An Easy to Use Infrastructure for Building

Static Analysis Tools

Kamil Dudka Petr Peringer Tomas Vojnar

FIT, Brno University of Technology, Czech Republic

February 10, 2011

0 Goal, Motivation
@ Design, Usage

@ Current State

e Future

1/21

Give researchers an easy way to build analyzers for industrial software.

2/21

Give researchers an easy way to build analyzers for industrial software.
@ no manual preprocessing

@ fully compatible with the compiler
@ fully compatible with the build system

2/21

Give researchers an easy way to build analyzers for industrial software.

@ no manual preprocessing
@ fully compatible with the compiler
@ fully compatible with the build system

@ as much concise API as possible

2/21

Give researchers an easy way to build analyzers for industrial software.

@ no manual preprocessing
@ fully compatible with the compiler
@ fully compatible with the build system

@ as much concise API as possible

@ available for free

2/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

3/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

@ gcc (industrial compiler, plug-in support)

3/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

@ gcc (industrial compiler, plug-in support)

e sparse (concise, powerful, actively used in the industry)

3/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

@ gcc (industrial compiler, plug-in support)
e sparse (concise, powerful, actively used in the industry)
e LLVM/clang (c++ API, not fully compatible with gcc)

3/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (c++ API, not fully compatible with gcc)
o CIL (OCaml API, used primarily in research)

3/21

@ our research group needed to build various analyzers
@ we were looking for a suitable code parser

gcc (industrial compiler, plug-in support)

sparse (concise, powerful, actively used in the industry)

LLVM/clang (c++ API, not fully compatible with gcc)
o CIL (OCaml API, used primarily in research)

3/21

gcc plug-in

gcc
source pre- - binary object
file]-’:I_’ perser I_:"”““"“”I—’ge::ﬁ':m file
|
plug-in

4/21

gcc plug-in

optimizer %

gcc
Siﬁrc}’%l_' parser I_._;
ile .
|
A 4
plug-in

binary object

code

generator fi Ie

Why should one build an analysis as a gcc plug-in?

4/21

gcc plug-in

optimizer %

gcc
source pre- parser
file processor
[]
[]
v
plug-in

binary object

code

generator fi Ie

Why should one build an analysis as a gcc plug-in?

@ the same code parser is used for both analysis and building

@ casy to use for the end users
@ ready for c++ as well as C

code listener
gcc
source
file

inai
parser optimizerH code

chkl chk2

5/21

code listener

gcc

source ore- ina
fi Ie processor parser optimizer

chkl chk2

Why should we bother with an extra layer?

5/21

code listener

gcc

source ore- ina
fi Ie processor parser optimizer

chkl chk2

Why should we bother with an extra layer?

@ gcc is complex (about 800 000 lines of code)
@ lack of documentation
@ we want to be independent of gcc

Consequences

What does it mean for a user?

6/21

Consequences

What does it mean for a user?

@ gcc —fplugin=plug.so
@ make CFLAGS=-fplugin=plug.so
@ some additional errors and warnings are reported

6/21

Consequences

What does it mean for a developer?

7/21

Consequences

What does it mean for a developer?

@ easy to use C++ API
@ availability of various diagnostic tools

o CFG plotter
e intermediate code printer
e debugging helpers

7/21

Use Cases

What is code listener suitable for?

8/21

Use Cases

What is code listener suitable for?

@ tools based on data flow analysis
@ tools based on abstract interpretation
@ any tool that expects CFG on its input

8/21

Use Cases

What is code listener suitable for?

@ tools based on data flow analysis
@ tools based on abstract interpretation
@ any tool that expects CFG on its input

What is code listener not suitable for?

8/21

Use Cases

What is code listener suitable for?

@ tools based on data flow analysis
@ tools based on abstract interpretation
@ any tool that expects CFG on its input

What is code listener not suitable for?

@ tools that expect AST on their input
@ GPL-incompatible projects

8/21

@ Design, Usage

9/21

Key Design Constraints

@ concise and intuitive API for writing analyzers
@ the API should be independent of gcc

@ easy migration to other code parsers
(e.g. from gcc to sparse)

10/21

Block Diagram

gcc |:|<—>

sparse

code parser interface

j—)

filters
switch
to if
listeners
CFG
plotter

error stream

code storage

analyzers

fwnull

11/21

Block Diagram

sparse

code parser interface

j—)

filters
switch
to if
listeners
CFG
plotter

error stream

code storage

analyzers

fwnull

11/21

Code Storage API

remm——————— (]
TypeDb)E Type i
types [4
oo i
Storage vars > VarDb |}): Var :
L S p—— !
fncs
FncDb > Fnc
cfg
\
ControlFlow > Block

Insn

12/21

Instruction Set

@ non-terminal instructions

@ terminal instructions

13/21

Instruction Set

@ non-terminal instructions
@ unary operation
e binary operation
e function call

CL_INSN_UNOP
CL_INSN_BINOP
CL_INSN_CALL

@ terminal instructions

13/21

Instruction Set

@ non-terminal instructions
@ unary operation
e binary operation
e function call

@ terminal instructions
e unconditional jump
e conditional jump
@ return

CL_INSN_UNOP
CL_INSN_BINOP
CL_INSN_CALL

CL_INSN_JMP
CL_INSN_COND
CL_INSN_RET

13/21

Error Reporting Facility

@ location info for each instruction, declaration
@ error stream for reporting of code defects
@ fully compatible with the code parser’s error output

14/21

@ Current State

15/21

Current State

@ architecture already implemented and being used

@ tools for verification of sequential C programs with
dynamic linked data structures

@ predator — based on separation logic

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

@ forester —based on tree automata

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

16/21

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Demo (1/2)

@ fwnull — easy data-flow analyzer (demo)
@ simplified FORWARD _NULL check used by Coverity

@ if a pointer is checked against NULL, it should be checked
before the pointer is first dereferenced

17/21

http://www-2.cs.cmu.edu/~aldrich/courses/654-sp09/tools/cure-coverity-06.pdf

Demo (2/2)

@ fwnull found a hidden bug in the cUr1 project

@ nhttp://github.com/bagder/curl/compare/62ef465. ..7aca2d5

diff --git a/lib/rtsp.c b/lib/rtsp.c
a/lib/rtsp.c
+++ b/lib/rtsp.c

while (#start && ISSPACE (xstart))
start++;

- if(!start) {
+ if (!'xstart) {
failf (data, "Got a blank Session ID");

}
else if (data->set.str[STRING_RTSP_SESSION_ID]) {

18/21

http://curl.haxx.se
http://github.com/bagder/curl/compare/62ef465...7aea2d5

e Future

19/21

Future Work

@ support for C++ (gcc is ready)
@ more front-ends (sparse, LLVM, ...)

@ we are going to build Bi-Abductive analyzer using
the infrastructure

@ we want to offer the infrastructure to other researchers
(implies stabilisation of the API)

20/21

@ an easy way to analyze real-world code

@ solution based on gcc plug-ins

@ compact c++ API

@ suitable for tools that expect CFG on their input

@ http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener

21/21

http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener

	Goal, Motivation
	Design, Usage
	Current State
	Future

