Byte-precise Verification of Low-level

List Manipulation

Kamil Dudka'? Petr Peringer' Tomas Vojnar'

TFIT, Brno University of Technology, Czech Republic

2Red Hat Czech, Brno, Czech Republic

June 21, 2013

ﬂ Low-level Memory Manipulation
e Symbolic Memory Graphs (SMGs)

© Predator — Verifier Based on SMGs

Kernel-Style Linked Lists

@ Cyclic, linked through pointers pointing inside list nodes.
@ Pointer arithmetic used to get to the boundary of the nodes.
@ Non-uniform: one node is missing the custom envelope.

custom node custom_node

list_head list_head list_head

> |next= @
r Coee] [t =2 i

A 4
A 4

next

A
A

struct list_head { struct custom_node {
struct list_head #*next; t_data data;
struct list_head xprev; struct list_head head;

}i }i
Y - -
17 /22<\<\

Kernel-Style Linked Lists — Traversal

@ ... as seen by the programmer:
list_for_each_entry(pos, list, head) {
printf (" %d", pos->value);

}

Y P - -
2 & /22 [

Kernel-Style Linked Lists — Traversal

@ ... as seen by the programmer:
list_for_each_entry(pos, list, head) {
printf (" %d", pos->value);

}

@ ... as seen by the compiler:

for (pos = ((typeof (¥pos) *) ((char =) (list->next)
- (unsigned long) (& ((typeof (xpos) x)0)->head)));
&pos—>head != list;
pos = ((typeof (¥pos) x) ((char x) (pos—>head.next)
—(unsigned long) (& ((typeof (xpos) =x)0)->head)))) {
printf (" %d", pos->value);

2

235 [75 35

Kernel-Style Linked Lists — Traversal

@ ... as seen by the programmer:
list_for_each_entry(pos, list, head) {
printf (" %d", pos->value);

}

@ ... as seen by the compiler:

for (pos = ((typeof (¥pos) *) ((char =) (list->next)
—(unsigned long) (& ((typeof (xpos) =*)0)->head)));
&pos—>head != list;
pos = ((typeof (¥pos) x) ((char x) (pos—>head.next)
—(unsigned long) (& ((typeof (xpos) =)0)->head)))) {
printf (" %d", pos->value);

}

@ ... as seen by the analyser (assuming 64 bit addressing):
for (pos = (char x)list->next - 8;
&pos—>head != list;
pos = (char *)pos—->head.next - 8)

printf (" %d", pos->value);

2

235 [75 35

Kernel-Style Linked Lists — End of the Traversal

@ Correct use of pointers with invalid target:

&pos—>head != list
pos
_____ ¢ . custom_node custom_node
list
* list head list_head list_head

A 4

A 4

é: |nextl) |nextl ------- |nextI
: I prev | :: I prev | ------- I prev | 4——|

A

3 [757

Low-level Memory Manipulation

@ We need to track sizes of allocated blocks.

@ Large chunks of memory are often nullified at once,

their fields are gradually used, the rest must stay null.
list_head

struct list_head {
struct list_head =*next;
struct list_head x*prev; _j_
=]

sizeof xhead);

bi
struct list_head xhead = calloc(1U,

@ Low-level code often uses block operations:
memcpy (), memmove (), memset (), strcpy ().

@ Incorrect use of such operations can lead to nasty errors
(e.9. memcpy () and overlapping blocks).

[P
<

4<% [22X5 X

Alignment of Pointers

@ Alignment of pointers implies a need to deal with pointers
whose target is given by an interval of addresses:

aligned = ((unsigned)base + mask) & ~mask;
| base I > ofi =0
a ofs = mask
|a1igned= — 2
A € {of1,0f2)

. - -
5 <, /22 [

Alignment of Pointers

@ Alignment of pointers implies a need to deal with pointers

whose target is given by an interval of addresses:
((unsigned)base + mask) & ~mask;

aligned =

| base I > ofi =0

A ofs = mask

| aligned I —
A € {of1,0f2)

@ Intervals of addresses arise also when joining blocks
of memory pointing to themselves with different offsets:

R u[

. - -
5 <, /22 [

Data Reinterpretation

@ Due to unions, typecasting, or block operations, the same
memory contents can be interpreted in different ways.

union {
void *p0; data.p0 data.str
struct { 10)
char c([2]1; s P
void *pl; h et
void *p2; PO
} str;
} data;
// allocate 37B on heap g ; pl
data.p0 = malloc (37U); :
// introduce a memory leak
data.str.c[l] = sizeof data.str.pl; 2
// invalid free()

free (data.p0);

6 <> [2275 7

e Symbolic Memory Graphs (SMGs)

Symbolic Memory Graphs (SMGs)

@ An example of a kernel-style linked list:

list_head ?hfo custom_record ?nfo pfo
next next next |
g Crery— " —— e

. - -
77 /22 [

Symbolic Memory Graphs (SMGs)

@ An example of a kernel-style linked list:

list_head ?hfo custom_record ?nfo pfo
next next next |
g Crery— " —— e

@ An SMG describing the data structure above:

+ 0,reg '_IO,ptr ‘hfo,fst nfo,ptr

pfo,ptr 2+ DLS hfo,lst

size(ptr),ptr *

. - -
77 /22 [

Symbolic Memory Graphs (SMGs)

@ An example of a kernel-style linked list:

list_head ?hfo custom_record ?nfo pfo
next next next |
g Crery— " —— e

@ An SMG describing the data structure above:

+ 0,reg '_IO,ptr ‘hfo,fst nfo,ptr

pfo,ptr 2+ DLS hfo,lst

size(ptr),ptr *

@ SMGs are directed graphs consisting of:

@ objects (allocated space) and values (addresses, integers),
e has-value and points-to edges.

. - -
77 /22 [

SMGs: Has-Value and Points-To Edges

Memory SMG

region, region, region; region,
offset;, ptr o Offset,, reg
offset; offset, a;
size, size=size, size=size,
size; ——
a
= has-value points-to
edge edge

i - -
8\~ /22 [

SMGs: Has-Value and Points-To Edges

region,

Memory

region,

offset; offset,

size;
a1

size,

SMG

region; region,
offset;, ptr o Offset,, reg
D a
size=size; T T size=size,

has-value points-to
edge edge

@ has-value edges — from objects to values, labelled by:

o field offset
e type of the value stored in the field

i - -
8 N~ /22 [

SMGs: Has-Value and Points-To Edges

Memory

region, region,

offset; offset,

size;
a1

size,

SMG

region; region,
offset;, ptr _ _ offset,, reg
D a
size=size; T T size=size,

has-value points-to
edge edge

@ has-value edges — from objects to values, labelled by:

o field offset
e type of the value stored in the field

@ points-to edges — from values (addresses) to objects, labelled by:

o target offset
o target specifier: first/last/each node of a DLS
@ specifier each node: used for back-links from nested objects

i
8, [22 XK

SMGs: Labelling of Objects

@ Each object has some size in bytes and a validity flag.

[P
7S 7S

9<'> /22\

SMGs: Labelling of Objects

@ Each object has some size in bytes and a validity flag.

@ Objects are further divided into:
@ regions, i.e., individual blocks of memory,
e doubly-linked list segments (DLSs), and
e other kinds of objects, which can be easily plugged-in.

[P
75 7S

9<'> /22\

SMGs: Labelling of Objects

@ Each object has some size in bytes and a validity flag.

@ Objects are further divided into:

@ regions, i.e., individual blocks of memory,
e doubly-linked list segments (DLSs), and
e other kinds of objects, which can be easily plugged-in.

@ Each DLS is given by a head, next, and prev field offset.

[P
75 7S

9<'> /22\

SMGs: Labelling of Objects

@ Each object has some size in bytes and a validity flag.

@ Objects are further divided into:
@ regions, i.e., individual blocks of memory,

e doubly-linked list segments (DLSs), and
e other kinds of objects, which can be easily plugged-in.
@ Each DLS is given by a head, next, and prev field offset.

@ DLSs can be of length N+ for any N > 0.

[P
75 7S

9<'> /22\

SMGs: Labelling of Objects

@ Each object has some size in bytes and a validity flag.

@ Objects are further divided into:

@ regions, i.e., individual blocks of memory,
e doubly-linked list segments (DLSs), and
e other kinds of objects, which can be easily plugged-in.

@ Each DLS is given by a head, next, and prev field offset.

@ DLSs can be of length N+ for any N > 0.

@ Nodes of DLSs can point to objects that are:
e shared: each node points to the same object, or
e nested: each node points to a separate copy of the object.
e Implemented by tagging objects by their nesting level.

[P
75 7S

9<'> /22\

SMGs: Data Reinterpretation

@ Reading: a field with a given offset and type either exists,
or an attempt to synthesise if from other fields is done.

@ Writing: a field with a given offset and type is written,
overlapping fields are adjusted or removed.

@ Currently, for nullified/undefined fields of arbitrary size only.

initialized write; write,

]value=0]value=x

o

] value=?
value,

O 0O 00000000 OoOOoOOo
O OO0 000X X X X[Oo oo
OO0 o0o0o|XK<X<X<<X|X X[oo oo

- - [DR
107735 [22 35 38

SMGs: Join Operator

@ Traverses two SMGs and tries to join

simultaneously encountered objects.

l ptr l ptr

region region
le%elZO le%el:l)

[2+ DLS]0[region]—{ 1+ DLS]‘*[0+ DLS]—<
level=0 level=1 level=0 level=1

—

?
region
le%el:(]
region
level=0
—

——
ptr
level=0

1+ DLS 0+ DLS
level=0 level=1

SMGs: Join Operator

@ Traverses two SMGs and tries to join
simultaneously encountered objects.

@ Objects being joined must be locally
compatible (same size, nesting level,

DLS linking offsets, ...).

l ptr l ptr

region region
le%el:l] le%el:l)

2+
le

DLS]«[region]—< [1+ DLS]»[0+ DLS]—1
el=0 level=1 level=0 level=1

BY)

1+ DLS
level=0

region
le%el:l]

level=0

| -

\

—_—
ptr
level=0

1+ DLS 0+ DLS
level=0 level=1

SMGs: Join Operator

lptr lp(r
@ Traverses two SMGs and tries to join

simultaneously encountered objects. -

[2+ DLS]0[region]—([1+ DLS]*»[0+ DLS]—1
level=0 level=1 level=0 level=1

@ Objects being joined must be locally ? (o)
. . . 1+ DLS
compatible (same size, nesting level, @ leve20
DLS linking offsets, ...). fevel=0 :
9)
@ Uses reinterpretation to try to 3
synthesize possibly missing fields.
!
0+ DLS
level=0
!

SMGs: Join Operator

lptr lp(r
@ Traverses two SMGs and tries to join

simultaneously encountered objects. -

[2+ DLS]0[region]—([1+ DLS]*»[0+ DLS]—1
level=0 level=1 level=0 level=1

BY)

@ Objects being joined must be locally

compatible (same size, nesting level, :
DLS linking offsets, ...) (et
y wee)s
@ Uses reinterpretation to try to 3
synthesize possibly missing fields.
@ DLSs can be joined with regions or DLSs.
!
0+ DLS
level=0
!

SMGs: Join Operator

lptr lp(r
@ Traverses two SMGs and tries to join
simultaneously encountered objects. -

Coius J{rmen J (pmis

@ Objects being joined must be locally
compatible (same size, nesting level, p— e
DLS linking offsets, ...). @

-~

| - —

@ Uses reinterpretation to try to
synthesize possibly missing fields.

@ DLSs can be joined with regions or DLSs.

@ If the above fails, try to insert a DLS °;V'I?3,E§
of length 0+ into one of the SMGs.
o

- - - -
17 7 /22 [

SMGs: Abstraction

@ Collapsing uninterrupted sequences of compatible objects
(same size, nesting level, field offsets, ...) into DLSs.

@ Uses join of the sub-SMGs under the nodes to be
collapsed to see whether they are compatible too.

@ Distinguishes cases of shared and private sub-SMGs.

—>{0+

1 ==

0+

—{o]

1+

Controlling the Abstraction (1/2)

@ There may be more sequences that can be collapsed.

e We select among them according to their cost given
by the loss of precision they generate.

@ Three different costs of joining objects are distinguished:
@ Joining equal objects.

@ One object semantically covers the other:

—

2+ 1+ 0+

@ None of the objects covers the other.

Controlling the Abstraction (2/2)

@ For each object, find the maximal collapsing sequences
(i.e., sequences which cannot be further extended).

@ For the smallest cost for which one can collapse
a sequence of at least some pre-defined minimum length,
choose one of the longest sequences for that cost.

@ Repeat till some sequence can be collapsed.

SMGs: Entailment Checking

@ The join of SMGs is again used:

G; C G, tested by computing Gy LI G» while checking
that Gy consists of less general objects.

Hz

iy D [DR
1577 %, [2235 38

© Predator — Verifier Based on SMGs

Predator: An Overview

@ A verficiation tool based on SMGs.

@ Verification of low-level system code (such as Linux kernel)
that manipulates dynamic data structures.

@ Proving absence of memory safety errors (invalid
dereferences, buffer overruns, memory leaks, ...).

@ Predator is the winner of 3 categories of the 2nd
International Competition on Software Verification
(SV-COMP’13).

@ Implemented as an open source GCC plug-in:
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

Predator: Related Tools

Many tools for verification of programs with dynamic linked data
structures are currently under development. The closest to
Predator are probably the following ones:

@ Space Invader: pioneering tool based on separation logic
(East London Massive: C. Calcagno, D. Distefano,
P. O’Hearn, H. Yang).

@ SLAyer: a successor of Invader from Microsoft Research
(J. Berdine, S. Ishtiaq, B. Cook).

@ Forester: based on forest automata combining tree
automata and separation (J. Simacek, O. Lengal, L. Holik,
A. Rogalewicz, P. Habermehl, T. Vojnar).

i P - -
177 7. /22<\ [

Predator: Case Studies (1/2)

@ More than 256 case studies in total.

@ Programs dealing with various kinds of lists (Linux lists,
hierarchically nested lists, ...).

e Concentrating on typical constructions of using lists.

e Considering various typical bugs that appear in more
complex lists (such as Linux lists).

@ Correctness of pointer manipulation in various sorting
algorithms (Insert-Sort, Bubble-Sort, Merge-Sort).

@ We can also successfully handle the driver code snippets
available with SLAyer.

@ Tried one of the drivers checked by Invader.

e Found a bug caused by the test harness used, which is
related to Invader not tracking the size of blocks.

- - - -
18 7 . /22<\ [

Predator: Case Studies (2/2)

Verification of selected features of the following systems:

@ The memory allocator from Netscape Portable Runtime
(NSPR) used, e.g., in Firefox.

@ One size of arenas for user allocation, allocation of blocks
not exceeding the arena size for now.

e Repeated allocation and deallocation of differently sized
blocks in arena pools (lists of arenas) and lists of arena
pools (lists of lists of arenas).

o Checked basic pointer safety + validity of the built-in asserts.

@ Logical Volume Manager (lvm2).

e A so far restricted test harness using doubly-linked lists
instead of hash tables, which we do not support yet.

i D I [DR
1977 <5 [2 35 TS

Predator: Experimental Results

@ Selected experimental results showing either the
verification time or one of the following outcomes:

FP = false positive T = time out (900 s)

FN = false negative X = parsing problems
. SLAyer Predator Predator
Test Origin Test Invader 2011-01 2011-10 2013-02
append.c <0.01s 1047 s <0.01s <0.01s
cromdata_add_remove_fs.c <0.01s FN <0.01s <0.01s
cromdata_add_remove.c T FN <0.01s <0.01s
SLAyer reverse_seg_cyclic.c FP 0.68s <0.01s <0.01s
is_on_list_via_devext.c T 34.43 s 0.20s 0.02s
callback_remove_entry_list.c T 7146 s 0.14s 0.10s
Invader cdrom.c FN X 2.44's 0.66 s
five-level-sll-destroyed-top-down.c FP X FP 0.05s
linux-dll-of-linux-dll.c T X 0.41s 0.05s
Predator merge-sort.c FP X 1.08 s 0.21s
list-of-arena-pools-with-alignment.c FP X FP 0.50 s
lvmcache_add_orphan_vginfo.c X X FP 1.07s
five-level-sll-destroyed-bottom-up.c FP X FP 1.14s

- - - -
20 <M KO /22<\ [

Predator: Future Work

@ Further improve the support of interval-sized blocks
and pointers with interval-defined targets.

e Allow joining of blocks of different size.
e Add more complex constraints on the intervals.
o ...

@ Support for additional shape predicates:

e trees,
@ array segments,
o ...

@ Support for non-pointer data (mainly integers) stored
in the data structures.

@ Analysis of incomplete code without having to model
its environment.

- - - -
21 {7 /22<\ [

@ Low-level code uses some tricky programming techniques:

e special kinds of linked lists, alignment of pointers,
e block operations, data reinterpretation
o ...

@ We propose Symbolic Memory Graphs (SMGs)
as an abstract domain for shape analysis of code using
the above mentioned low-level programming techniques.

@ Predator is a tool based on SMGs. It can prove absence
of memory safety bugs in low-level code.

@ Predator is implemented as a GCC plug-in and available
for free (including the source codes):

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

[(R - -
22 {0 Y /22<\ [

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

	Low-level Memory Manipulation
	Symbolic Memory Graphs (SMGs)
	Predator – Verifier Based on SMGs

