
An Easy to Use Infrastructure for Building
Static Analysis Tools

Kamil Dudka Petr Peringer Tomáš Vojnar

FIT, Brno University of Technology, Czech Republic

February 10, 2011



Agenda

1 Goal, Motivation

2 Design, Usage

3 Current State

4 Future

1 / 21



Goal

Give researchers an easy way to build analyzers for industrial software.

no manual preprocessing
fully compatible with the compiler
fully compatible with the build system

as much concise API as possible

available for free

2 / 21



Goal

Give researchers an easy way to build analyzers for industrial software.

no manual preprocessing
fully compatible with the compiler
fully compatible with the build system

as much concise API as possible

available for free

2 / 21



Goal

Give researchers an easy way to build analyzers for industrial software.

no manual preprocessing
fully compatible with the compiler
fully compatible with the build system

as much concise API as possible

available for free

2 / 21



Goal

Give researchers an easy way to build analyzers for industrial software.

no manual preprocessing
fully compatible with the compiler
fully compatible with the build system

as much concise API as possible

available for free

2 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



Motivation

our research group needed to build various analyzers
we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (C++ API, not fully compatible with gcc)

CIL (OCaml API, used primarily in research)

3 / 21



gcc plug-in

plug-in

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

Why should one build an analysis as a gcc plug-in?

the same code parser is used for both analysis and building
easy to use for the end users
ready for C++ as well as C

4 / 21



gcc plug-in

plug-in

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

Why should one build an analysis as a gcc plug-in?

the same code parser is used for both analysis and building
easy to use for the end users
ready for C++ as well as C

4 / 21



gcc plug-in

plug-in

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

Why should one build an analysis as a gcc plug-in?

the same code parser is used for both analysis and building
easy to use for the end users
ready for C++ as well as C

4 / 21



code listener

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

code listener API

chk1 chk2 ...

Why should we bother with an extra layer?

gcc is complex (about 800 000 lines of code)
lack of documentation
we want to be independent of gcc

5 / 21



code listener

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

code listener API

chk1 chk2 ...

Why should we bother with an extra layer?

gcc is complex (about 800 000 lines of code)
lack of documentation
we want to be independent of gcc

5 / 21



code listener

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source 
file

code listener API

chk1 chk2 ...

Why should we bother with an extra layer?

gcc is complex (about 800 000 lines of code)
lack of documentation
we want to be independent of gcc

5 / 21



Consequences

What does it mean for a user?

gcc -fplugin=plug.so ...

make CFLAGS=-fplugin=plug.so

some additional errors and warnings are reported

6 / 21



Consequences

What does it mean for a user?

gcc -fplugin=plug.so ...

make CFLAGS=-fplugin=plug.so

some additional errors and warnings are reported

6 / 21



Consequences

What does it mean for a developer?

easy to use C++ API
availability of various diagnostic tools

CFG plotter
intermediate code printer
debugging helpers

7 / 21



Consequences

What does it mean for a developer?

easy to use C++ API
availability of various diagnostic tools

CFG plotter
intermediate code printer
debugging helpers

7 / 21



Use Cases

What is code listener suitable for?

tools based on data flow analysis
tools based on abstract interpretation
any tool that expects CFG on its input

What is code listener not suitable for?

tools that expect AST on their input
GPL-incompatible projects

8 / 21



Use Cases

What is code listener suitable for?

tools based on data flow analysis
tools based on abstract interpretation
any tool that expects CFG on its input

What is code listener not suitable for?

tools that expect AST on their input
GPL-incompatible projects

8 / 21



Use Cases

What is code listener suitable for?

tools based on data flow analysis
tools based on abstract interpretation
any tool that expects CFG on its input

What is code listener not suitable for?

tools that expect AST on their input
GPL-incompatible projects

8 / 21



Use Cases

What is code listener suitable for?

tools based on data flow analysis
tools based on abstract interpretation
any tool that expects CFG on its input

What is code listener not suitable for?

tools that expect AST on their input
GPL-incompatible projects

8 / 21



Agenda

1 Goal, Motivation

2 Design, Usage

3 Current State

4 Future

9 / 21



Key Design Constraints

concise and intuitive API for writing analyzers
the API should be independent of gcc
easy migration to other code parsers
(e.g. from gcc to sparse)

10 / 21



Block Diagram

switch
to if

co
d
e
 s

to
ra

g
e

filters

listeners analyzers

error stream

sparse
CFG

plotter

...

fwnull

gcc
co

d
e
 p

a
rs

e
r 

in
te

rf
a
ce

...

...

...

11 / 21



Block Diagram

switch
to if

co
d
e
 s

to
ra

g
e

filters

listeners analyzers

error stream

sparse
CFG

plotter

...

fwnull

gcc
co

d
e
 p

a
rs

e
r 

in
te

rf
a
ce

...

...

...

11 / 21



Code Storage API

Storage

TypeDb

FncDb

VarDb Var

Type

Fnc

ControlFlow Block

Insn

types

vars

fncs

cfg

12 / 21



Instruction Set

1 non-terminal instructions

unary operation CL INSN UNOP
binary operation CL INSN BINOP
function call CL INSN CALL

2 terminal instructions

unconditional jump CL INSN JMP
conditional jump CL INSN COND
return CL INSN RET

13 / 21



Instruction Set

1 non-terminal instructions
unary operation CL INSN UNOP
binary operation CL INSN BINOP
function call CL INSN CALL

2 terminal instructions

unconditional jump CL INSN JMP
conditional jump CL INSN COND
return CL INSN RET

13 / 21



Instruction Set

1 non-terminal instructions
unary operation CL INSN UNOP
binary operation CL INSN BINOP
function call CL INSN CALL

2 terminal instructions
unconditional jump CL INSN JMP
conditional jump CL INSN COND
return CL INSN RET

13 / 21



Error Reporting Facility

location info for each instruction, declaration
error stream for reporting of code defects
fully compatible with the code parser’s error output

14 / 21



Agenda

1 Goal, Motivation

2 Design, Usage

3 Current State

4 Future

15 / 21



Current State

architecture already implemented and being used
tools for verification of sequential C programs with
dynamic linked data structures

predator – based on separation logic
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

forester – based on tree automata
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

16 / 21

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester


Demo (1/2)

fwnull – easy data-flow analyzer (demo)
simplified FORWARD NULL check used by Coverity
if a pointer is checked against NULL, it should be checked
before the pointer is first dereferenced

17 / 21

http://www-2.cs.cmu.edu/~aldrich/courses/654-sp09/tools/cure-coverity-06.pdf


Demo (2/2)

fwnull found a hidden bug in the cUrl project
http://github.com/bagder/curl/compare/62ef465...7aea2d5

diff --git a/lib/rtsp.c b/lib/rtsp.c
--- a/lib/rtsp.c
+++ b/lib/rtsp.c
@@ -709,7 +709,7 @@

while(*start && ISSPACE(*start))
start++;

- if(!start) {
+ if(!*start) {

failf(data, "Got a blank Session ID");
}
else if(data->set.str[STRING RTSP SESSION ID]) {

18 / 21

http://curl.haxx.se
http://github.com/bagder/curl/compare/62ef465...7aea2d5


Agenda

1 Goal, Motivation

2 Design, Usage

3 Current State

4 Future

19 / 21



Future Work

support for C++ (gcc is ready)
more front-ends (sparse, LLVM, . . . )

we are going to build Bi-Abductive analyzer using
the infrastructure

we want to offer the infrastructure to other researchers
(implies stabilisation of the API)

20 / 21



Summary

an easy way to analyze real-world code
solution based on gcc plug-ins
compact C++ API
suitable for tools that expect CFG on their input

http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener

21 / 21

http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener

	Goal, Motivation
	Design, Usage
	Current State
	Future

