
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Verifying LTL Properties of Bytecode with

Symbolic Execution 1

Pietro Braione, Giovanni Denaro2 ,3

Dipartimento di Informatica Sistemistica e Comunicazione (DISCO)
Università degli Studi di Milano-Bicocca, Milano, Italy

Mauro Pezzè4

Dipartimento di Informatica Sistemistica e Comunicazione (DISCO)
Università degli Studi di Milano-Bicocca, Milano, Italy

and
Facoltà di Scienze Informatiche

Università della Svizzera Italiana, Lugano, Switzerland

Bohuslav Křena5

Faculty of Information Technology (FIT)
Brno University of Technology, Brno, Czech Republic

Abstract

Bytecode languages are at a very desirable degree of abstraction for performing formal analysis of programs,
but at the same time pose new challenges when compared with traditional languages. This paper proposes a
methodology for bytecode analysis which harmonizes two well-known formal verification techniques, model
checking and symbolic execution. Model checking is a property-guided exploration of the system state space
until the property is proved or disproved, producing in the latter case a counterexample execution trace.
Symbolic execution emulates program execution by replacing concrete variable values with symbolic ones,
so that the symbolic execution along a path represents the potentially infinite numeric executions that may
occur along that path. We propose an approach where symbolic execution is used for building a possibly
partial model of the program state space, and on-the-fly model checking is exploited for verifying temporal
properties on it. The synergy of the two techniques yields considerable potential advantages: symbolic exe-
cution allows for modeling the state space of infinite-state software systems, limits the state explosion, and
fosters modular verification; model checking provides fully automated verification of reachability properties
of a program. To assess these potential advantages, we report our preliminary experience with the analysis
of a safety-critical software system.

Keywords: Symbolic execution, code-based model checking of software.

1 This work has been partially supported by the European Union through the Research Training Network
SeGraVis, by the Czech Ministry of Education under the project Security-Oriented Research in Information
Technology, contract CEZ MSM 0021630528, and by the Czech Science Foundation under the contracts
102/07/0322 and 102/06/P076.
2 Email: pietro.braione@disco.unimib.it
3 Email: denaro@disco.unimib.it
4 Email: pezze@disco.unimib.it
5 Email: krena@fit.vutbr.cz

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:pietro.braione@disco.unimib.it
mailto:denaro@disco.unimib.it
mailto:pezze@disco.unimib.it
mailto:krena@fit.vutbr.cz

Braione, Denaro, Křena, Pezzè

1 Introduction

One of the long-standing challenges of the software industry is ensuring that a

software system does not contain fatal errors after it is shipped. To this end,

software industry is considering formal software verification techniques (e.g. [2]).

Formal verification aims to prove that a software artifact is compliant with user-

provided specifications of correct behaviour, and can thus complement testing in

increasing confidence in the software operation.

The success of bytecode languages opens new opportunities for the practical

applicability of formal software verification techniques. Bytecode languages are at

a very desirable degree of abstraction for formal analysis. Bytecode is unaware

of the diverse, semantically rich constructs that high-level programming languages

offer to developers, allowing their analysis by means of a common simpler language.

Bytecode can be formally analyzed even in the partial or total absence of source

code when third-party libraries and COTS are used. Yet, it is at a sufficiently

high level of abstraction to avoid issues like memory management and pointers that

complicate analysis at the binary level. Additionally, all the well known benefits

of platform- and language-independence apply to bytecode analysis. Analysis tools

based on bytecode allow to verify the correctness of programs written in different

programming languages for different platforms.

In this paper we propose a formal analysis methodology for Java bytecode which

harmonizes two well-known techniques, model checking and symbolic execution.

Model checking is an automatic approach for verifying temporal properties on finite

state systems which does a property-guided exploration of the system state space

until the property is proved or disproved, producing in the latter case a counterex-

ample execution trace. Symbolic execution executes the program replacing concrete

variable values with symbolic ones, and builds a representation of the state space

suitable for analysis. We propose an approach that uses symbolic execution for

building a model of the program state space, and model checking for verifying tem-

poral properties on it. To reduce the portion of the state space model explored

by the checker, we build it on-the-fly as model checking of the temporal property

proceeds.

The synergy of the two techniques brings considerable advantages [14]. Model

checking provides an expressive language for specifying software properties, and ef-

ficient algorithms for verifying them automatically. Symbolic execution brings two

key advantages. First, it produces a compact representation of the program state

space where large set of numeric values are represented by symbols, potentially

limiting state explosion during analysis. Second, by initializing software modules

with symbolic values, it allows to analyze them in isolation, thus fostering modular

verification. However, while recently there has been a renewed interest in using sym-

bolic execution for software verification [14,21,1,8,19], we are not aware of previous

research works on this issue in the context of LTL verification based on symbolic

execution.

The original contribution reported in this paper are:

• A framework for the analysis of temporal formula with arbitrary predicates on

program variables;

2

Braione, Denaro, Křena, Pezzè

• A technology demonstrator composed by an on-the-fly LTL model checker and

a prototype virtual machine which does symbolic execution of bytecode without

relying on code translation or instrumentation;

• A preliminary investigation of the computational impact of the proposed analysis

by applying our demonstrator to the analysis of a safety-critical software system.

Our research is grounded on previous research performed by some of the authors

on symbolic execution based software verification [6].

The paper is organized as follows. Section 2 describes the overall framework for

symbolically executing bytecode. Section 3 describes how to adapt model check-

ing to bytecode verification. Section 4 reports the architecture of the technology

demonstrator used for assessing the proposed approach and some preliminary expe-

rience on the verification of the TCAS aircraft collision avoidance system. Section 5

grounds our research effort in the current literature. Section 6 concludes the pa-

per with some final remarks and an overview of our current and future research

endeavours.

2 Symbolic execution for bytecode analysis

Symbolic execution [15,5] is a well known technique to execute programs with sym-

bolic input values. The execution state stores a predicate, called path condition,

that keeps track of the constraints on symbolic values and determines the control

flow path yielding the state. For example, when a conditional jump instruction is

executed, a decision procedure is invoked to determine if the jump condition and

its negation are satisfiable under the current path condition. If both are satisfiable,

the current state is “split” into two next states, and the path condition of each is

augmented with the clause determining which branch is executed.

Symbolic execution has been traditionally applied to languages with numeric

types. When considering languages that allow references and dynamic memory,

symbolic execution can be extended with lazy initialization [14]. Lazy initialization

calculates the possible initial values of a symbolic reference only when it is first used

during execution, then it creates a state for each possible concrete value: null, a

reference to a fresh object (assumed to be initially available in the heap but not

yet used), a reference to each type-compatible object introduced by previous lazy

initialization of other symbolic references. Considering all possible values on first

use may generate a high number of states in later phases of the symbolic execution,

thus variants have been proposed to further delay the set of values to be considered

in order to reduce state explosion [9].

Intuitively, symbolically executing a method is a way to analyze the method

invocation from a generic execution state. The initial state of symbolic execution

represents the assumptions on the context of the method invocation. In our ap-

proach, the least assumption is an initial state containing only the root object, i.e.,

the receiver (this) of the method invocation, with all fields and method invoca-

tion parameters initialized to symbolic values and the path condition set to true.

Preconditions on scalar variables, if any, are included in the path condition as pred-

icates on scalar symbols. Preconditions on references are represented by adding

3

Braione, Denaro, Křena, Pezzè

objects to the heap and replacing symbolic references with concrete ones.

The symbolic initialization of static class members requires particular care. Ac-

cording to the Java Virtual Machine specification, initialization of static class mem-

bers occurs when classes are first loaded, and causes the execution of the class’ static

initializer. As a consequence, the initial state of symbolic execution depends on the

assumption on whether or not each class is already loaded. By default we assume

all classes as pre-loaded (i.e., we assume that static members have already been

initialized and potentially modified before the current symbolic execution), which

leads to conservatively initialize static members to fresh symbolic values. Users may

configure the set of classes that must not be assumed as pre-loaded: such classes

will be loaded on the first use, and their static class initializer will be then executed.

For the sake of consistency, we always assume that the classes of the objects initially

present in the heap are pre-loaded.

Our symbolic execution resolves symbolic references by lazy initialization when

they are loaded on the operand stack. To ensure soundness, our implementation of

lazy initialization resolves a symbolic reference only with type-compatible concrete

references, and enforces the exclusion of non pre-loaded classes.

Our symbolic executor offers full support to a generic verification procedure 6 for

exploring the symbolic state space in an arbitrary visiting order, and for evaluating

user-specified predicates on the explored states.

3 Verifying LTL Properties

Temporal logics have been widely used for specifying properties of reactive systems

for model checking [4,12]. Linear-time temporal logic (LTL [17]) is generally recom-

mended for model checking frameworks based on explicit exploration of the state

space. In this paper, we use LTL to specify properties of Java programs.

Informally, an LTL formula is built up from atomic propositions (which evaluate

to either true or false in a given state), logic connectives (¬, ∨, ∧, →), and temporal

operators (X for next, U for until, R for release, F for eventually, G for globally).

Temporal operators model relations between states of a linear temporal sequence

(aka a path). A system satisfies a property described as an LTL formula if the

property holds for all possible paths in the system. The full semantics of LTL is

out of the scope of this paper; the interested reader is referred to [17] for details.

Here we only notice that checking an LTL formula by incrementally evaluating its

sub-formulae is possible, but it is more convenient to translate the formula to an

automaton (namely a Büchi automaton) that is then used as an operational model

to check whether the paths in the state space satisfy the formula [20].

To deal with symbolic states we must adapt traditional model checking algo-

rithms. While evaluating atomic propositions in concrete states always results in

either true or false, evaluating atomic propositions in symbolic states may lead

to ambiguity, since symbolic states can stand for sets of concrete states including

states with different evaluations. Le us consider for instance the evaluation of the

atomic proposition x > 5 in the symbolic state characterized by the path condition

6 not necessarily a model checker

4

Braione, Denaro, Křena, Pezzè

x > 0. Without further information x > 0 does not lead to a single truth value

for x > 5, which can be either false or true for different states represented by the

path condition. To deal with this case, we split the symbolic states according to the

atomic propositions incorporated in the formula under verification: with reference

to the above example, x > 5 evaluates to false for the states 0 < x ≤ 5, while

it evaluates to true for x > 5. Splitting symbolic states assigns a unique truth

value to atomic propositions in each new symbolic state, albeit increasing the size

of symbolic state spaces.

Our on-the-fly model checker translates all LTL properties to corresponding

Büchi automata, extracts the set of atomic propositions of the properties, config-

ures the symbolic execution engine to split states according to these propositions,

and then it starts the symbolic execution. The symbolic execution engine notifies

changes in the evaluation of the atomic propositions that occur while traversing the

program state space. Based on the notifications, the model checker checks on-the-

fly compliance with the property automaton, guides the symbolic execution engine

through the states to be explored, and terminates when either identifies a coun-

terexample (the property is refuted) or explores the whole state space (the property

is proved).

Model checking based on symbolic execution needs to determine the equivalence

of symbolic states, which is an undecidable problem. We overcome this problem

by avoiding state matching, and producing tree-shaped state spaces. In this way,

we simplify model checking, but we introduce multiple computations of the same

symbolic states (as many times as they are reached), and we may produce infinite

state spaces in presence of loops. We avoid infinite state spaces by limiting the depth

of the tree to be explored, thus admitting unsound verification (that is, property

violations cannot be excluded even if the analysis terminates without producing a

counterexample). Repeating model checking of a property with increasing depth

of explored state space until the examined property is refuted or proved, would

eliminate unsoundness but would not guarantee that the model checking process

terminates.

We notice that, in absence of state matching, we can only check a subset of

LTL, which includes safety properties, but does not include liveness properties [20].

Visser et al. propose subsumption checking to compare symbolic states regardless

of the general undecidability of their equivalence [21].

4 Preliminary Evaluation

We evaluated the approach with a prototype tool that analyzes temporal properties

on Java programs. Here we draft the architecture of the prototype and report some

preliminary experience.

4.1 Prototype

Figure 1 illustrates the logical structure of the prototype, which consists of three

software modules: a symbolic executor for Java bytecode, a linear temporal logic

translator, and a model checker.

5

Braione, Denaro, Křena, Pezzè

Fig. 1. The logical structure of the prototype

The Java Bytecode Symbolic Executor (JBSE from hence) implements the Java

Virtual Machine Specification v.2. JBSE supports symbolic values without the

need to instrument the source code. It can be customized to explore the symbolic

state space with different visiting orders (currently we use depth-first visit), and

can backtrack to a previous saved state. Users can provide assumptions to drive

symbolic execution, and can specify the concrete classes that must be used to lazily

initialize symbolic references by means of regular expressions. JBSE relies on exter-

nal decision procedures to decide the satisfiability of the path condition and prune

unfeasible states (currently the prototype supports CVC3 and the Sicstus CLP en-

vironment). Among the features for supporting formal bytecode verification, JBSE

offers a special “don’t care” value, which is always expanded to both true and false

each time it is evaluated, and can be used to model nondeterminism. JBSE offers

methods to set backtrack points at any time of the execution, to register listeners

to variable value changes, and to directly access the execution state and observe all

the variables.

Translation from LTL formulae to Büchi automata is a well studied problem and

several translators are available. We exploit the SPIN model checker v. 4.2.9 [12]

run with the option -f or -F and the LTL2BA v. 1.1 tool [10]. Both tools produce

Büchi automata described in Promela language as the so-called never claim. We

implemented a compiler which translates never claims to suitable Java classes by

using the JavaCC v. 4.0 compiler generator.

The model checking engine executes the non-deterministic Büchi automaton

guiding the on-the-fly symbolic state space generation performed by the symbolic

executor.

The current implementation of JBSE does not directly support the definition of

arbitrary user-defined predicates, which must be implemented as variables in the

source code of the program under analysis These variables can be observed by the

state observation mechanisms provided by JBSE.

6

Braione, Denaro, Křena, Pezzè

4.2 TCAS

TCAS is an on-board aircraft conflict detection and resolution system used by US

commercial aircraft [18], which has been widely studied in academia as a bench-

mark for safety critical applications [3,16,6]. The experimental work described in

this section focuses on the component of TCAS that is responsible for finding the

best Resolution Advisory (RA) suggesting to the pilot to either climb or descend,

according to the relative position and speed of a nearby aircraft. The component,

originally written in C, has been the subject of previous software engineering exper-

iments [13,6]. Aimed at validating our approach to bytecode analysis, we considered

the Java equivalent of such component and replicated the analysis of the properties

referred in [6].

Our analysis of TCAS considered the safety properties described in [6], and which

we fully report in Appendix A. All the properties state some desirable features of

the verified TCAS component in terms of the possible occurrence of a maneuver

action under some conditions on the input data. As an example, we consider the

first property described in [6] stating that, whenever one maneuver does not pro-

vide adequate separation and the other does, the former is never selected. The

model checker has been fed on the negation of this property, which we will indicate

as PN1 (see Figure A.2). This formula is composed by two subformulas, stating

the occurrence of an erroneous descend (PN1.1) or climb (PN1.2) maneuver. Both

subformulas, in turn, share a common structure where a precondition (left subex-

pression) is conjoined with a temporal formula stating the eventual execution of the

program statement performing a climb or descend maneuver 7 . The temporal part

has been kept intentionally similar to the original formulation in [6]. All the safety

properties are identically structured and differ only for the precondition parts.

In the PN1 formula the elementary predicates UPSEPADQ and DOWNSEPADQ state

that the separation resulting from, respectively, climbing or descending are ade-

quate. The remaining predicates state that the symbolic execution is at the begin-

ning of the escape maneuver computation (ATASTEN), at the point where a climb

maneuver is selected (ATASTUPRA), or at the point where a descend maneuver is

selected (ATASTDOWNRA). Since none of the variables in TCAS express any of these

predicates, they have been implemented in TCAS as observable boolean variables,

one for each predicate, and are evaluated in all the program points where they

may change their truth value. The most critical predicates are UPSEPADQ and

DOWNSEPADQ, whose evaluation requires state splitting.

4.3 Results

We analyzed TCAS to estimate the potential saving of the combination of symbolic

execution with model checking in terms of number of traversed states. We verified

the five safety properties for TCAS proposed in [6]. The TCAS code that we ana-

lyzed does not contain loops, thus symbolic execution built a finite representation

of the state space. We analyzed each property both with classic symbolic execu-

tion and with symbolic execution combined with model checking. When analyzing

7 A LTL formula Fp states that a state is reachable where the p predicate is true.

7

Braione, Denaro, Křena, Pezzè

Number of states

Property Outcome Classic sym-

bolic execution

(#SESt)

Symbolic execu-

tion driven by

Model checking

(#MCSt)

#MCSt

#SESt

PN1 True 5701 2156 37.8%

PN2 True 8617 2239 26.0%

PN3 False 10729 308 2.9%

PN4 False 4021 284 7.1%

PN5 True 4453 2981 66.9%

Table 1
Number of traversed states for TCAS verification

the property with classic symbolic execution we inserted assertions in the code, to

check if the property is verified, when analyzing the property with the combination

of symbolic execution and model checking, we verified the LTL property as discussed

in this paper.

Table 1 reports the results of our experiments for each property. The first

column indicates the property, described in the appendix. The second column

shows the verification result on the implementation of TCAS considered in our

experiments 8 . The third and fourth columns give the number of states traversed

when analyzing the property with symbolic execution only and with a combination

of symbolic execution and model checking, respectively. The fifth column quantifies

the advantages of the combination of symbolic execution and model checking over

classic symbolic execution as the ratio between the number of states explored in

the two cases, that represents the portion of the symbolic space state that must be

explored by the model checker to prove or disprove the property.

As we can see, on-the-fly model checking explores a subset of the state space.

The saving is higher when properties are not verified (properties PN2 and PN3),

since the model checker stops early with a counterexample; it is lower when the

properties are verified (properties PN1, PN4 and PN5). When properties are not

verified the model checker explored less than 10% of the state space, when properties

are verified, the model checker explores between 26% and 66.9%, still with a relevant

saving.

5 Related Work

Automatic verification of programs is currently the subject of several research ef-

forts. This section reports on related work distinguishing, for presentation purposes,

between approaches that rely on symbolic execution to model the execution of a

program, and approaches that extract finite models from source code and then rely

8 In [6] the property P3 was incorrectly reported as verified for TCAS.

8

Braione, Denaro, Křena, Pezzè

on techniques for finite state verification.

Symbolic execution-based verification

Several research prototypes for testing and verification of Java programs use sym-

bolic execution to explore program state spaces, for different purposes: JPF-SE

checks program states against logic assertions and can generate test cases for the

traversed paths [14,21,1]. Bogor/Kiasan checks class methods against JML specifi-

cations [8]. Tomb, Brat and Visser’s prototype checks for occurrence of unhandled

runtime exceptions [19].

None of the above prototypes symbolically executes bytecode directly. They

either translate bytecode to some checkable language (for instance, Bogor/Kiasan

translates bytecode to BIR, which is then symbolically executed), or rely on the

user to handle symbolic values and heap analysis at the source code level (as in

JPF-SE). Our prototype executes the bytecode through a suitable JVM that pro-

vides native support for symbolic values and heap analysis at the bytecode level.

Thus, our approach does not face any semantic mismatch that may derive from

translation between non semantically equivalent languages, and avoids the burden

on programmers of instrumenting the code and handling lazy initializations.

Extraction of finite state models from source code

The Bandera toolkit supports LTL model checking of Java programs [7]. Bandera

provides a set of analysis and transformation components that extract finite state

models from the program source code, leverages finite-state model checkers (such

as Spin and SMV) to perform LTL verification on the models, and maps the re-

sults back to the original source code. The main disadvantage of Bandera comes

from the semantic gap between the modeling languages of the model checkers and

the Java programming language, which in several cases hinders the possibility of

automatically extracting the finite state models.

Henzinger et al. and Ball and Rajamani describe approaches to verifying tempo-

ral properties of programs by exploiting predicate abstractions of programs [11,2].

Predicate abstraction works very well for abstracting program control flows and

can deal with infinite paths better than symbolic execution. However, there is not

a really convenient abstraction that accounts for all possible dependencies between

program references and heap structures. Symbolic execution in combination with

lazy initialization allows for a thorough analysis of the dependencies between the

heap and the program state space, which are extremely important when analyzing

bytecode.

6 Conclusions

Model checking can provide formal analysis of critical properties of programs, and

successfully complement program testing for systems with high quality software re-

quirements. Model checking of programs is challenging because programs are usually

defined over infinite input domains, which cannot be directly dealt by traditional

model checking procedures for finite state systems. Symbolic execution has the

9

Braione, Denaro, Křena, Pezzè

potential to contrast this problem by providing finite representations of potentially

infinite sets of the numeric executions of a program.

In this paper, we have presented our approach to LTL model checking of Java

programs based on symbolically executing the programs at the bytecode level. We

see clear advantages in addressing the analysis at the bytecode level: bytecode pro-

vides a nicer level of abstraction than both source and binary code, is available

even in partial absence of source code, and brings in the well known advantages of

platform- and language-independency. We have described a prototype that imple-

ments our approach, and we have reported the results of a preliminary experience

with the analysis of a safety-critical application. The initial results support our

belief that the interplay of model checking and symbolic execution can provide suit-

able tradeoffs for the portion of program state space that needs to be explored to

analyze LTL properties.

Our approach differs from the other existing approaches that address verification

by means of the combination of model checking and symbolic execution. First, the

other approaches that we are aware of, do not target verification of LTL properties:

they either target generic properties (such as absence of runtime exceptions), or

verify pre- and post-conditions at the boundaries of program modules. LTL allows

for specifying and checking interprocedural relations between modules that involve

relations on the program variables, and thus can capture the critical properties that

are specific to a software system. Furthermore, most existing approaches do not

symbolically execute bytecode directly: they either rely on translations to checking-

oriented languages (which can be the source of semantic mismatches) or require the

manual instrumentation of symbolic values and lazy initialization in the source code

(which can be burdensome and error prone).

Our future research agenda includes several still open issues. Coping with infin-

ity that arise from loop unfolding and from recursive data structures is a classical

problem for symbolic execution, and strategies must be defined so that in most prac-

tical cases the analysis is able to produce an answer. Issues of analysis costs deserve

further investigation: compared to other abstractions, symbolic execution builds a

very precise model of the state space, but leads to techniques with higher compu-

tational cost than methods that analyze abstractions of the state space. Finally,

the presence of symbolic values mandates the use of automatic decision procedures

whose impact needs to be further assessed. Our long-term goal is gaining a better

understanding on the assumptions and tradeoffs on the above issues, such as to

devise a practical methodology based on the approach proposed in this paper.

References

[1] Anand, S., C. S. Pasareanu and W. Visser, JPF-SE: A symbolic execution extension to java pathfinder,
in: Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007), Lecture Notes in Computer Science 4424 (2007), pp. 134–138.

[2] Ball, T. and S. K. Rajamani, Automatically validating temporal safety properties of interfaces, Lecture
Notes in Computer Science 2057 (2001), pp. 103–22.

[3] Chan, W., R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin and J. Reese, Model checking
large software specifications, ACM SIGSOFT Software Engineering Notes 21 (1996), pp. 156–166.

10

Braione, Denaro, Křena, Pezzè

[4] Clarke, E. N., E. A. Emerson and A. P. Sistla, Automatic verification of finite-state concurrent systems
using temporal logic specifications, ACM Transactions on Programming Languages and Systems 8

(1986), pp. 244–263.

[5] Clarke, L., A system to generate test data and symbolically execute programs, IEEE Transactions on
Software Engineering 2 (1976), pp. 215–222.

[6] Coen-Porisini, A., G. Denaro, C. Ghezzi and M. Pezzè, Using symbolic execution for verifying safety-
critical systems, in: Proceedings of the Joint European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2001), 2001, pp. 142–
151.

[7] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and H. Zheng,
Bandera: extracting finite-state models from java source code, in: Proceedings of the 22nd International
Conference on Software Engineering (ICSE ’00), 2000, pp. 439–448.

[8] Deng, X., J. Lee and Robby, Bogor/Kiasan: A k-bounded symbolic execution for checking strong heap
properties of open systems, in: Proceedings of the 21st International Conference on Automated Software
Engineering (ASE 2006), 2006, pp. 157–166.

[9] Deng, X., Robby and J. Hatcliff, Towards a case-optimal symbolic execution algorithm for analyzing
strong properties of object-oriented programs, in: 5th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2007), 2007, pp. 273–282.

[10] Gastin, P. and D. Oddoux, Fast LTL to Büchi automata translation, in: G. Berry, H. Comon and
A. Finkel, editors, Proceedings of the 13th International Conference on Computer Aided Verification
(CAV’01), Lecture Notes in Computer Science 2102 (2001), pp. 53–65.
URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/Cav01go.ps

[11] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in: 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2002) (2002), pp. 58–70.

[12] Holzmann, G. J., The model checker spin, IEEE Transactions on Software Engineering 23 (1997),
pp. 279–295.

[13] Hutchins, M., H. Foster, T. Goradia and T. Ostrand, Experiments on the effectiveness of dataflow-
and controlflow-based test adequacy criteria, in: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, 1994, pp. 191–200.

[14] Khurshid, S., C. S. Pasareanu and W. Visser, Generalized symbolic execution for model checking and
testing, in: Proceedings of the 9th International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS 2003), Lecture Notes in Computer Science 2619 (2003), pp. 553–568.

[15] King, J., Symbolic execution and program testing, Communications of the ACM 19 (1976), pp. 385–394.

[16] Leveson, N., M. Heimdahl, H. Hildreth and J. Reese, Requirements specification for process-control
systems, IEEE Transactions on Software Engineering 20 (1994), pp. 684–707.

[17] Pnueli, A., The temporal logic of programs, in: FOCS, 1977, pp. 46–57.

[18] RTCA, Minimum operational performance standards for traffic alert and collision avoidance system
(TCAS) airborne equipment, Technical Report DO-185, Radio Technical Commission for Aeronautics
(1990).

[19] Tomb, A., G. P. Brat and W. Visser, Variably interprocedural program analysis for runtime error
detection, in: Proceedings of the International Symposium on Software Testing and Analysis (ISSTA
2007) (2007).

[20] Vardi, M. Y., An automata-theoretic approach to linear temporal logic, in: Proceedings of the VIII Banff
Higher order workshop conference on Logics for concurrency : structure versus automata (1996), pp.
238–266.

[21] Visser, W., C. S. Pasareanu and R. Pelanek, Test input generation for java containers using state
matching, in: Proceedings of the International symposium on Software testing and analysis (ISSTA
2006) (2006), pp. 37–48.

11

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/Cav01go.ps

Braione, Denaro, Křena, Pezzè

A TCAS proprerties

A.1 The TCAS code

The experimental work focuses on the component of TCAS that is responsible for

finding the best RA. The component, which consists of 120 lines of code, comes from

a set of programs used by Hutchins et al. in a previous experiment [13]. Figure A.1

shows the code of procedure alt sep test(), which is referred to in all the LTL

properties taken into account.

public int alt_sep_test() {
boolean enabled, tcas_equipped, intent_not_known;
boolean need_upward_RA, need_downward_RA;
int alt_sep;

ASTBeg: enabled = High_Confidence
&& (Own_Tracked_Alt_Rate <= OLEV)
&& (Cur_Vertical_Sep > MAXALTDIFF);

tcas_equipped = (Other_Capability == TCAS_TA);
intent_not_known = Two_of_Three_Reports_Valid

&& (Other_RAC == NO_INTENT);
alt_sep = UNRESOLVED;
if (enabled

&& ((tcas_equipped && intent_not_known) || !tcas_equipped)) {
ASTEn: need_upward_RA = Non_Crossing_Biased_Climb()

&& Own_Below_Threat();
need_downward_RA = Non_Crossing_Biased_Descend()

&& Own_Above_Threat();
if (need_upward_RA)

ASTUpRA: alt_sep = UPWARD_RA;
else if (need_downward_RA)

ASTDownRA: alt_sep = DOWNWARD_RA;
else

ASTUnresRA: alt_sep = UNRESOLVED;
}

return alt_sep;
}

Fig. A.1. The code of alt sep test()

The vertical separation between the two airplanes is represented by the global

variable Cur Vertical Sep, while Up Separation and Down Separation represent

the estimated vertical separation after a climbing maneuver and a descending ma-

neuver, respectively. Own Tracked Alt and Other Tracked Alt represent the alti-

tudes of the airplanes. These variables can be regarded as input data for the ana-

lyzed sub-system. The vertical separation at the closest point of approach is consid-

ered to be adequate if it is greater than a threshold value (Positive RA Alt Thresh),

which can be viewed as a system constant. The code contains the following five la-

bels:

• ASTBeg, which identifies the beginning of the code;

• ASTEn, which identifies the first statement used for compute the best escape ma-

neuver;

• ASTUpRA, which identifies the statement where a climbing RA is selected;

• ASTDownRA, which identifies the statement where descending RA is selected;

• ASTUnresRA, which identifies the statement where no RA is selected.

12

Braione, Denaro, Křena, Pezzè

A.2 Atomic predicates

This subsection defines the atomic predicates necessary for defining the LTL verifi-

cation formulas.

• ATASTEN: the next statement is ASTBeg;

• ASTUPRA: the next statement is ASTUpRA;

• ASTDOWNRA: the next statement is ASTDownRA;

• UPSEPADQ
def

= (Up Separation >= Positive RA Alt Thresh):

Up Separation is adequate;

• DOWNSEPADQ
def

= (Down Separation >= Positive RA Alt Thresh):

Down Separation is adequate;

• UPSEPBEST
def

= (Up Separation > Down Separation):

the estimated separation for a climbing maneuver is better than that for a descend

maneuver;

• DOWNSEPBEST
def

= (Up Separation < Down Separation):

the estimated separation for a descend maneuver is better than that for a climb

maneuver;

• OWNOVER
def

= (Own Tracked Alt > Other Tracked Alt):

the maneuvering aircraft is above the approaching aircraft;

• OTHEROVER
def

= (Own Tracked Alt < Other Tracked Alt):

the maneuvering aircraft is below the approaching aircraft.

A.3 Verified properties

This section reports the five TCAS safety properties and the associated LTL for-

mulas used for checking them.

Property 1: Safe Advisory Selection

Meaning of the property: If one maneuver produces adequate separation and the

other does not, then the RA corresponding to the maneuver that does not produce

adequate separation is not issued. Checked by LTL formula PN1.

(UPSEPADQ ∧ ¬ DOWNSEPADQ) ∧ F(ATASTEN ∧ F ATASTDOWNRA) (PN1.1)

∨

(¬ UPSEPADQ ∧ DOWNSEPADQ) ∧ F(ATASTEN ∧ F ATASTUPRA) (PN1.2)

Fig. A.2. PN1 and its subformulas

Property 2: Best Advisory Selection

Meaning of the property: Let neither climb nor descent maneuvers produce ade-

quate separation. Then, the RA corresponding to the maneuver that produces less

separation is never issued. Checked by LTL formula PN2.

13

Braione, Denaro, Křena, Pezzè

(¬ UPSEPADQ ∧ ¬ DOWNSEPADQ ∧ UPSEPBEST) ∧

F(ATASTEN ∧ F ATASTDOWNRA) (PN2.1)

∨

(¬ UPSEPADQ ∧ DOWNSEPADQ ∧ DOWNSEPBEST) ∧

F(ATASTEN ∧ F ATASTUPRA) (PN2.2)

Fig. A.3. PN2 and its subformulas

Property 3: Avoid Unnecessary Crossing

Meaning of the property: If both climbing and descending produce adequate sepa-

ration, then a crossing RA is never issued. Checked by LTL formula PN3.

(UPSEPADQ ∧ DOWNSEPADQ∧ OWNOVER) ∧ F(ATASTEN ∧ F ATASTDOWNRA) (PN3.1)

∨

(UPSEPADQ ∧ DOWNSEPADQ∧ OTHEROVER) ∧ F(ATASTEN ∧ F ATASTUPRA) (PN3.2)

Fig. A.4. PN3 and its subformulas

Property 4: No Crossing Advisory Selection

Meaning of the property: A crossing RA is never issued. Checked by LTL formula

PN4.

(OWNOVER) ∧ F(ATASTEN ∧ F ATASTDOWNRA) (PN4.1)

∨

(OTHEROVER) ∧ F(ATASTEN ∧ F ATASTUPRA) (PN4.2)

Fig. A.5. PN4 and its subformulas

Property 5: Optimal Advisory Selection

Meaning of the property: The RA that produces less separation is never issued.

Checked by LTL formula PN5.

(UPSEPBEST) ∧ F(ATASTEN ∧ F ATASTDOWNRA) (PN5.1)

∨

(DOWNSEPBEST) ∧ F(ATASTEN ∧F ATASTUPRA) (PN5.2)

Fig. A.6. PN5 and its subformulas

14

	Introduction
	Symbolic execution for bytecode analysis
	Verifying LTL Properties
	Preliminary Evaluation
	Prototype
	TCAS
	Results

	Related Work
	Conclusions
	References
	TCAS proprerties
	The TCAS code
	Atomic predicates
	Verified properties

