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Abstract. This paper describes shortly the PredatorHP (Predator Hunting Party)
analyzer and its participation in the SV-COMP 2017 software verification compe-
tition. The paper starts by a brief sketch of the Predator shape analyzer on which
PredatorHP is built, using multiple, concurrently running, specialised instances
of Predator.

1 Verification Approach

Predator Hunting Party (PredatorHP) uses the Predator shape analyzer, and so we first
give a brief overview of Predator. Next, we discuss how Predator is used in the concur-
rent setting of PredatorHP.

1.1 The Predator Shape Analyzer

Predator aims at sound shape analysis of sequential, non-recursive C programs that
use various kinds of lists implemented using low-level C pointer statements. Predator
can soundly deal with various forms of pointer arithmetics, address alignment, block
operations, memory contents reinterpretation, etc.

The shape analysis implemented in Predator is a form of abstract interpretation
which uses a domain of the so-called symbolic memory graphs (SMGs) [1]. SMGs are
oriented graphs with two main kinds of nodes and two main kinds of edges. Nodes can
be divided into objects and values. Objects are further divided into regions (represent-
ing concrete blocks of memory allocated on the stack, on the heap, or statically) and
singly- or doubly-linked list segments, which represent in an abstract way uninterrupted
sequences of singly- or doubly-linked regions. Edges can be divided into has-value and
points-to edges. The former represent values stored in allocated memory (which are
either pointers or other kinds of data), the latter represent targets of pointer values.

Both nodes and edges are annotated by a number of labels that carry information
such as the size of objects, offsets at which values are stored in objects, offsets with
which pointers point to target objects, the type of values, offsets at which linking fields
of lists are stored, the nesting level of objects (to be able to represent nested lists), or
a constraint on the number of linked regions that a list segment represents. In particu-
lar, a list segment can either represent n or more regions for n ≥ 0, or 0 or 1 regions.
Further, SMGs can also contain optional regions where a pointer to such a region either
points to some allocated memory or to NULL. Sizes of blocks and offsets can have the
form of intervals with constant bounds which allows Predator to deal with operations
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such as address alignment. A special kind of edges are then disequality edges allow-
ing one to express that two values are for sure different (while equality of objects is
expressed by representing these objects by a single node of an SMG).

Symbolic execution of C statements on SMGs uses a concept of reinterpretation that
is able to synthesize values of previously not explicitly written fields from the known
values of other fields. Currently, this concept is instantiated for dealing with blocks of
nullified memory, which is quite needed for analyzing low-level programs. Another key
operation on SMGs is the join operation that is implemented via a synchronous graph
traversal of the two SMGs to be joint. The join operation is used not only to reduce the
number of SMGs to deal with but also as a basis of abstraction and entailment checking.
Predator uses function summaries to facilitate inter-procedural analysis. The support of
arithmetic in Predator is such that Predator deals with integers exactly up to some bound
(32 in SV-COMP’17) and then replaces them by an unknown value.

Compared with SV-COMP’16 [3], not many changes were done in the Predator ana-
lyzer itself. We have just resolved several minor issues by, e.g., replacing error messages
produced when performing so-far unsupported operations over bitfields by producing
the “unknown” verdict. Further, some needed changes in the witness format were im-
plemented.

1.2 Predator Hunting Party

For SV-COMP’17, we have decided to use the same concept of PredatorHP as in SV-
COMP’16. PredatorHP is implemented as a Python script which runs several instances
of Predator in parallel and composes the results they produce into the final verifica-
tion verdict. In particular, PredatorHP starts four Predators: One of them is the original
Predator that soundly overapproximates the behaviour of the input program — we de-
note it as the Predator verifier below. Apart from that, three further Predators are started
which are modified as follows: Their join operator is reduced to joining SMGs equal up
to isomorphism and they use no list abstraction. Two of them use a bounded depth-first
search to traverse the state space. They use bounds of 200 and 900 GIMPLE instruc-
tions, and so we call them as Predator DFS hunters. Third of them — Predator BFS
hunter use an unlimited breadth-first search to traverse the state space.

If the Predator verifier claims a program correct, so does PredatorHP, it create cor-
rectness witness1 and it kills all other Predators. If the Predator verifier claims a program
incorrect, its verdict is ignored since it can be a false alarm (and, moreover, it is highly
non-trivial to check whether it is false or not due to the involved use of list abstractions
and joins). If one of the Predator DFS hunters finds an error, PredatorHP kills all other
Predators and claims the program incorrect, using the trace provided by the DFS hunter
who found the error as a violation witness. One hunter searches quickly for bugs with
very short witnesses and one than searches for longer but still not very long witnesses.

If a DFS hunter claims a program correct, its verdict is ignored since it may be
unsound. If a BFS hunter manages to find an error within the SV-COMP’17 time budget,
PredatorHP claims the program incorrect (note that without a time limit, the BFS hunter

1 Format for violation and correctness witnesses: https://github.com/sosy-lab/
sv-witnesses/
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is guaranteed to find every error). If the BFS hunter finishes and does not find an error,
the program is claimed correct. Otherwise, the verdict “unknown” is obtained.

2 Strengths and Weaknesses

The main strength of PredatorHP is that—unlike various bounded model checkers—it
treats unbounded heap manipulation in a sound way. At the same time, it is also quite
efficient, and the use of various concurrently running Predator hunters greatly decreases
chances of producing false alarms (there do not arise any due to heap manipulation, the
remaining ones are due to imprecise treatment of other data types).

The main weakness of PredatorHP and also of Predator itself is its weak treatment of
non-pointer data. Due to this, Predator participates in the heap data structures category
only. Within this category, a weakness of Predator is that it is specialized in dealing with
lists, and hence it does not handle structures such as trees or skip-lists (that is, it handles
them very well in a bounded way, but our aim is to stick with sound verification).

3 Tool Setup and Configuration

The source code of PredatorHP used in SV-COMP’17 is freely available on the Inter-
net2. The file README-SVCOMP-2017 shipped with the source code describes how
to build the tool. To run it, the script predatorHP.py can be invoked. The script
takes a verification task file as a single positional argument. Paths to both the property
file and the desired witness file are accepted via long options. The verification out-
come is printed to the standard output. The script does not impose any resource limits
other than terminating its child processes when they are no longer needed. More in-
formation about the setting of PredatorHP used in the competition can be found here:
http://sv-comp.sosy-lab.org/2017/systems.php.

4 Software Architecture, Project, and Contributors

Predator is implemented in C++ with a use of Boost libraries as a GCC plug-in based
on the Code Listener framework [2]. PredatorHP is implemented as a Python script.
Predator is an open source software project distributed under the GNU General Public
License version 3. The main author of Predator is Kamil Dudka. Besides him and the
PredatorHP team, Petr Müller, and numerous other people contributed to Predator.
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