
Byte-precise Verification of Low-level
List Manipulation

Kamil Dudka1,2 Petr Peringer1 Tomáš Vojnar1

1FIT, Brno University of Technology, Czech Republic

2Red Hat Czech, Brno, Czech Republic

June 21, 2013



Agenda

1 Low-level Memory Manipulation

2 Symbolic Memory Graphs (SMGs)

3 Predator – Verifier Based on SMGs



Kernel-Style Linked Lists

11 / 2222

Cyclic, linked through pointers pointing inside list nodes.
Pointer arithmetic used to get to the boundary of the nodes.
Non-uniform: one node is missing the custom envelope.

next

prev

list_head

next

prev

list_head

next

prev

list_head

custom_node custom_node

struct list_head { struct custom_node {
struct list_head *next; t_data data;
struct list_head *prev; struct list_head head;

}; };



Kernel-Style Linked Lists – Traversal

... as seen by the programmer:
list_for_each_entry(pos, list, head) {

printf(" %d", pos->value);
}

... as seen by the compiler:
for(pos = ((typeof(*pos) *)((char *)(list->next)
-(unsigned long)(&((typeof(*pos) *)0)->head)));
&pos->head != list;
pos = ((typeof(*pos) *)((char *)(pos->head.next)
-(unsigned long)(&((typeof(*pos) *)0)->head)))) {

printf(" %d", pos->value);
}

... as seen by the analyser (assuming 64 bit addressing):
for(pos = (char *)list->next - 8;

&pos->head != list;
pos = (char *)pos->head.next - 8)

{
printf(" %d", pos->value);

}

22 / 2222



Kernel-Style Linked Lists – Traversal

... as seen by the programmer:
list_for_each_entry(pos, list, head) {

printf(" %d", pos->value);
}

... as seen by the compiler:
for(pos = ((typeof(*pos) *)((char *)(list->next)
-(unsigned long)(&((typeof(*pos) *)0)->head)));
&pos->head != list;
pos = ((typeof(*pos) *)((char *)(pos->head.next)
-(unsigned long)(&((typeof(*pos) *)0)->head)))) {

printf(" %d", pos->value);
}

... as seen by the analyser (assuming 64 bit addressing):
for(pos = (char *)list->next - 8;

&pos->head != list;
pos = (char *)pos->head.next - 8)

{
printf(" %d", pos->value);

}

22 / 2222



Kernel-Style Linked Lists – Traversal

... as seen by the programmer:
list_for_each_entry(pos, list, head) {

printf(" %d", pos->value);
}

... as seen by the compiler:
for(pos = ((typeof(*pos) *)((char *)(list->next)
-(unsigned long)(&((typeof(*pos) *)0)->head)));
&pos->head != list;
pos = ((typeof(*pos) *)((char *)(pos->head.next)
-(unsigned long)(&((typeof(*pos) *)0)->head)))) {

printf(" %d", pos->value);
}

... as seen by the analyser (assuming 64 bit addressing):
for(pos = (char *)list->next - 8;

&pos->head != list;
pos = (char *)pos->head.next - 8)

{
printf(" %d", pos->value);

}
22 / 2222



Kernel-Style Linked Lists – End of the Traversal

Correct use of pointers with invalid target:

&pos->head != list

next

prev

list_head

next

prev

list_head

next

prev

list_head

custom_node custom_node

pos

list

33 / 2222



Low-level Memory Manipulation

We need to track sizes of allocated blocks.

Large chunks of memory are often nullified at once,
their fields are gradually used, the rest must stay null.

struct list_head {

struct list_head *next;

struct list_head *prev;

};

struct list_head *head = calloc(1U, sizeof *head);

head next

prev

list_head

Low-level code often uses block operations:
memcpy(), memmove(), memset(), strcpy().

Incorrect use of such operations can lead to nasty errors
(e.g. memcpy() and overlapping blocks).

44 / 2222



Alignment of Pointers

Alignment of pointers implies a need to deal with pointers
whose target is given by an interval of addresses:
aligned = ((unsigned)base + mask) & ~mask;

aligned

base

Intervals of addresses arise also when joining blocks
of memory pointing to themselves with different offsets:

55 / 2222



Alignment of Pointers

Alignment of pointers implies a need to deal with pointers
whose target is given by an interval of addresses:
aligned = ((unsigned)base + mask) & ~mask;

aligned

base

Intervals of addresses arise also when joining blocks
of memory pointing to themselves with different offsets:

55 / 2222



Data Reinterpretation

Due to unions, typecasting, or block operations, the same
memory contents can be interpreted in different ways.

union {
void *p0;
struct {

char c[2];
void *p1;
void *p2;

} str;
} data;

// allocate 37B on heap
data.p0 = malloc(37U);

// introduce a memory leak
data.str.c[1] = sizeof data.str.p1;

// invalid free()
free(data.p0);

66 / 2222

data.p0 data.str

p0

p1

p2

c[0]

c[1]



Agenda

1 Low-level Memory Manipulation

2 Symbolic Memory Graphs (SMGs)

3 Predator – Verifier Based on SMGs



Symbolic Memory Graphs (SMGs)

An example of a kernel-style linked list:

...

hfo nfo pfolist_head custom_record

next
prev

next
prev

next
prev

An SMG describing the data structure above:

2+ DLS hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr

size(ptr),ptr

nfo,ptr

SMGs are directed graphs consisting of:
objects (allocated space) and values (addresses, integers),
has-value and points-to edges.

77 / 2222



Symbolic Memory Graphs (SMGs)

An example of a kernel-style linked list:

...

hfo nfo pfolist_head custom_record

next
prev

next
prev

next
prev

An SMG describing the data structure above:

2+ DLS hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr

size(ptr),ptr

nfo,ptr

SMGs are directed graphs consisting of:
objects (allocated space) and values (addresses, integers),
has-value and points-to edges.

77 / 2222



Symbolic Memory Graphs (SMGs)

An example of a kernel-style linked list:

...

hfo nfo pfolist_head custom_record

next
prev

next
prev

next
prev

An SMG describing the data structure above:

2+ DLS hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr

size(ptr),ptr

nfo,ptr

SMGs are directed graphs consisting of:
objects (allocated space) and values (addresses, integers),
has-value and points-to edges.

77 / 2222



SMGs: Has-Value and Points-To Edges

a1

region1 region2

size1

offset1

size2

offset2

offset1, ptr offset2, reg

a1
size=size1 size=size2

Memory SMG

has-value points-to

region1 region2

edge edge

has-value edges – from objects to values, labelled by:

field offset
type of the value stored in the field

points-to edges – from values (addresses) to objects, labelled by:

target offset
target specifier: first/last/each node of a DLS

specifier each node: used for back-links from nested objects

88 / 2222



SMGs: Has-Value and Points-To Edges

a1

region1 region2

size1

offset1

size2

offset2

offset1, ptr offset2, reg

a1
size=size1 size=size2

Memory SMG

has-value points-to

region1 region2

edge edge

has-value edges – from objects to values, labelled by:

field offset
type of the value stored in the field

points-to edges – from values (addresses) to objects, labelled by:

target offset
target specifier: first/last/each node of a DLS

specifier each node: used for back-links from nested objects

88 / 2222



SMGs: Has-Value and Points-To Edges

a1

region1 region2

size1

offset1

size2

offset2

offset1, ptr offset2, reg

a1
size=size1 size=size2

Memory SMG

has-value points-to

region1 region2

edge edge

has-value edges – from objects to values, labelled by:

field offset
type of the value stored in the field

points-to edges – from values (addresses) to objects, labelled by:

target offset
target specifier: first/last/each node of a DLS

specifier each node: used for back-links from nested objects

88 / 2222



SMGs: Labelling of Objects

Each object has some size in bytes and a validity flag.

Objects are further divided into:
regions, i.e., individual blocks of memory,
doubly-linked list segments (DLSs), and
other kinds of objects, which can be easily plugged-in.

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0.

Nodes of DLSs can point to objects that are:

shared: each node points to the same object, or

nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

99 / 2222



SMGs: Labelling of Objects

Each object has some size in bytes and a validity flag.

Objects are further divided into:
regions, i.e., individual blocks of memory,
doubly-linked list segments (DLSs), and
other kinds of objects, which can be easily plugged-in.

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0.

Nodes of DLSs can point to objects that are:

shared: each node points to the same object, or

nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

99 / 2222



SMGs: Labelling of Objects

Each object has some size in bytes and a validity flag.

Objects are further divided into:
regions, i.e., individual blocks of memory,
doubly-linked list segments (DLSs), and
other kinds of objects, which can be easily plugged-in.

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0.

Nodes of DLSs can point to objects that are:

shared: each node points to the same object, or

nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

99 / 2222



SMGs: Labelling of Objects

Each object has some size in bytes and a validity flag.

Objects are further divided into:
regions, i.e., individual blocks of memory,
doubly-linked list segments (DLSs), and
other kinds of objects, which can be easily plugged-in.

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0.

Nodes of DLSs can point to objects that are:

shared: each node points to the same object, or

nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

99 / 2222



SMGs: Labelling of Objects

Each object has some size in bytes and a validity flag.

Objects are further divided into:
regions, i.e., individual blocks of memory,
doubly-linked list segments (DLSs), and
other kinds of objects, which can be easily plugged-in.

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0.

Nodes of DLSs can point to objects that are:

shared: each node points to the same object, or

nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

99 / 2222



SMGs: Data Reinterpretation

Reading: a field with a given offset and type either exists,
or an attempt to synthesise if from other fields is done.

Writing: a field with a given offset and type is written,
overlapping fields are adjusted or removed.

Currently, for nullified/undefined fields of arbitrary size only.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

X

X

X

X

0

0

0

0

0

0

0

0

0

0

X

X

Y

Y

Y

Y

0

0

0

0

initialized write1 write2

value=?value=X

value2

value=0

1010 / 2222



SMGs: Join Operator

Traverses two SMGs and tries to join
simultaneously encountered objects.

Objects being joined must be locally
compatible (same size, nesting level,
DLS linking offsets, ...).

Uses reinterpretation to try to
synthesize possibly missing fields.

DLSs can be joined with regions or DLSs.

If the above fails, try to insert a DLS
of length 0+ into one of the SMGs.

region
level=0

? }
ptr ptr

2+ DLS
level=0

level=0

level=0

1+ DLS
level=0

1+ DLS
level=0

level=0

0+ DLS
level=1level=1

level=0

1+ DLS
level=0

0+ DLS
level=1

0+ DLS
level=0

level=0

ptr

region

region

region

region

region

region

1111 / 2222



SMGs: Join Operator

Traverses two SMGs and tries to join
simultaneously encountered objects.

Objects being joined must be locally
compatible (same size, nesting level,
DLS linking offsets, ...).

Uses reinterpretation to try to
synthesize possibly missing fields.

DLSs can be joined with regions or DLSs.

If the above fails, try to insert a DLS
of length 0+ into one of the SMGs.

region
level=0

? }
ptr ptr

2+ DLS
level=0

level=0

level=0

1+ DLS
level=0

1+ DLS
level=0

level=0

0+ DLS
level=1level=1

level=0

1+ DLS
level=0

0+ DLS
level=1

0+ DLS
level=0

level=0

ptr

region

region

region

region

region

region

1111 / 2222



SMGs: Join Operator

Traverses two SMGs and tries to join
simultaneously encountered objects.

Objects being joined must be locally
compatible (same size, nesting level,
DLS linking offsets, ...).

Uses reinterpretation to try to
synthesize possibly missing fields.

DLSs can be joined with regions or DLSs.

If the above fails, try to insert a DLS
of length 0+ into one of the SMGs.

region
level=0

? }
ptr ptr

2+ DLS
level=0

level=0

level=0

1+ DLS
level=0

1+ DLS
level=0

level=0

0+ DLS
level=1level=1

level=0

1+ DLS
level=0

0+ DLS
level=1

0+ DLS
level=0

level=0

ptr

region

region

region

region

region

region

1111 / 2222



SMGs: Join Operator

Traverses two SMGs and tries to join
simultaneously encountered objects.

Objects being joined must be locally
compatible (same size, nesting level,
DLS linking offsets, ...).

Uses reinterpretation to try to
synthesize possibly missing fields.

DLSs can be joined with regions or DLSs.

If the above fails, try to insert a DLS
of length 0+ into one of the SMGs.

region
level=0

? }
ptr ptr

2+ DLS
level=0

level=0

level=0

1+ DLS
level=0

1+ DLS
level=0

level=0

0+ DLS
level=1level=1

level=0

1+ DLS
level=0

0+ DLS
level=1

0+ DLS
level=0

level=0

ptr

region

region

region

region

region

region

1111 / 2222



SMGs: Join Operator

Traverses two SMGs and tries to join
simultaneously encountered objects.

Objects being joined must be locally
compatible (same size, nesting level,
DLS linking offsets, ...).

Uses reinterpretation to try to
synthesize possibly missing fields.

DLSs can be joined with regions or DLSs.

If the above fails, try to insert a DLS
of length 0+ into one of the SMGs.

region
level=0

? }
ptr ptr

2+ DLS
level=0

level=0

level=0

1+ DLS
level=0

1+ DLS
level=0

level=0

0+ DLS
level=1level=1

level=0

1+ DLS
level=0

0+ DLS
level=1

0+ DLS
level=0

level=0

ptr

region

region

region

region

region

region

1111 / 2222



SMGs: Abstraction

Collapsing uninterrupted sequences of compatible objects
(same size, nesting level, field offsets, ...) into DLSs.

Uses join of the sub-SMGs under the nodes to be
collapsed to see whether they are compatible too.

Distinguishes cases of shared and private sub-SMGs.

0+1+

0+

0+0+

1212 / 2222



Controlling the Abstraction (1/2)

There may be more sequences that can be collapsed.

We select among them according to their cost given
by the loss of precision they generate.

Three different costs of joining objects are distinguished:
0 Joining equal objects.

1 One object semantically covers the other:

1+ 0+2+

2 None of the objects covers the other.

1313 / 2222



Controlling the Abstraction (2/2)

For each object, find the maximal collapsing sequences
(i.e., sequences which cannot be further extended).

For the smallest cost for which one can collapse
a sequence of at least some pre-defined minimum length,
choose one of the longest sequences for that cost.

Repeat till some sequence can be collapsed.

1414 / 2222



SMGs: Entailment Checking

The join of SMGs is again used:

G1 v G2 tested by computing G1 tG2 while checking
that G1 consists of less general objects.

1+1+ 1+0+

0+

1515 / 2222



Agenda

1 Low-level Memory Manipulation

2 Symbolic Memory Graphs (SMGs)

3 Predator – Verifier Based on SMGs



Predator: An Overview

A verficiation tool based on SMGs.

Verification of low-level system code (such as Linux kernel)
that manipulates dynamic data structures.

Proving absence of memory safety errors (invalid
dereferences, buffer overruns, memory leaks, ...).

Predator is the winner of 3 categories of the 2nd
International Competition on Software Verification
(SV-COMP’13).

Implemented as an open source GCC plug-in:
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

1616 / 2222

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator


Predator: Related Tools

Many tools for verification of programs with dynamic linked data
structures are currently under development. The closest to
Predator are probably the following ones:

Space Invader: pioneering tool based on separation logic
(East London Massive: C. Calcagno, D. Distefano,
P. O’Hearn, H. Yang).

SLAyer: a successor of Invader from Microsoft Research
(J. Berdine, S. Ishtiaq, B. Cook).

Forester: based on forest automata combining tree
automata and separation (J. Šimáček, O. Lengál, L. Holík,
A. Rogalewicz, P. Habermehl, T. Vojnar).

1717 / 2222



Predator: Case Studies (1/2)

More than 256 case studies in total.

Programs dealing with various kinds of lists (Linux lists,
hierarchically nested lists, ...).

Concentrating on typical constructions of using lists.

Considering various typical bugs that appear in more
complex lists (such as Linux lists).

Correctness of pointer manipulation in various sorting
algorithms (Insert-Sort, Bubble-Sort, Merge-Sort).

We can also successfully handle the driver code snippets
available with SLAyer.

Tried one of the drivers checked by Invader.

Found a bug caused by the test harness used, which is
related to Invader not tracking the size of blocks.

1818 / 2222



Predator: Case Studies (2/2)

Verification of selected features of the following systems:

The memory allocator from Netscape Portable Runtime
(NSPR) used, e.g., in Firefox.

One size of arenas for user allocation, allocation of blocks
not exceeding the arena size for now.

Repeated allocation and deallocation of differently sized
blocks in arena pools (lists of arenas) and lists of arena
pools (lists of lists of arenas).

Checked basic pointer safety + validity of the built-in asserts.

Logical Volume Manager (lvm2).

A so far restricted test harness using doubly-linked lists
instead of hash tables, which we do not support yet.

1919 / 2222



Predator: Experimental Results

Selected experimental results showing either the
verification time or one of the following outcomes:

FP = false positive T = time out (900 s)
FN = false negative x = parsing problems

Test Origin Test Invader
SLAyer Predator Predator
2011-01 2011-10 2013-02

SLAyer

append.c <0.01 s 10.47 s <0.01 s <0.01 s
cromdata_add_remove_fs.c <0.01 s FN <0.01 s <0.01 s
cromdata_add_remove.c T FN <0.01 s <0.01 s
reverse_seg_cyclic.c FP 0.68 s <0.01 s <0.01 s
is_on_list_via_devext.c T 34.43 s 0.20 s 0.02 s
callback_remove_entry_list.c T 71.46 s 0.14 s 0.10 s

Invader cdrom.c FN x 2.44 s 0.66 s

Predator

five-level-sll-destroyed-top-down.c FP x FP 0.05 s
linux-dll-of-linux-dll.c T x 0.41 s 0.05 s
merge-sort.c FP x 1.08 s 0.21 s
list-of-arena-pools-with-alignment.c FP x FP 0.50 s
lvmcache_add_orphan_vginfo.c x x FP 1.07 s
five-level-sll-destroyed-bottom-up.c FP x FP 1.14 s

2020 / 2222



Predator: Future Work

Further improve the support of interval-sized blocks
and pointers with interval-defined targets.

Allow joining of blocks of different size.
Add more complex constraints on the intervals.
...

Support for additional shape predicates:

trees,
array segments,
...

Support for non-pointer data (mainly integers) stored
in the data structures.

Analysis of incomplete code without having to model
its environment.

2121 / 2222



Summary

Low-level code uses some tricky programming techniques:

special kinds of linked lists, alignment of pointers,
block operations, data reinterpretation
...

We propose Symbolic Memory Graphs (SMGs)
as an abstract domain for shape analysis of code using
the above mentioned low-level programming techniques.

Predator is a tool based on SMGs. It can prove absence
of memory safety bugs in low-level code.

Predator is implemented as a GCC plug-in and available
for free (including the source codes):
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

2222 / 2222

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

	Low-level Memory Manipulation
	Symbolic Memory Graphs (SMGs)
	Predator – Verifier Based on SMGs

