
Towards Smaller Invariants for Proving
Coverability ?

Lenka Turoňová and Lukáš Hoĺık

Faculty of Information Technology, Brno University of Technology
{turonova,holik}@fit.vutbr.cz

Abstract. In this paper, we explore a possibility of improving existing
methods for verification of parallel systems. We particularly concentrate
on safety properties of well-structured transition systems. Our work has
relevance mainly to recent methods that are based on finding an in-
ductive invariant by a sequence of refinements learned from counterex-
amples. Our goal is to improve the overall efficiency of this approach
by concentrating on choosing refinements that lead to a more succinct
invariants. For this, we propose to analyze so called minimal counterex-
ample runs. They are digests of counterexamples concise enough to allow
for a more detailed analysis. We experimented with a simple refinement
algorithm based on analysing minimal runs and succeeded in generating
significantly more succinct invariants than the state-of-the-art methods.

1 Introduction

Verification of parallel programs is challenging since they can generate a huge
number of interleavings. This is called a state space explosion (the size of the
state space grows exponentially to the number of processes). On top of that,
the number of parallel processes may be unbounded or processes might be dy-
namically created which render the state space infinite. However, a large class
of the parallel programs can be understood as well structured transition systems
(WSTS) where many properties can be effectively verified. The class of WSTS
include for instance Petri nets, lossy channel systems, or various broadcast and
mutual exclusion protocols. We are interested especially in safety properties of
WSTS, particularly in those that can be formulated as coverability of a set of
incorrect configurations.

Our work is in the direction originating from or conceptually similar to back-
ward reachability analysis [1], especially close to recent works [8, 7, 5] that are
based on learning a safe inductive invariant of the similar form. A safe induc-
tive invariant is a set of configurations of the system with the three following
properties: (a) it contains its initial configurations; (b) it does not intersect with
the target configurations; and (c) it is closed under the transition relation. The
properties together are an inductive proof of safety of the system.

? This work was supported by the Czech Science Foundation project 16-24707Y.

The methods [8, 7, 5] build-up the invariant by iterative steps, refining the
current invariant approximation in order to satisfy inductiveness. A crucial com-
ponent of this process is always a use of abstraction used to accelerate the process
and regulated by a variation on counterexample-guided refinement (CEGAR).

The basic variant of CEGAR [4] runs the program within the abstract do-
main and in the case of reaching the target, the path to the target, so called
counterexample, is analyzed. If the path is feasible in the real system then the
target is reachable. Otherwise, the counterexample is spurious due to a too coarse
abstraction and the path is used to refine the abstraction.

The counterexample analysis of [8, 7, 5] is based on forms of backward explo-
ration of the state space starting in the target, using the operation pre. Although
the methods differ in many aspects, it can be said that all of them perform es-
sentially an eager backward exploration of the state space—they do not take into
account any counterexample path in particular. Almost all found configurations
(modulo some local and indeed powerful optimizations such as the ”generaliza-
tion” of algorithms [8] and [7]) are being used to refine the representation of the
invariant approximation. Due to the eagerness, much of the added precision is
unnecessary and makes the inferred invariants much more verbose than needed.

We conjecture that heuristics for finding more succinct invariants would im-
prove efficiency of the discussed methods [8, 7, 5] significantly, for the following
reasons: the invariant approximations are the most costly data that the meth-
ods work with, and so the price of the analysis depends directly on the size of
the invariant representation. Moreover, more succinct invariants can be usually
found by less invariant building steps.

Our approach. Our work comes out from the work [5], referred to as GBR. Its
backward counterexample analysis is based on an exhaustive backward search
through the state space implemented using the precise precondition operator.

We propose a modification of GBR which instead of the exhaustive depth-
bounded backward search concentrates on a single entire counterexample path
called minimal counterexample run. Since it is usually very concise we can an-
alyze it thoroughly. From each such a run, we try to derive a “reason” for why
the run could not be executed in the real system. Intuitively, it consists of parts
of preconditions of transitions in the run that cannot occur (similarly to inter-
polants [9]). The minimal reason has a potential to be a part of the minimal
inductive invariant since 1) it is necessary to refute the examined spurious coun-
terexample run and 2) it is a “minimal” such “reason”. In contrast to the eager
strategy, many useless candidates for parts of the invariant and unsafe overap-
proximations can be avoided in this way.

2 Well-quasi-ordered Transition Systems

The well-quasi-ordered transition systems, WSTS for short, are systems with
infinitely many configurations with a well-quasi-ordering (wqo), and whose tran-
sitions satisfy the monotonicity property. It has been shown that the coverability
problem (reachability of an UCS) is decidable for WSTS [2].

Formally, according to [8], WSTS is a tuple (Σ, I,→,�) where Σ stands
for a set of configurations, a finite set I ⊂ Σ is a set of initial configurations,
→ ⊂ Σ ×Σ is a transition on Σ, and a � ⊂ Σ ×Σ is a wqo.

The transition relation → between configurations is monotonic wrt. to the
relation � if for each two configurations s0 and s1 such that s0 � s1 and a
relation s0 → s′0 there is a configuration s′1 such that s1 → s′1.

The pre-order � is defined over a set S such that for any infinite sequence
s0, s1, s1, . . ., there are i, j with i < j and si � sj . If � is an equivalence relation,
then the condition of � being a wqo amounts to the equivalence relation having
a finite index [1].

Given a pre-order � defined over a set S set of configurations S, the upward-
closure T↑ of a subset T ⊆ S and the downward closure T↓ are defined as

T↑ def
= {s ∈ S | ∃t ∈ T : t � s} and T↓ def

= {s ∈ S | ∃t ∈ T : s � t}.

We define a set T to be an UCS, respectively a downward closed set (DCS), iff
T↓ = T , respectively T↑ = T . If T is an UCS, its complement S\T is a DCS,
and, conversely, if T is a DCS, its complement is an UCS [3]. Based on the
monotocity of →, for any UCS, the set of its predecessors is an UCS.

Let x, y ∈ Σ. If x → y we call x a predecessor of y and y a successor of x,
and define

pre(x) := {y | y → x} and post(x) := {y | x→ y}.

For X ⊂ Σ, pre(X) and post(X) are defined as usual, i.e.

pre(X) =
⋃
x∈X

pre(x) and post(X) =
⋃
x∈X

post(x).

For sets X and Y of configurations, we use X→Y to denote that there are
x ∈ X and y ∈ Y such that x → y. If there are configurations x0, . . . , xk ∈ Σ
such that x0 = x, xk = y and xi→xk+1 for 0 ≤ i < k, then we write x

k−→ y.

Furthermore,
∗−→ represents the reflexive transitive closure of →. A set X of

configurations is said to be reachable if Xinit
∗−→ X. The set of k-reachable

configurations, reachable in at most k steps, is defined as:

Reachk := {y ∈ Σ | ∃k′ ≤ k,∃x ∈ I, x k′

−→ y}.

The set of all reachable configurations is formally defined as:

Reach :=
⋃
k≥0

Reachk = {y ∈ Σ | ∃x ∈ I, x k−→ y}.

Given a WSTS S = (Σ, I,→,�), we denote by Cover the covering set of S,
consisting of all configurations covered by some of the reachable configurations:

Cover(S)
def
= post∗(I)↓.

3 Testing Coverability Using CEGAR

Let us have given a WSTS S0 = (Σ, I,→,�) and a target configuration bad.
The coverability problem means to decide whether a configuration from the set
bad↑ is reachable from the set of initial configurations I or not. A system where
bad↑ is not reachable is called safe. Formally, we say that the set bad is coverable
if bad ∈ Cover(S0).

The method of [5] on which we build uses abstract interpretation with the
abstraction defined by a set of configurations D, called domain. Every config-
uration x ∈ D gives the abstraction means to distinguish configurations in x↑
from the rest. We say that D is “expressive enough” when it can express a safe
and inductive invariant, that is, if it has a subset V such that the complement
of V ↑ is a safe inductive invariant. All runs of the system then stay within the
complement of V ↑.

The domain is refined using CEGAR until unreachability or reachability of
bad↑ is proven. One iteration of the CEGAR loop takes the current value of
D and generates an abstract forward run until it reaches a fixpoint, or until
bad is reached. If the fixpoint is reached without reaching bad, then bad is not
coverable. If it generates bad, then it is a counterexample run starting from the
complement of D↑ and ending to the target bad.

A counterexample run either signifies that bad is indeed reachable, or it is
a spurious counterexample. A spurious counterexample is generated due to the
abstraction not being able to distinguish certain dangerous configurations that
can reach bad from some configurations that are reachable. The abstraction has
then to be refined. This is done by adding the configurations from the coun-
terexample run to D in order to give the abstraction the means of distinguishing
the dangerous configurations from the reachable ones. CEGAR then continues by
the next iteration with the refined abstraction. Otherwise, if the counterexample
was not spurious, then it gives a proof of coverability of bad.

In the following sections, we present our modification of forward and back-
ward analysis of the method [5].

3.1 Forward Abstract Interpretation

In this section, we define recall the forward abstract interpretation of WSTS of
[5] that uses an abstract domain parameterised by a finite set D of configura-
tions. Initially, the input of the algorithm is given as a WSTS S = (Σ, I,→,�),
a parameter D and a target bad. For simplicity, we assume that D contains bad
and the set I contains a single initial configuration x0. The abstract interpreta-
tion algorithm runs the system in the abstract domain and decides whether the
target bad is reachable from the initial set I or not.

Intuitively, a set of configurations E is abstracted into the set of elements
form D that are covered by it (in a sense of �). Formally, the abstraction is
defined as

∀E ∈ 2X : α[D](E)
def
= E↓ ∩D,

while the concretisation function is defined as:

∀P ∈ 2D : γ[D](P)
def
= {x ∈ X | x↓ ∩D ⊆ P}.

The abstract post operator in the domain defined by D is defined in a stan-
dard way as:

post][D]
def
= α[D] ◦ post ◦ γ[D].

To find all configurations reachable in the abstract system from a set P , the
forward steps are carried out till no new elements within the abstract domain
defined by D are found, computing the image under the transitive closure of the
abstract post:

post][D]∗(P)
def
=

⋃
i≥0

post][D]i(P).

The concretisation function γ may return an infinitely large set of configu-
rations. Therefore, it is necessary to compute post] in a symbolic manner. In
particular, the post image consists of those elements x ∈ D which have their
predecessors in the concretization of the elements from the set P . Formally de-
fined:

x ∈ post](P)⇔ (x ∈ D ∧ ¬(pre(x↑) ⊆ (D\P)↑)).
After the set of reachable configurations is computed, it is necessary to check

whether it contains the target bad. The target bad is unreachable if

bad 6∈ post][D]∗.

Otherwise, if bad ∈ post][D]∗, then the system can reach the target bad or the
precision of the abstract domain defined by D is not sufficient and has to be
refined.

Algorithm 1: Forward reachability

input : a WSTS S = (Σ, I,→,�), a parameter D and a target bad
output: Is bad reachable?

1 P0 = α[D](x0)
2 i = 0
3 path = ε
4 do
5 for t ∈ T do
6 if t.isEnabled (Pi) then
7 path = path . t

8 Pi+1 = Pi ∪ postt][D](Pi)
9 i = i+ 1

10 while Pi 6= Pi−1
11 if bad ∈ Pi then
12 return UNREACHABLE
13 else if ∃x0, . . . , xk ∈ D : x0 → · · · → xk and xk = bad then
14 return REACHABLE

Algorithm 1 implements the fixpoint computation of post][D]∗(P) and de-
cides whether bad was or was not reached. The function t.isEnabled() returns
true if there is a configuration in γ[D](Pi) from where the transition t can be
fired, and false otherwise. The function postt][D](Pi) represents a set of abstract
successors of Pi under the transition t. It is a restriction of the post operator
post] to a single transition t, namely:

x ∈ postt](P)⇔ (x ∈ D ∧ ¬(pret(x↑) ⊆ (D\P)↑)),

where pret(X) =
⋃

x∈X pret(x) and pret(x) = {y | y t→ x}. Algorithm 1 is anal-
ogous to the forward search presented in [5] up that it also records the sequence
P0, . . . , Pn of the fixpoint approximations that and the sequence t1, . . . , tn of
transitions that were taken to compute them. They will be used in the coun-
terexample analysis.

3.2 Counterexample Analysis and Abstraction Refinement

The analysis of the counterexample run is based on the construction of the so
called minimal (abstract) counterexample run. A minimal counterexample run is
considered to be a run within an abstract domain, leading from an abstraction
of initial set I to the target bad which is executed using a shortest sequence
of transitions. The minimal counterexample run records how exactly were the
elements of Pi, i < n that were necessary for reaching bad generated by the
forward analysis.

Algorithm 2: Construction of the graph

input : P0, . . . , Pn; t1, . . . , tn; a parameter D; a target bad; G = (V,E)
where V = bad and E = ∅

output: a minimal counterexample run represented by a DAG (V,E)
1 n = length(path)
2 W = ∅
3 W ′ = {bad}
4 for i← n to 1 do
5 W = W ′

6 W ′ = ∅
7 for node ∈W do
8 Choose ti from path

9 if node ∈ postti](Pi−1) then
10 V = V ∪ {preti(node)} ∪ α[D](preti(node))
11 E = E ∪ {(node, preti(node))} ∪ {(preti(node), x)|x ∈

α[D](preti(node))}
12 W = W\{node}
13 W ′ = W ′ ∪ α[D](preti(node))
14 break

Algorithm 2 constructs the minimal counterexample run in the form of a
graph G based on the records of intermediate states and transitions taken during

the forward analysis. Its nodes are the elements of P ′is needed for reaching bad
and also the concrete preconditions of these elements wrt. the transitions which
generated them within the forward analysis.

We so far propose only a naive method for the analysis of minimal runs. It
is sufficient to generate more succinct invariants, but it is not yet optimized for
overall efficiency: From each minimal run, we randomly select a configuration
from the DCS of preconditions and use it to extend D.

4 Experiments

We have implemented our method in a prototype tool MINA in Python and
compared the size of invariants generated by our method with the invariants
generated by the state-of-the-art methods BFC [7], IIC [8], and our implemen-
tation of the algorithm GBR on several verification tasks from the benchmark
of MIST2 [6]. In BFC we have deactivated the coverability oracle which uses
simple forward exploration to search for reachable configurations and excludes
their downward closure from the candidates for invariant refinement.1

Benchmark
name

MINA GBR BFC IIC

basicME.spec 6 22 23 7
read-write.spec 3 Timeout 456 67
pingpong.spec 14 80 31 14
newrtp.spec 45 45 54 45
mesh2x2.spec 10 Timeout 16454 10
mesh3x2.spec 10 Timeout Timeout 10
lamport.spec 17 68 70 33
newdekker.spec 21 Timeout 234 45
peterson.spec 32 135 191 67
multiME.spec 7 Timeout 64 7
manufacturing.spec 6 Timeout 39 6

Table 1: A comparison of the size of the invariants generated by our method (Random
Search), our implementation of the algorithm GBR [5], BFC [7] and IIC [8]. The size
of the smallest invariant are typeset bold.

Since our method chooses invariant candidates randomly, we used the most
succinct invariant generated in 30 executions. The overall runtime was therefore
was higher than that of the other tools. We have, however, succeeded in gener-
ating significantly more succinct invariants than the other tools, as reported in
Table 1.

1 Optimizations like this are rather orthogonal to the choice of the main algorithm.

This confirms that, with an efficient analysis of the minimal counterexample
runs, our approach has a potential to be more efficient than the existing meth-
ods. Our future research will therefore focus on efficient analysis of minimal
counterexample runs.

References

1. Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin
of Symbolic Logic, (4), 2010.

2. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In LICS’96, pages 313–321. IEEE
Computer Society, 1996.

3. Aaron R. Bradley. Sat-based model checking without unrolling. In VMCAI’11,
volume 6538 of LNCS, pages 70–87. Springer, 2011.

4. Edmund M. Clarke. Sat-based counterexample guided abstraction refinement. In
SPIN’02, volume 2318 of LNCS, page 1. Springer, 2002.

5. Pierre Ganty, Jean-François Raskin, and Laurent Van Begin. A complete abstract
interpretation framework for coverability properties of WSTS. In VMCAI’06, vol-
ume 3855 of LNCS, pages 49–64. Springer, 2006.

6. Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Bfc - a widening approach
to multi-threaded program verification. http://www.cprover.org/bfc/.

7. Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient coverability anal-
ysis by proof minimization. In CONCUR’12, volume 7454 of LNCS. Springer, 2012.

8. Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica Piskac. Incremental,
inductive coverability. In CAV’13, volume 8044 of LNCS. Springer, 2013.

9. Kenneth L. McMillan. Interpolation and sat-based model checking. In CAV’03,
volume 2725 of LNCS, pages 1–13. Springer, 2003.

