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Abstract. This paper describes shortly the basic principles of the PredatorHP
(Predator Hunting Party) shape analyzer and presents its recent improvements.
One of the most visible changes is the way PredatorHP handles interval-sized
memory regions, which is particularly useful for dealing with arrays whose size is
not fixed in advance. Further, the paper characterizes PredatorHP’s participation
in SV-COMP 2019, pointing out its strengths and weakness and the way they
were influenced by the latest changes in the tool.

1 Verification Approach

We first briefly recap the main ideas of the verification approach behind Predator and
then discuss improvements that have been done in the latest version of the tool.

1.1 The Predator Shape Analyzer
Predator is implemented as a GCC plug-in on top of the Code Listener framework [2].
In particular, the Code Listener framework transforms the Gimple code produced by
GCC as an intermediate representation of the input program into a bit more concise
representation over which Predator runs.

The main aim of Predator is shape analysis of sequential C programs that use low-
level C pointer statements to implement various kinds of lists (singly- or doubly-linked,
possibly circular, nested, and/or shared). Predator looks for various kinds of memory-
related errors (invalid pointer dereferences, double free operations, memory leaks, etc.),
and it also checks validity of assertions present in the code.

Predator uses abstract interpretation based primarily on the domain of symbolic
memory graphs (SMGs). SMGs are oriented graphs with two main kinds of nodes and
two kinds of edges. In particular, the nodes can be classified as objects and values.
Objects represent either particular regions of memory allocated by a single allocation
statement or sets of (unboundedly many) memory regions linked into different kinds of
list segments (which are automatically recognised by the analyser). Regions are marked
as valid or invalid (i.e., deallocated). The latter are kept until they are pointed in some
way. Values are stored in objects and classified as pointers or other data values. Edges
are classified as has-value and points-to edges. The has-value edges start at a certain
offset of memory regions, and points-to edges point to target regions again with some
offset. More details on the abstract domain of SMGs can be found in [1].

The primary abstraction used in Predator summarizes uninterrupted sequences of
singly- or doubly-linked memory regions into appropriate kinds of list segments. Apart
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from that, Predator can abstract numerical values (either values stored in regions, off-
sets, or sizes of regions) using intervals with constant bounds. The constants used as
the bounds have a pre-defined maximum/minimum value defined in the configuration
of Predator (+32/-32 for SV-COMP’19). If the maximum/minimum value is exceeded,
the bound is set to plus or minus infinity.

Predator uses summaries to speed up analysis of programs structured into functions.
Analysis of recursive programs is, however, not supported (or, more precisely, they are
handled up to some configurable maximum depth).
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Hunting Party (PredatorHP)
[3], whose flow of control
is shown on the right, is
used to increase both the ef-
ficiency as well as preci-
sion of the analysis. Namely,
PredatorHP starts the base
Predator analyser—called as
the Predator verifier—in par-
allel with several Predator
hunters, which are restricted versions of the analyser not allowed to use the list-segment
abstraction, to join SMGs that are not semantically equal, nor to use function summaries
with call parameter matching based on SMG entailment.

While the Predator verifier can claim a program correct, it cannot report errors (since
these could be false alarms due to the use of abstraction). Predator hunters are classified
as breadth-first (BFS) and depth-first (DFS). We use two Predator DFS hunters that
can go at most 200 or 900 Code-Listener instructions deep in the execution, and one
Predator BFS hunter for which the number of instructions to be performed is not limited,
but it is limited implicitly by the time available for the verification. Usually, the hunters
can only report errors, but they cannot claim a program correct since they do not use
memory abstraction, and they perform bounded analysis of dynamic data structures
only. The only exception is the case when the verified program is finite-state, and the
entire state space gets explored by the BFS hunter in the given time limit.

As soon as some of the Predator instances reports a result which it is authorised to
announce (i.e., the verifier can report correctness while the hunters announce errors—
with the above mentioned exception for finite-state programs), the other Predator in-
stances get killed. Checks whether some of the Predators has already produced a useful
result are done by the top-level script of PredatorHP with a pre-defined frequency.

1.2 Recent Modifications of PredatorHP

The main issue that we tackled in the latest version of Predator is working with interval-
sized memory regions, which arise when allocating structures or arrays of parametric
size. Despite even older versions of Predator were able to create such regions, the way
in which they could have been treated in the subsequent analysis of the program was
very limited. In particular, it was impossible to dereference interval-sized regions, and
hence Predator was very weak when analysing programs with structures or arrays of
an in-advance-not-fixed size. This situation has been improved in the latest version of
Predator in the following pragmatic way.



Namely, whenever the current version of Predator hits a conditional statement that
would previously yield an interval value with fixed bounds (e.g., executing the statement
if (n >=0 && n<10) where n is originally unconstrained), it will split the further
run of the analysis into as many branches as the number of values in the interval is,
each of them evaluating for a concrete value from the interval. After the split, no further
interval-based allocations and dereferences, which the previous version of Predator used
to fail on, happen. Though this solution is rather simple, it works nicely in many cases.
Of course, it can lead to a memory explosion in the case when the intervals are large,
but then the analysis fails with no answer as it used to fail before.

The above modification of Predator concerned dealing with memory regions whose
size is given by an interval with finite bounds. In case one of the bounds is infinite,
Predator has been extended to sample the interval and perform the further analysis with
the sampled values. Currently, the sampling is done simply by taking some number of
concrete values from the given interval starting/ending with the bound that is fixed (of
course, for memory regions, unboundedness from above does only make sense). The
number of considered samples is currently set to 3. Of course, this strategy cannot be
used to soundly verify correctness of programs, and so it is used for detecting bugs only.

Another issue that was resolved in the latest version of PredatorHP is detection of
invalid dereferences of objects local to a block from outside of the block. For that,
a support of the clobber instruction of Gimple was added. This instruction is used in
Gimple to terminate the life time of local variables of code blocks, and it was previously
not supported by Predator. Now, whenever the instruction is encountered, the concerned
memory region is marked as deallocated, and further dereferences of that region are
detected as erroneous.

As another improvement, we have strengthened the way Predator uses to check
whether two pointers point to different addresses. So far, roughly speaking, inequality
of pointers could only have been established for pointers pointing to different valid
objects, null and non-null objects, the same object with different offsets, or to different
ends of a doubly-linked list segment with at least two elements. We have now added
one more way how inequality can be established, namely, when comparing pointers to
a valid region and to an invalid region where the invalid one was allocated later than the
valid one (which we can check due to the way the objects are numbered in Predator).
Indeed, in such a case, both of the regions must have existed at the same time, the
valid object is continuously valid since then, and the two objects must lie on different
addresses since the address of a continuously valid object could not have been recycled.

Next, we have added a support for checking whether all dynamically allocated
memory has been deallocated when a function with the noreturn attribute (such
as abort or exit) is called. This modification is, in fact, quite simple—we just need
to check whether the SMG representing the memory in such a moment does not contain
any valid dynamically allocated object.

2 Strengths and Weaknesses

The main strength of PredatorHP is that it treats manipulation with various kinds of
unbounded lists in a sound and efficient way. Predator hunters then allow it to quickly
handle programs with a small finite state space (e.g., benchmarks on locks) and avoids
many false alarms that could otherwise happen.



The main weakness of Predator has traditionally been its weak treatment of non-
pointer data. We have tried to improve on that using the described heuristics for dealing
with intervals of integers with a specific aim to improve the way Predator handles arrays
of parametric size. The results of Predator on SV-COMP’19 benchmarks with arrays
show that the heuristic did indeed help. Moreover, they also helped on some bench-
marks with arithmetic operations on data fields of lists. On the other hand, the modified
treatment of intervals caused, somewhat paradoxically, Predator some losses as well.
Namely, in the heap reachability category, it removed some unknown results caused
previously by dereferences via interval-based offsets, but Predator then produced false
alarms due to other imprecisions in handling non-pointer data.

Due to the added support of clobber instructions, Predator detects invalid mem-
ory accesses in new benchmarks accessing variables outside of the block in which they
were created. All other new heuristics described above did also help in some cases.

Another weakness of Predator is that it is specialized in dealing with lists, and hence
it does not handle structures such as trees or skip-lists (that is, it handles them but in
a bounded way only).

3 Tool Setup and Configuration

The source code of PredatorHP used in SV-COMP’19 is freely available on the Inter-
net1. The file README-SVCOMP-2019 shipped with the source code describes how
to build the tool. To run it, the script predatorHP.py can be invoked. The script
does not impose any resource limits other than terminating its child processes when
they are no longer needed. In SV-COMP’19, PredatorHP participated in the Mem-
Safety category and in the HeapReach sub-category of ReachSafety category. More in-
formation about the setting of PredatorHP used in SV-COMP’19 can be found here:
http://sv-comp.sosy-lab.org/2019/systems.php.

4 Software Architecture, Project, and Contributors
Predator is implemented in C++ with a use of Boost libraries as a GCC plug-in based
on the Code Listener framework [2]. PredatorHP is implemented as a Python script.
Predator is an open source software project distributed under the GNU General Public
License version 3. The main author of Predator is Kamil Dudka. Besides him and the
PredatorHP team, Petr Müller, and numerous other people listed in the docs/THANKS
file in the distribution of Predator have contributed to the distribution of Predator.
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