvic+wAjwYwp0OKO2bJKlsT4GVi56SEctQ65q/TDUns00ARDlK2bStSbgJCMcJpWnRiSSMgQ+jTtqYB+FS6yeS+FJ9qpYt7odAvUHiiznYk4Es58j1dme0pF71M/M9rx6p34yYsiGJFAzId1Is5ViHOwsJdJihRfKQJEMH0rpgMQABROtKiDsFePHmZNC7KdqV89XRZqt7lcRTQMTpBZ8hG16iKHlAN1RFBr+gdfaIv4834ML6Nn2npipH3HKE5GOM/OGajHA==</latexit>L = Ld + ↵La

<latexit sha1_base64="HwjjZTWzyIojnDl9mVrPxeL7b+o=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYW0lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7Gt7nffuLaiFg94CThvYgOlQgFo2glvxtRHAVhRqekX625dXcGsky8gtSgQLNf/eoOYpZGXCGT1BjfcxPsZVSjYJJPK93U8ISyMR1y31JFI2562SzylJxYZUDCWNunkMzU3xsZjYyZRIGdzCOaRS8X//P8FMPrXiZUkiJXbP5RmEqCMcnvJwOhOUM5sYQyLWxWwkZUU4a2pYotwVs8eZk8ntW9y/rF/XmtcVPUUYYjOIZT8OAKGnAHTWgBgxie4RXeHHRenHfnYz5acoqdQ/gD5/MHNzKROQ==</latexit>a

<latexit sha1_base64="dawIuYIGF6HxMm+I8t61UsFpDFQ=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYW0lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcO5jzj1BIoVB1/12Siura+sb5c3K1vbO7l51/+DRxKlmvMViGetOQA2XQvEWCpS8k2hOo0DydjC+zevtJ66NiNUDThLei+hQiVAwilbyuxHFURBmfFrpV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNcb33AR7GdUomLQLu6nhCWVjOuS+pYpG3PSymeUpObHKgISxtk8hmam/JzIaGTOJAtuZWzSLtVz8r+anGF73MqGSFLli84/CVBKMSX4/GQjNGcqJJZRpYb0SNqKaMrQp5SF4iycvk8ezundZv7g/rzVuijjKcATHcAoeXEED7qAJLWAQwzO8wpuDzovz7nzMW0tOMXMIf+B8/gAb8pEn</latexit>e

<latexit sha1_base64="4AgGGsTpluaqETwHkEdCvl7VTQA=">AAAB9XicbVC7TsMwFL0pr1JeBUYWiwqJqUoQr7GChbFI9CG1oXIcp7Xq2MF2QFXU/2BhACFW/oWNv8FpO0DLkSwfnXOvfHyChDNtXPfbKSwtr6yuFddLG5tb2zvl3b2mlqkitEEkl6odYE05E7RhmOG0nSiK44DTVjC8zv3WI1WaSXFnRgn1Y9wXLGIEGyvddwPJQz2K7ZU9jHvlilt1J0CLxJuRCsxQ75W/uqEkaUyFIRxr3fHcxPgZVoYRTselbqppgskQ92nHUoFjqv1sknqMjqwSokgqe4RBE/X3RoZjnUezkzE2Az3v5eJ/Xic10aWfMZGkhgoyfShKOTIS5RWgkClKDB9ZgoliNisiA6wwMbaoki3Bm//yImmeVL3z6tntaaV2NaujCAdwCMfgwQXU4Abq0AACCp7hFd6cJ+fFeXc+pqMFZ7azD3/gfP4AS+mTDA==</latexit>q

Sigmoid function Dot product
<latexit sha1_base64="V6cGl35j59yvd4aP5SBAtY4+dmM="></latexit>

Ld =
1

TS
min

�2�(S)

TX

t=1

SX

s=1

BCE(y�
s,t, ps,t)

ps,t = sigmoid(eta
>
s )

[B, T, S]

<latexit sha1_base64="1Y8BPKNMr6LugNyeyP9Umz9r2AA=">AAAB9XicbVC7TsMwFL0pr1JeBUYWiwqJqUoQr7GChbFI9CG1oXIcp7Xq2JHtAFXU/2BhACFW/oWNv8FpO0DLkSwfnXOvfHyChDNtXPfbKSwtr6yuFddLG5tb2zvl3b2mlqkitEEkl6odYE05E7RhmOG0nSiK44DTVjC8zv3WA1WaSXFnRgn1Y9wXLGIEGyvddwPJQz2K7ZU9jXvlilt1J0CLxJuRCsxQ75W/uqEkaUyFIRxr3fHcxPgZVoYRTselbqppgskQ92nHUoFjqv1sknqMjqwSokgqe4RBE/X3RoZjnUezkzE2Az3v5eJ/Xic10aWfMZGkhgoyfShKOTIS5RWgkClKDB9ZgoliNisiA6wwMbaoki3Bm//yImmeVL3z6tntaaV2NaujCAdwCMfgwQXU4Abq0AACCp7hFd6cR+fFeXc+pqMFZ7azD3/gfP4AVoyTEw==</latexit>x

Frame 
Encoder

<latexit sha1_base64="xlIeX9SBV7gptltWwuvpv8Auul0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2NRBI8VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QMHGqGfdZLGPdCqjhUijuo0DJW4nmNAokbwaj26nffOLaiFg94jjh3YgOlAgFo2glP+xld5NeueJW3RnIMvFyUoEc9V75q9OPWRpxhUxSY9qem2A3oxoFk3xS6qSGJ5SN6IC3LVU04qabzY6dkBOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vnWJ43c2ESlLkis0XhakkGJPp56QvNGcox5ZQpoW9lbAh1ZShzadkQ/AWX14mjbOqd1m9eDiv1G7yOIpwBMdwCh5cQQ3uoQ4+MBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/ANZajrg=</latexit>

fE

<latexit sha1_base64="aQZap98g1XXj+M/KAEmG7p7PmjU=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidowbeIxgFkhC6OnUJE16eobuHiEM+QgvHhTx6vd482/sJHPQxAcFj/eqqKrnx4Jr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1fapRcIk1w43AZqyQhr7Ahj+8mfiNJ1SaR/LRjGLshLQvecAZNVZqBN307vZq3C2W3LI7BVkkXkZKkKHaLX61exFLQpSGCap1y3Nj00mpMpwJHBfaicaYsiHtY8tSSUPUnXR67pgcWaVHgkjZkoZM1d8TKQ21HoW+7QypGeh5byL+57USE1x2Ui7jxKBks0VBIoiJyOR30uMKmREjSyhT3N5K2IAqyoxNqGBD8OZfXiT1k7J3Xj57OC1VrrM48nAAh3AMHlxABe6hCjVgMIRneIU3J3ZenHfnY9aac7KZffgD5/MH7aqPUQ==</latexit>

fEDA

Attactor 
Enc.-Dec.

2 x FC

2 x FC

(a) Original EEND-EDA

FC FC

<latexit sha1_base64="Udmn0sRwUwjNgB53NG2bj9ztLCw=">AAAB73icbVDLSgMxFL2pr1pfVZdugkVwVWbE17LoxmUF+4B2KJk004YmmTHJCGXoT7hxoYhbf8edf2PazkJbD1w4nHMv994TJoIb63nfqLCyura+UdwsbW3v7O6V9w+aJk41ZQ0ai1i3Q2KY4Io1LLeCtRPNiAwFa4Wj26nfemLa8Fg92HHCAkkGikecEuukdtfwgSQ90ytXvKo3A14mfk4qkKPeK391+zFNJVOWCmJMx/cSG2REW04Fm5S6qWEJoSMyYB1HFZHMBNns3gk+cUofR7F2pSyeqb8nMiKNGcvQdUpih2bRm4r/eZ3URtdBxlWSWqbofFGUCmxjPH0e97lm1IqxI4Rq7m7FdEg0odZFVHIh+IsvL5PmWdW/rF7cn1dqN3kcRTiCYzgFH66gBndQhwZQEPAMr/CGHtELekcf89YCymcO4Q/Q5w8tHJAT</latexit>�s

<latexit sha1_base64="WdBMKtLCxyIJ1BsZkMUbnG5F5SQ=">AAACQ3icbVBdaxNBFJ2N2o/Yj6iPfRkMQooh7BatfQmEFsEHAxFNUppNl9nJbDt0Znc7c7c0DPPffPEP+OYf8MUHRXwVnCT7YJMeGDj3nHu5c0+cC67B9795lQcPH62tb2xWH29t7+zWnjwd6KxQlPVpJjJ1GhPNBE9ZHzgIdporRmQs2DC+Opn5wxumNM/STzDN2ViSi5QnnBJwUlQ7CyWBS0qEeW8jgts4TBShJrCm2/j4Mti3oS5kZGQ7sOemW1Z6XjnbhsBuwRyfvLUN4bqa2jbx9YLsR7W63/LnwKskKEkdlehFta/hJKOFZClQQbQeBX4OY0MUcCqYrYaFZjmhV+SCjRxNiWR6bOYZWPzCKROcZMq9FPBc/X/CEKn1VMauc3axXvZm4n3eqIDkaGx4mhfAUrpYlBQCQ4ZngeIJV4yCmDpCqOLur5heEhciuNirLoRg+eRVMjhoBYet1x9e1TvHZRwbaA89Rw0UoDeog96hHuojij6j7+gn+uV98X54v70/i9aKV848Q3fg/f0H8GGw7Q==</latexit>

La =
1

M(S + 1)

MX

m=1

S+1X

s=1

BCE(lm,s, qm,s)

<latexit sha1_base64="qxR1G+LOWAMqGPaCQFygcAnGUTY=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIrgkkS5idzCZDZmaXeQhhyTd48aCIVz/Im3/jJNmDJhY0FFXddHfFGWfa+P63V1pZXVvfKG9WtrZ3dveq+wePOrWK0JCkPFXtGGvKmaShYYbTdqYoFjGnrXh0O/VbT1RplsoHM85oJPBAsoQRbJwUdoXt6V615tf9GdAyCQpSgwLNXvWr20+JFVQawrHWncDPTJRjZRjhdFLpWk0zTEZ4QDuOSiyojvLZsRN04pQ+SlLlSho0U39P5FhoPRax6xTYDPWiNxX/8zrWJNdRzmRmDZVkviixHJkUTT9HfaYoMXzsCCaKuVsRGWKFiXH5VFwIweLLy+TxrB5c1i/uz2uNmyKOMhzBMZxCAFfQgDtoQggEGDzDK7x50nvx3r2PeWvJK2YO4Q+8zx/roo7G</latexit>µs

Exp

0

FC

<latexit sha1_base64="RqSc+pXec2S72euG/VL9icvhq5Y=">AAACI3icbVDLSgMxFM3UV62vUZdugkWoKGVGfCEIRTeupIJ9QKeUTJq2oUlmSDJCHfovbvwVNy6U4saF/2KmHURbDwQO55xL7j1+yKjSjvNpZebmFxaXssu5ldW19Q17c6uqgkhiUsEBC2TdR4owKkhFU81IPZQEcZ+Rmt+/TvzaA5GKBuJeD0LS5KgraIdipI3Usi8e4SX0FO1y5JFQURYIeAA9HkHPy/0oJsCNiHQPIxbfDgvOobvfsvNO0RkDzhI3JXmQotyyR147wBEnQmOGlGq4TqibMZKaYkaGOS9SJES4j7qkYahAnKhmPL5xCPeM0oadQJonNByrvydixJUacN8kkz3VtJeI/3mNSHfOmzEVYaSJwJOPOhGDOoBJYbBNJcGaDQxBWFKzK8Q9JBHWptacKcGdPnmWVI+K7mnx5O44X7pK68iCHbALCsAFZ6AEbkAZVAAGT+AFvIF369l6tUbWxySasdKZbfAH1tc3SwGi0w==</latexit>

z = �✏ + µ

✏ ⇠ N (0, 1)
sampling

[B, S+1, D]

[M, B, S+1, D] Sampling M times

FC FC

Exp

[M, B, T, S]

sampling
<latexit sha1_base64="6pmNkGcOYHPC6Ze2xXBp+NUEzFA=">AAAB+XicbVDLSgMxFL1TX7W+qi7dBIvgQsqM+FoW3bisYB/QlpJJM21oJjMkd4Qy9Cfc6saduPVrBD/GTDsLbT0QOJx7Dvfm+LEUBl33yymsrK6tbxQ3S1vbO7t75f2DpokSzXiDRTLSbZ8aLoXiDRQoeTvWnIa+5C1/fJfNW09cGxGpR5zEvBfSoRKBYBSt1O4aMQxpH/vlilt1ZyDLxMtJBXLU++Xv7iBiScgVMkmN6XhujL2UahRM8mmpmxgeUzamQ96xVNGQm146u3dKTqwyIEGk7VNIZurvREpDYyahf0YsySzGZkKKI7PoysT/Zp0Eg5teKlScIFdsvjJIJMGIZDWQgdCcoZxYQpkW9mrCRlRThraskq3DW/z8MmmeV72r6uXDRaV2mxdThCM4hlPw4BpqcA91aAADCc/wAq9O6rw5787H3Fpw8swh/IHz+QMUSpQH</latexit>�t

[B, T, D]

<latexit sha1_base64="FQqK+gCYL+OfFXuuKj1tF9JBbuI=">AAACWHicbZFLSwMxFIUzo9W2vmpdugkWQRDKjPjaCKIuBF0oWFtoy3AnvW1DMw+SjFCG/knBhf4VN2ams7DVC4GT8+WSmxM/Flxpx/m07JXV0tp6uVLd2Nza3qnt1l9VlEiGLRaJSHZ8UCh4iC3NtcBOLBECX2Dbn9xmvP2GUvEofNHTGPsBjEI+5Ay0sbxa1AtAjxmI9HFGr+ivnZcOZvSY9kDEY1jwIfd91ODhAsCHx7uMFXCpK4dereE0nbzoX+EWokGKevJq771BxJIAQ80EKNV1nVj3U5CaM4Gzai9RGAObwAi7RoYQoOqneTAzemicAR1G0qxQ09z93ZFCoNQ08M3JbFS1zDLzP9ZN9PCyn/IwTjSGbH7RMBFURzRLmQ64RKbF1AhgkptZKRuDBKbNX1RNCO7yk/+K15Ome948ez5tXN8UcZTJPjkgR8QlF+Sa3JMn0iKMfJBva9UqWV82sdftyvyobRU9e2Sh7PoPvmaz5A==</latexit>L = Ld + ↵La + �eLeKLD + �aLaKLD

<latexit sha1_base64="4AgGGsTpluaqETwHkEdCvl7VTQA=">AAAB9XicbVC7TsMwFL0pr1JeBUYWiwqJqUoQr7GChbFI9CG1oXIcp7Xq2MF2QFXU/2BhACFW/oWNv8FpO0DLkSwfnXOvfHyChDNtXPfbKSwtr6yuFddLG5tb2zvl3b2mlqkitEEkl6odYE05E7RhmOG0nSiK44DTVjC8zv3WI1WaSXFnRgn1Y9wXLGIEGyvddwPJQz2K7ZU9jHvlilt1J0CLxJuRCsxQ75W/uqEkaUyFIRxr3fHcxPgZVoYRTselbqppgskQ92nHUoFjqv1sknqMjqwSokgqe4RBE/X3RoZjnUezkzE2Az3v5eJ/Xic10aWfMZGkhgoyfShKOTIS5RWgkClKDB9ZgoliNisiA6wwMbaoki3Bm//yImmeVL3z6tntaaV2NaujCAdwCMfgwQXU4Abq0AACCp7hFd6cJ+fFeXc+pqMFZ7azD3/gfP4AS+mTDA==</latexit>q

<latexit sha1_base64="qcFmDy2JdS0g6iE0UM4MmcQgS/g=">AAAB9nicbVDLSgMxFM34rPVVdekmWAQXUmbE17LoxmUFpy20Q8mkmTY0yQzJHbEM/Qa3unEnbv0dwY8x085CWw8EDueew705YSK4Adf9cpaWV1bX1ksb5c2t7Z3dyt5+08SppsynsYh1OySGCa6YDxwEayeaERkK1gpHt/m89ci04bF6gHHCAkkGikecErCS35VpD3qVqltzp8CLxCtIFRVo9Crf3X5MU8kUUEGM6XhuAkFGNHAq2KTcTQ1LCB2RAetYqohkJsimx07wsVX6OIq1fQrwVP2dyIg0ZizDU2xJbjE2IwkMzbwrF/+bdVKIroOMqyQFpuhsZZQKDDHOO8B9rhkFMbaEUM3t1ZgOiSYUbFNlW4c3//lF0jyreZe1i/vzav2mKKaEDtEROkEeukJ1dIcayEcUcfSMXtCr8+S8Oe/Ox8y65BSZA/QHzucPxtySug==</latexit>µt

<latexit sha1_base64="tg6cTWyxik1bRp2v4n6kij8kZRA=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUATymQ6aYdOHszcCDX0N9y4UMStP+POv3HSZqGtBwYO59zLPXP8RAqNtv1tlVZW19Y3ypuVre2d3b3q/kFbx6livMViGauuTzWXIuItFCh5N1Gchr7kHX98m/udR660iKMHnCTcC+kwEoFgFI3kuiHFkR9kT9M+9qs1u27PQJaJU5AaFGj2q1/uIGZpyCNkkmrdc+wEvYwqFEzyacVNNU8oG9Mh7xka0ZBrL5tlnpITowxIECvzIiQz9fdGRkOtJ6FvJvOMetHLxf+8XorBtZeJKEmRR2x+KEglwZjkBZCBUJyhnBhCmRImK2EjqihDU1PFlOAsfnmZtM/qzmX94v681rgp6ijDERzDKThwBQ24gya0gEECz/AKb1ZqvVjv1sd8tGQVO4fwB9bnD5Y6kg8=</latexit>zt

<latexit sha1_base64="wwwgXa/VMw6JBCFY9vqE9AKhppE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9gGdoWTSTBuaSYYkI9Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk+zE2ozDKnqZ93a/W3Lo7A1omXkFqUKDZr375A0nSmApDONa657mJCTKsDCOcTit+qmmCyRgPac9SgWOqg2yWeYpOrDJAkVT2CYNm6u+NDMdaT+LQTuYZ9aKXi/95vdRE10HGRJIaKsj8UJRyZCTKC0ADpigxfGIJJorZrIiMsMLE2JoqtgRv8cvLpH1W9y7rF/fntcZNUUcZjuAYTsGDK2jAHTShBQQSeIZXeHNS58V5dz7moyWn2DmEP3A+fwCUtpIO</latexit>zs

[M, B, T, D]

<latexit sha1_base64="De75HKWC+6TxTD/1jRcdrqg9YF0=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiTia1nUhWAXFewD2hAm00k7dDIJMxOxhPyKGxeKuPVH3Pk3TtostHpg4HDOvdwzx48Zlcq2v4zS0vLK6lp5vbKxubW9Y+5WOzJKBCZtHLFI9HwkCaOctBVVjPRiQVDoM9L1J1e5330gQtKI36tpTNwQjTgNKEZKS55ZHYRIjTFiaTPzUnLbvM48s2bX7Rmsv8QpSA0KtDzzczCMcBISrjBDUvYdO1ZuioSimJGsMkgkiRGeoBHpa8pRSKSbzrJn1qFWhlYQCf24smbqz40UhVJOQ19P5knlopeL/3n9RAUXbkp5nCjC8fxQkDBLRVZehDWkgmDFppogLKjOauExEggrXVdFl+Asfvkv6RzXnbP66d1JrXFZ1FGGfTiAI3DgHBpwAy1oA4ZHeIIXeDUy49l4M97noyWj2NmDXzA+vgETx5R6</latexit>LeKLD

<latexit sha1_base64="GaVKaup+K4Oq2jDiY3aiHn/iWs4=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiTia1nUhWAXFewD2hAm00k7dDIJMxOxhPyKGxeKuPVH3Pk3TtostHpg4HDOvdwzx48Zlcq2v4zS0vLK6lp5vbKxubW9Y+5WOzJKBCZtHLFI9HwkCaOctBVVjPRiQVDoM9L1J1e5330gQtKI36tpTNwQjTgNKEZKS55ZHYRIjTFiaTPzUnTbvM48s2bX7Rmsv8QpSA0KtDzzczCMcBISrjBDUvYdO1ZuioSimJGsMkgkiRGeoBHpa8pRSKSbzrJn1qFWhlYQCf24smbqz40UhVJOQ19P5knlopeL/3n9RAUXbkp5nCjC8fxQkDBLRVZehDWkgmDFppogLKjOauExEggrXVdFl+Asfvkv6RzXnbP66d1JrXFZ1FGGfTiAI3DgHBpwAy1oA4ZHeIIXeDUy49l4M97noyWj2NmDXzA+vgENp5R2</latexit>LaKLD

Input
<latexit sha1_base64="1Y8BPKNMr6LugNyeyP9Umz9r2AA=">AAAB9XicbVC7TsMwFL0pr1JeBUYWiwqJqUoQr7GChbFI9CG1oXIcp7Xq2JHtAFXU/2BhACFW/oWNv8FpO0DLkSwfnXOvfHyChDNtXPfbKSwtr6yuFddLG5tb2zvl3b2mlqkitEEkl6odYE05E7RhmOG0nSiK44DTVjC8zv3WA1WaSXFnRgn1Y9wXLGIEGyvddwPJQz2K7ZU9jXvlilt1J0CLxJuRCsxQ75W/uqEkaUyFIRxr3fHcxPgZVoYRTselbqppgskQ92nHUoFjqv1sknqMjqwSokgqe4RBE/X3RoZjnUezkzE2Az3v5eJ/Xic10aWfMZGkhgoyfShKOTIS5RWgkClKDB9ZgoliNisiA6wwMbaoki3Bm//yImmeVL3z6tntaaV2NaujCAdwCMfgwQXU4Abq0AACCp7hFd6cR+fFeXc+pqMFZ7azD3/gfP4AVoyTEw==</latexit>x

Frame 
Encoder

<latexit sha1_base64="xlIeX9SBV7gptltWwuvpv8Auul0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2NRBI8VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QMHGqGfdZLGPdCqjhUijuo0DJW4nmNAokbwaj26nffOLaiFg94jjh3YgOlAgFo2glP+xld5NeueJW3RnIMvFyUoEc9V75q9OPWRpxhUxSY9qem2A3oxoFk3xS6qSGJ5SN6IC3LVU04qabzY6dkBOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vnWJ43c2ESlLkis0XhakkGJPp56QvNGcox5ZQpoW9lbAh1ZShzadkQ/AWX14mjbOqd1m9eDiv1G7yOIpwBMdwCh5cQQ3uoQ4+MBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/ANZajrg=</latexit>

fE

<latexit sha1_base64="aQZap98g1XXj+M/KAEmG7p7PmjU=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidowbeIxgFkhC6OnUJE16eobuHiEM+QgvHhTx6vd482/sJHPQxAcFj/eqqKrnx4Jr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1fapRcIk1w43AZqyQhr7Ahj+8mfiNJ1SaR/LRjGLshLQvecAZNVZqBN307vZq3C2W3LI7BVkkXkZKkKHaLX61exFLQpSGCap1y3Nj00mpMpwJHBfaicaYsiHtY8tSSUPUnXR67pgcWaVHgkjZkoZM1d8TKQ21HoW+7QypGeh5byL+57USE1x2Ui7jxKBks0VBIoiJyOR30uMKmREjSyhT3N5K2IAqyoxNqGBD8OZfXiT1k7J3Xj57OC1VrrM48nAAh3AMHlxABe6hCjVgMIRneIU3J3ZenHfnY9aac7KZffgD5/MH7aqPUQ==</latexit>

fEDA

Attactor
Enc.-Dec.

<latexit sha1_base64="R7FonoMdMJQqRNaWAAt3TTLf1dA="></latexit>

Ld =
1

MTS

MX

m=1

TX

t=1

SX

s=1

BCE(y�
m,s,t, pm,s,t)

<latexit sha1_base64="KUsAiyIM9GdyMWqdWreew1P77gM=">AAACJXicbVDLSsNAFJ3UV62vqks3g0WoUEoivhYKRTcuK9gHNLVMppN26EwSZm6EGvIzbvwVNy4sIrjyV0zaLmzrgQuHc+7l3nucQHANpvltZJaWV1bXsuu5jc2t7Z387l5d+6GirEZ94aumQzQT3GM14CBYM1CMSEewhjO4Tf3GE1Oa+94DDAPWlqTncZdTAonUyV8FnUiWoKRjfI1tzXuSFG1JoO+40XM89uJoVtBx/GiDHxznOvmCWTbHwIvEmpICmqLayY/srk9DyTyggmjdsswA2hFRwKlgcc4ONQsIHZAeayXUI5LpdjT+MsZHidLFrq+S8gCP1b8TEZFaD6WTdKb36nkvFf/zWiG4l+2Ie0EIzKOTRW4oMPg4jQx3uWIUxDAhhCqe3IppnyhCIQk2DcGaf3mR1E/K1nn57P60ULmZxpFFB+gQFZGFLlAF3aEqqiGKXtAb+kAj49V4Nz6Nr0lrxpjO7KMZGD+/wOCmEQ==</latexit>

pm,t,s = �(zm,tzm,s
>)

(b) EEND-EDA with VIB

Figure 1: Comparison between the original EEND-EDA model and EEND-EDA with VIB. Numbers within [] present dimensions. M is
the sampling number, B is batch size, T is number of frames, D is feature dimension, and S is the maximum speaker number within one
mini-batch. In (a), four additional FC layers in the dashed box are introduced to make the original EEND-EDA comparable with (b).

2. EEND-EDA with VIB
2.1. EEND with Encoder-Decoder-Based Attractors

As shown in Fig. 1a, EEND-EDA [3] can be viewed as a com-
bination of two branches: a frame embedding branch and an
attractor branch. The frame embedding branch, uses a self-
attention encoder fE(·) to convert the D-dimensional input
acoustic feature for T frames x1:T into frame embeddings:

e1:T = fE(x1:T ). (1)

The attractor branch uses an encoder-decoder module
fEDA(·), usually consisting of two unidirectional LSTMs, to de-
code attractors (each one representing one speaker):

a1:(S+1) = fEDA(e1:T ). (2)

Then, to determine the number of speakers present in the
input recording, it estimates the existence probability of each
attractor s as:

qs = sigmoid(FC(as)), s ∈ [1 : S + 1], (3)

where FC denotes a fully connected linear layer.
During training, the attractor loss is defined:

La =
1

S + 1

S+1∑
s=1

BCE(ls, qs), (4)

where S is the number of valid attractors (corresponding to the
number of speakers), l1:(S+1) = [1, · · · , 1, 0] is the attractor
validity label and BCE(·, ·) is the binary cross entropy function.
During inference, attractors are sequentially extracted until qs is
below a predefined threshold τ , usually set as 0.5.

Finally, the dot product between the per-frame embeddings
and the attractors is used to produce the diarization results:

ps,t = sigmoid(eta
⊤
s ), (5)

where (·)⊤ denotes the matrix transpose and p = {ps,t|s ∈
[1, S], t ∈ [1, T ]} is a matrix of per-frame per-speaker activ-
ity probabilities. Given the ground-truth speech activities ys,t,
where ys,t = 1 when the s-th speaker is active in the t-th frame
and ys,t = 0 otherwise, the diarization loss is calculated using
permutation invariant training [15]:

Ld =
1

TS
min

ϕ∈Φ(S)

T∑
t=1

S∑
s=1

BCE(yϕ
s,t, ps,t). (6)

where minϕ∈Φ(S) is to find the permuted sequence ϕ that has
the minimum loss among all possible permutations Φ of S
speakers. The model is trained using a total loss, which is a
combination of both defined losses:

L = Ld + αLa. (7)

2.2. Variational Information Bottleneck

Given a distribution p(x, y) = p(y|x)p(x) of inputs x and tar-
gets y, the aim of the information bottleneck method proposed
in [13] is to find a stochastic encoding p(z|x) that is maxi-
mally informative about the target y, and, at the same time, pre-
serves minimum information about the input x. This is achieved
by finding the encoding that maximizes the difference between
mutual informations I(y, z) − βI(x, z), where β controls the
trade-off between z being expressive about y and compressive
about x. Although, it is intractable to find the optimal encod-
ing for nontrivial distributions p(x, y), Alemi et al. [14] pro-
posed Deep Variational Information Bottleneck (VIB) – a vari-
ational approximation to this problem, where a neural network
is trained to estimate the stochastic encoding p(z|x).
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2.2.1. VIB model and objective

As a simple VIB example, let us first consider the classifi-
cation task described in [14], where the distribution p(x, y)
is represented by the empirical distribution of the training in-
put observations xn and the corresponding categorical labels
yn. For simplicity, the stochastic encoding will be represented
by a Gaussian distribution with diagonal covariance matrix
p(z|x) = N (z;µ(x),diag(σ(x)2)), where the mean vector
µ(x) and vector of standard deviations σ(x) are functions of
the input x and these functions are parametrized by a neural
network called encoder. To train the encoder network, [14] pro-
poses to optimize the following objective

1

N

N∑
n=1

∫
p(z|xn) log q(yn|z)− βp(z|xn) log

p(z|xn)

r(z)
dz (8)

=
1

N

N∑
n=1

(
Eϵ∼N (0,I) [− log q(yn|µ(xn) + ϵ⊙ σ(xn))]

+βKL [p(z|xn)||r(z)]) (9)

as a lower-bound to the original information bottleneck objec-
tive I(y, z)− βI(x, z). The terms q(yn|z) and r(z) are varia-
tional approximations of p(yn|z) and p(z) whose exact evalua-
tion (given the learned p(z|x) and the empirical p(x, y)) is in-
tractable. The approximate distribution q(yn|z) is represented
by another neural network called decoder, which maps vector
z to a (categorical) distribution of y. This network is trained
jointly with the encoder network using the same objective (8).
The approximate marginal distribution r(z) can also be trained,
but in [14] it is fixed as a standard normal distribution as the
learned p(z|x) can accommodate to it.

2.2.2. VIB training

The first term in (8) is the expected cross-entropy evaluated
for the decoder output where the expectation is with respect
to the encoding distribution p(z|x). This term clearly favours
p(z|x) that is expressive about y as required by the IB principle.
This term also encourages the distribution p(z|x) to be more
certain (having lower variance) peaking around z for which
log q(yn|z) is high. The second term is the Kullback-Leibler
(KL) divergence between the encoding p(z|x) and the (approx-
imate) marginal distribution r(z) ≈ p(z) favouring more uncer-
tain and thus less expressive encoding. Clearly, in the extreme
case when the encoding p(z|x) equals p(z) for any input x, it
does not contain any information about the input. As we will
see in later experiments, β controls the trade-off between the
two terms in the objective where low values of β lead to more
certain encoding distributions p(z|x) that are more expressive
about the output y and higher values of β lead to more uncertain
distributions that are less expressive about the input x.

In order to optimize this objective during the training, the
first term in (9), is rewritten using the standard reparameteriza-
tion trick [16], which allows to easily back-propagate through it.
Since we use Gaussian distributions for both p(z|x) and r(z),
the KL divergence can be expressed analytically and it is there-
fore also easy to back-propagate through it.

The encoder and decoder networks can be trained with a
variant of stochastic gradient descent where, for each train-
ing example xn, we forward propagate through the encoder
network to obtain the parameters of the encoding distribution
µ(xn) and σ(xn). Next, we sample from the encoding distri-
bution using the reparameterization trick

ẑn = µ(xn) + ϵ⊙ σ(xn), (10)

where ϵ is a sample from the standard normal distribution,
and the operator ⊙ denotes element-wise product. We forward
propagate this sample through the decoder network to evalu-
ate q(yn|ẑn). This way, we obtain all the quantities necessary
for evaluating the objective (9) approximating the expectation
in the first term using only a single sample. This is often suffi-
cient for the training, but multiple samples can be used to better
approximate the expectation. Finally, parameters are updated
by back-propagating through this objective and the encoder and
decoder networks.

2.2.3. VIB regularized classifier

Once the encoder and decoder networks are trained, we can
consider them in a tandem as a single classification network,
where z functions as a probabilistic representation at the output
of an internal hidden layer. The VIB training makes the hid-
den representation z forget the details of the input x which are
irrelevant to the output, which can be seen as a specific regular-
ization. It is shown in [14] that VIB training performs compet-
itively with other regularization techniques and produces sys-
tems more robust to adversarial attacks. The disadvantage of
such VIB trained classifier is that the uncertainty of the hid-
den representation z should be taken into account during the
inference. Therefore, to correctly evaluate the output, the ex-
pected probability of p(y|x) should be estimated by averaging
the decoder output q(y|ẑ) obtained from many samples of ẑ.
However, for practical inference only the mean µ(x) of the dis-
tribution p(z|x) may be used.

2.3. EEND-EDA regularized using VIB

In our experiments, we will use the VIB principle to regularize
the EEND-EDA model, to limit the information encoded in the
frame embeddings and attractors. This way, we want to find
what is the minimum necessary information encoded in these
representations that allows for good diarization performance.
For this purpose, we extend and train the EEND-EDA using the
VIB as shown in Fig. 1b. Each frame embedding and each at-
tractor are treated as stochastic encodings. Each frame embed-
ding et is still evaluated as in (1), but it is further transformed
by two fully connected (FC) layers, to obtain the parameters of
the stochastic encodings:

µt = FCµt(et),

σt = exp(FCσt(et)),
(11)

p(zt|x1:T ) = N (zt|µt, diag(σ
2
t )). (12)

Similarly, we obtain the stochastic encodings for the attrac-
tors as:

µs = FCµs(as),

σs = exp(FCσs(as)),
(13)

p(zs|x1:T ) = N (zs|µs, diag(σ
2
s)). (14)

To train the EEND-EDA with VIB, we proceed in a similar
manner as described in Sec. 2.2: we forward propagate through
the encoder network, which is represented by (14) and (12). We
sample the encodings ẑs and ẑt (using the reparameterization
trick, see equation (10)) for each frame and for each attractor.
We pass these samples through the decoder represented by (3)
and (5). In these formulas, we only substitute the determinis-
tic attractor embeddings as and frame embeddings et with the
corresponding sampled encodings ẑs and ẑt, respectively.
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The final loss to optimize is:

L = Ld + βeLeKLD + αLa + βaLaKLD, (15)

where Ld and La are defined in (6) and (4), respectively. βe

and βa control the amount of regularization imposed on the en-
codings by the KLD losses:

LeKLD =
1

T

T∑
t=1

KL(N (µt,σ
2
t )||N (0, I)), (16)

LaKLD =
1

S

S+1∑
s=1

KL(N (µs,σ
2
s)||N (0, I)). (17)

In the text above, we consider that the losses La and Ld

are evaluated using a single sample of each zs and zt, which
corresponds to approximating the expectation in (9) using only
a single sample. This is the configuration used in most of our
experiments, as it produced good results. However, the expec-
tation could also be approximated by multiple samples. In such
case, M samples would be generated for each zs and zt, and
the objectives La and Ld would be evaluated M times and av-
eraged. We present results for these different training strategies
in Sec. 4.2.

Similarly, multiple samples should be also used for the in-
ference with the trained model. In such case, the speaker ac-
tivity probabilities ps,t and the attractor existence probabilities
qs (see equations (5) and (3)) are evaluated and averaged for
multiple samples. Alternatively, as a computationally cheaper
approximation, (5) and (3) can be evaluated using the encoding
means µt and µs. This later strategy is used to report all the
DER values in this paper, as it is more computationally efficient
and we found it to produce similar results.

In our experiments, we also consider configurations where
either the frame embeddings or the attractors in the EEND-EDA
are stochastic while maintaining the other component as deter-
ministic. This is achieved by setting the weight of the KLD loss
to zero and directly using the corresponding means µt or µs as
the deterministic embeddings. In addition, setting both βe and
βa to zero and using only the mean vectors µt and µs recovers
the original EEND-EDA.

3. Experimental Setup
3.1. Data

As usual with the end-to-end neural diarization framework, the
models are mostly trained on synthetic data. Following [17, 18],
we utilize simulated conversations (SC) to allow better perfor-
mance than simulated mixtures [2]. Using statistical informa-
tion derived from the development set of the conversational tele-
phone speech domain from DIHARD-III [19], three different
sets of 2480 h each were generated where recordings had 2, 3,
and 4 speakers respectively. The first set, denoted “SC2” was
used to train the model from scratch. The three sets were pooled
to form “SC2-4”, containing 7442 h of audio, which was used
for a second step of training as described in the next section.

For the evaluation of the models, we use the Callhome [20]
dataset consisting of telephone conversations. This dataset is
commonly used to evaluate diarization systems and it is divided
into two parts2 denoted CH1 (with 8.7 h and 2-7 speakers) and
CH2 (with 8.55 h and 2-6 speakers). Besides, for some of the
comparisons we use the subset of CH1 with only recordings
containing two speakers denoted CH1-2spk (with 3.2 h).

2https://github.com/BUTSpeechFIT/CALLHOME_sublists

3.2. Configurations

The configurations of EEND-EDA are the same as in [3, 18]
and α is set as 1. Our analyses are based on a previously re-
leased PyTorch implementation3. The only difference with that
EEND-EDA implementation is that, as mentioned in Section
2.3, four additional FC layers (each with 256 units) are intro-
duced into the structure. Therefore, to ensure the proposed
model is comparable to EEND-EDA, both versions of EEND-
EDA, with and without the additional layers, are used as base-
lines. Specifically, when EEND-EDA has four additional FC
layers, two FC layers are inserted after fE and the other two are
positioned after fEDA as shown in dashed boxes of Fig. 1a.

Following standard practice when training EEND-EDA,
there are three steps. (1) Initial training using SC with two
speakers (using SC2) is run for 100 epochs. Then, we aver-
age the parameters of the last ten checkpoints every ten epochs,
and evaluate performance on CH1-2spk to determine the opti-
mal model. The ten checkpoints are averaged for the subse-
quent adaptation step. (2) Adaptation to a set with a variable
number of speakers (using SC2-4) is run for 80 epochs. Then,
we average the parameters of the last ten checkpoints every ten
epochs, and evaluate performance on CH1 to determine the op-
timal model. The ten checkpoints are averaged for the subse-
quent fine-tuning step. (3) Fine-tuning to in-domain data (using
CH1) for 100 epochs. We average the parameters of the last
ten checkpoints every ten epochs, and evaluate performance on
CH1 to determine the optimal model. Then, such a model is
used to report results on CH2.

We use the diarization error rate (DER) as defined by
NIST [21] for evaluating the performance, considering overlaps
and 0.25 collar as is standard practice for Callhome. Confi-
dence intervals (CI) were calculated using the Interspeech offi-
cial toolkit 4 with the default configuration.

4. Results and Discussions
4.1. Impact of the weight of the KLD loss

In this section, we will analyze the effect that different degrees
for regularization have in the diarization performance. We in-
dividually analyze the impact of using βe and βa to control the
degree of regularization on frame embeddings and attractors, re-
spectively. For analyzing the effect of regularizing only frame
embeddings or only attractors, we use the configurations out-
lined at the end of Section 2.3. That is, to analyze only the effect
of βe, we set βa = 0, and directly use the mean µs estimated by
the network, and vice versa. We also explore the combination
of βa and βe. Fig. 2 shows how diarization performance varies
with the weights used for the KLD losses. We observe that the
DER of the model with VIB is virtually the same as the baseline
5 for a wide range of weights. Only relatively large values of β
result in performance degradation. We should not expect that
the VIB would (significantly) improve the performance as the
VIB regularization only limits the information contained in the
frame embeddings and attractors. In section 4.3 we will analyze
how the DER correlates with the amount of information that is
preserved in these representations.

3https://github.com/BUTSpeechFIT/EEND
4https://github.com/luferrer/ConfidenceIntervals
5As sharp readers will spot, it is superfluous to have consecutive

two FC layers, still, we kept them to have consistency in the number of
parameters.
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Figure 2: DER (%) in CH1-2spk for different values of βe and
βa. EEND-EDA + 4FC with five runs are shown as baselines
within the gray shade, and the dashed line represents the mean
of those five runs (overlapped due to the small variance).

4.2. Number of samples and selection of the permutation ϕ

As commented in Sec. 2.3, for each training example the expec-
tation in (9) can be approximated using only a single or multiple
samples of each encoding zt and zs. The first three columns in
Table 1 show the performance for 1, 12 and 100 samples, on
CH1-2spk using βe = βa = 100 (as it was one of the best-
performing configurations seen in Section 4.1). It can be seen
that more samples help, however, when training with multiple
samples, it is not clear how to choose the permutation ϕ for Ld

in (6) since different samples can favor different permutations.
In our case, we select the best permutation for each sample, use
it to evaluate the corresponding loss, and average the loss of
all samples. The problem with this solution is that it is com-
putationally expensive, as the best permutation has to be found
for each sample. At the same time, it is not clear if using poten-
tially a different permutation for each sample can deteriorate the
training process. Therefore, we also consider the variant where
the best permutation is estimated using the speaker activities
ps,t obtained from equation (5) evaluated with the mean encod-
ing vectors µt and µs. Such permutation should be compatible
with any encoding samples. The last three columns in Table
1 show the result where this strategy is used to find permuta-
tion ϕ and different samples are used for training. Given that
their results are similar to each other, we choose the relatively
cheaper strategy—using µ to search for the best permutation
and one sample to calculate losses—for the subsequent analysis
and discussion.

Table 1: Comparison of different strategies for selecting permu-
tation ϕ and different number of training samples. DER and CI
are shown on CH1-2spk.

Permutation based on

sampling z µ

# of samples 1 12 100 1 12 100

DER (%) 8.06 7.92 7.84 7.88 8.12 7.83
CI ±1.03 ±0.97 ±1.01 ±1.02 ±1.01 ±1.00

4.3. Visualization of attractors and frame embeddings

To get insights into what key information is encoded in
the frame and speaker representations of the EEND-EDA
model, we visualize the posterior distribution of the attrac-

tors p(zs|x) = N (µs,diag(σ
2
s)), and the frame embeddings

p(zt|x) = N (µt,diag(σ
2
t )). For the visualization, we project

the attractor/embeddings into a two-dimensional space using
principal component analysis (PCA) and then plot them as
Gaussian ellipses, as shown in Fig. 3. Each ellipse shows
the contour of the Gaussian distribution representing the corre-
sponding stochastic enconding projected to the two dimensional
space using PCA. The contour corresponds to the distance of
two times the standard deviation from the mean.

To visualize the attractors, we first consider a fixed βe = 0
and a wide range of βa weights as shown in Fig. 3a, to get a
good understanding of the effect of the regularization. We used
the entire CH1-2spk to generate the plots. For each record-
ing, three ellipses are shown in the figure, one with each cat-
egory: the first speaker (spk1), the second speaker (spk2), and
the invalid attractor. To visualize the frame embeddings, we
equivalently consider βa = 0 and a wide range of βe, and ran-
domly selected a few frames from five random audio samples
from CH1-2spk (not to clutter the images). From left to right,
Fig. 3 visualizes the model’s behavior with varying weights
from lower to higher (corresponding to lighter to stronger regu-
larization).

As expected, Fig. 3 demonstrates the model’s transition
from deterministic to stochastic as the weights change. When
the weight is zero (as in Fig. 3a.0 and Fig. 3b.0), the model is
effectively the same as the original deterministic EEND-EDA.
When the weight is larger than 0, yet close to zero, such as
10−6 in the Fig. 3a.1 and Fig. 3b.1, the attractor and frame em-
bedding ellipses are close to point estimates, still similar to a de-
terministic model. With larger weights, more input information
is forgotten, and we observe a shift towards a more regularized
model characterized by the increased variance of the attractor
and frame embedding distributions.

For the attractors, we can see that the valid speakers (blue
and orange) are always well discerned from the invalid one
(gray). When lower values of regularization are used, the attrac-
tor representations are spread across one of the axes (Fig. 3a.1-
3a.2). Still, the representations cluster by the corresponding
(first or second) decoded attractors and nothing suggest that
they would be clustered according to the specific voice of cor-
responding speakers (which should be different for each input
conversation). As βa increases, we observe that the distribu-
tions for all the first attractors (blue ones) significantly overlap,
as seen in Fig 3a.4. And the same thing happens for the second
attractors (orange ones). This has an impact on performance,
degrading from 7.93% DER in 3a.0 to 10.74% DER in 3a.4.
Still, the system performs reasonably well, while it is obvious
that the attractors are only used for counting the speakers, and
no longer convey any speaker information. In the last subfig-
ure, Fig. 3a.5, we observe that the representation of both valid
speakers is starting to collapse into a single mode, now signifi-
cantly harming system performance.

For the frame embeddings, we observe a similar trend for
frame embeddings of a single speaker. For clearer visualization,
we zoomed into Fig. 3b.4 and decomposed it into two subfig-
ures presented in Fig. 4. In Fig. 4.(i), shows the distributions of
frame embeddings where only one of the speakers is active. We
can observe that speakers within the same audio (in the same
color) are generally distinguishable. For example, green dashed
lines (corresponding to the first attractor) on the left are far from
the green dotted lines (corresponding to the second attractor) on
the right. However, distributions of speakers across audios are
overlapped and generally clustered by the corresponding attrac-
tors. That indicates that frame embeddings only require enough
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Figure 3: Visualization of attractors and frame embeddings as Gaussian distributions, after projecting them to two dimensions using
PCA (DERs are in %). In subfigure (b), colors represent different audio files; line styles denote individual speakers, overlap, and
silence. Note that in subfigures (0) the attractors and frame embeddings are deterministic and are therefore represented by dots.
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Figure 4: Decomposed visualization of Fig. 3b.4 (βa = 0, βe =
101). (i) two single speakers, and (ii) overlap and silence.
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Figure 5: Visualization of attractors (left) and frame embed-
dings (right) when βa = βe = 101.

information to discriminate between speakers of the same au-
dio (intra-audio), but do not need to encode individual identi-
ties across different audio (inter-audio). Besides, as shown in
Fig. 4.(ii), silence across varying audios are clustered, and they
are distinguishable from speech activity to some extent. This
indicates that the frame-embedding requires encoding the in-
formation for speech activity. This aligns with the initial fun-
damental concept of the EEND model, which combines voice
activity detection with diarization. Finally, we can also ob-
serve that, as expected, overlap frame representations are spread
across the space between the single-speaker representations.

Equations (16) and (17) assume that the variational approx-
imation to the marginal encoding distribution (see r(z) in equa-
tion (9)) is fixed to be standard normal. We use this configu-
ration in all our experiments, although, it generates a problem
when both frame embeddings and attractors (zt and zs) are si-
multaneously regularized using the KLD loss. When only one
type of encodings (either zt or zs) is regularized, as in Fig. 3
the encoding distributions span range around [−2, 2] for higher
β values. This range aligns with the standard normal Gaussian
distribution that the KLD regularizes towards. However, as can
be seen in Fig. 5, the encoding distributions span 3 times larger
range, when regularizing both zt and zs simultaneously even
with high regularization weights βa = βe = 101. Such a high
dynamic range is enforced by the cross-entropy loss demanding
high values of ps,t, which can be achieved only with encodings
zt and zs that are not close to the origin (see equation (5)) and
therefore violating the assumed standard normal marginal dis-
tribution. This problem could be easily resolved by modeling
the marginal distribution r(z) by a Gaussian distribution with
trainable parameters, which is left for future research.

4.4. Analysis across training, adaptation, and fine-tuning

In this section, we compare the performance of the proposed
EEND-EDA with VIB in a real scenario with more speakers.
For these experiments, we considered the three optimal con-
figurations of β weights observed in Section 4.1, that is: (I)
βe = 0, βa = 10−3, (II) βe = 10−6, βa = 0, and (III)
βe = βa = 100. Results on CH2 are shown in Table 2.
We can see that VIB maintains diarization performance closely
aligned with the baseline, even for the configuration of weights
(III), for which the strong regularization filters speaker informa-
tion, as was shown in Fig. 5. Still, we noticed that fine-tuning
the EEND-EDA model with VIB on the real data results in a
smaller improvement in the performance, as compared to the
fine-tuning in the original EEND-EDA.

To get some further insight into these results, in Fig. 6
we visualize the attractors of the EEND-EDA with VIB, when
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Figure 6: Visualization of Gaussian attractors on CH2 after training, adaptation, and fine-tuning. The colors denote attractors for
valid or the first invalid (gray) attractor as predicted by the model. DERs (%) are shown in brackets.

βa = βe = 100, after training stage, after adaptation to SC2-4,
and after fine-tuning to CH1. In the first step, the model is only
trained with recordings of two speakers so it can only output
two valid attractors. In this case, shown in Fig. 6.(a), the 1st, 2nd,
and the invalid attractors, are clearly separated. After adapting
the model to expect a variable number of speakers, in Fig. 6.(b),
we can see that the 3rd and 4th valid attractors are sometimes
decoded by the model. However, these attractors partially over-
lap with the invalid attractor (gray), and the attractor clusters
become less compact. Given the training (and evaluation) data,
we can assume that the first two attractors will almost always be
valid. This is reflected in the plot: The 1st attractor (blue) and
the 2nd (orange) are the most distinct ones. However, green and
red ellipses overlap considerably with the gray (invalid) ones,
revealing the higher uncertainty of the model about the 3rd and
4th attractors. This is intuitive since sometimes the 3rd (or 4th)
attractor has to be considered invalid, thus, modeling them with
closer representations to the invalid one might be beneficial.
Observing plot (c), we can assume that fine-tuning could help
to enhance the model’s discriminative capability against invalid
speakers. The resulting plot shows that fine-tuning makes the
invalid speaker more clearly separated from the newly discov-
ered third and fourth valid speakers. Nevertheless, it should be
pointed out that in the plots we only use the first two dimensions
after applying a PCA transformation. It is possible that, in other
dimensions, the green and red ellipses do not overlap so much
with the gray ones.

It is worth noting that the regions for the 1st, 2nd, 3rd and 4th

attractors are fixed in the space, regardless of the input record-
ing. This reinforces the conclusion from Section 4.3: the at-
tractors serve as anchors for counting speakers and do not seem
to convey (much) speaker information. Finally, the representa-
tions after the fine-tuning step, in Fig. 6.(c), are only slightly
different and even if some recordings contain more than four
speakers, the small development set is not enough for the model
to learn that more speakers should be detected.

5. Conclusion
This study introduced VIB into EEND-EDA to understand what
information needs to be stored in the frame embeddings and at-
tractors, so that the model is effective in the diarization task.
Our analyses show that attractors do not require substantial
speaker characteristic information to obtain reasonable perfor-
mance. Similar conclusions can be drawn from the frame em-
beddings: encoding unique individual identities across different
audio samples (inter-audio) is not imperative; rather, the infor-

Table 2: Comparison of DER (%) and CI on CH2.

Model w/o FT w/ FT

Baselines
EEND-EDA[3] - 15.29
EEND-EDA (ours) 16.25 (±2.30) 15.72 (±2.34)
EEND-EDA + 4FC 16.74 (±2.36) 15.50 (±2.21)

EEND-EDA with VIB
βa = 0 βe = 10−6 16.06 (±2.34) 15.81 (±2.33)
βa = 10−3 βe = 0 16.58 (±2.35) 16.04 (±2.17)
βa = 100 βe = 100 16.17 (±2.40) 15.88 (±2.50)

mation to discriminate speakers within the same audio (intra-
audio) is enough for diarization.

Even though intuitively speaker characteristic information
should not be necessary to perform diarization (models only
need to “tell speakers apart” within the audio), this is, to the
best of our knowledge, the first analysis in the context of end-
to-end diarization models that provides evidence in this direc-
tion. We showed that models can perform reasonably well even
when introducing strong regularization terms (based on VIB)
for internal representations. Note, that this same strategy could
be applied to produce more privacy-aware models.
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