
Feature preserving mesh smoothing algorithm based on
local normal covariance

Miroslav Svub, Premysl Krsek, Michal Spanel,
Vit Stancl, Radek Barton, Jiri Vadura

{svub,krsek,spanel,stancl,barton,ivadura}@fit.vutbr.cz
PGMed@FIT

Department of Computer Graphics and Multimedia
Faculty of Information Technology

Brno University of Technology, Brno, Czech Republic

ABSTRACT

Our goal is to develop a smoothing algorithm, which would be feature preserving and simple to use without the need of extensive
parameter tuning. Our method does the smoothing of vertices based on local neighbourhood character, which is modeled by a
covariance matrix of neighbourhood triangle normals. The eigenvalues and eigenvectors of the covariance matrix are used for
local weighting of the displacement vector of laplacian operator. This way the method is locally auto-tuned.

Keywords: smoothing, polygonal mesh, covariance, edge preserving, noise removal

1 INTRODUCTION
One of the key phases of modelling a 3D polygonal
mesh is smoothing. It can substantially reduce the
amount of artifacts and noise within the mesh. A rather
important features of a smoothing algorithm is how it
treats different mesh features. A feature preserving
algorithm should leave corners and sharp edges un-
touched while smoothing and flattening the other areas
of the mesh.

Different algorithms have approached this with vary-
ing success and there is no general algorithm, which
works reliably in all cases. Moreover, the best algo-
rithms often require tuning of several parameters. Our
approach attempts to address these problems and of-
fer a simple to use, yet relatively powerful smoothing
method.

1.1 Related work
One of the basic approaches to smoothing is laplacian
operator [7] which works by averaging position of the
vertex with it’s neighbourhood, defining a vector by the
previous and average position and then moving the ver-
tex in this direction by a fraction of the vector length.
The algorithm is very simple and is easily tunable by
only one parameter. The main disadvantages are vol-
ume shrinking and reducing sharp edges and corners.
Therefore, An improved laplacian smoothing algorithm
presented in [1], which improves the results of laplacian
operator by pushing the smoothed vertex a bit back,
thus reducing the volume shrinking effect. The perfor-
mance of this algorithm can be adjusted by two param-
eters. Another improvement was presented in [3] and
[4] which operates in alternating inward and outward
diffusion of vertices in order to maintain the shape of
the mesh. Again, the algorithm is controlled by two pa-
rameters. The billateral mesh denoising approach from

[5] and similar method from [6] has been quite success-
ful. It is essentially a bilateral filter applied on a mesh
topology and works by filtering vertex positions in di-
rections of their normals. Adjustable filter parameters
can affect the output.

2 VERTEX PROPERTIES FROM NOR-
MAL COVARIANCE MATRIX

In this section we will describe the background for our
method. The main idea lies in altering the laplacian
operator effect for each vertex type corner, edge, flat
areas. First, let us define some basic symbolics. Let v
denote the vertex that is being smoothed and n it’s nor-
mal. Consequently let ti and ni denote i-th face(triangle)
and normal of v’s neighbourhood. Let N be a matrix
with ni forming it’s columns.

Let us take a look at matrix C :

C = NNT

We can see that this is a zero-mean covariance ma-
trix (covariance matrix for average normal zero (N −
0)(N−0)T) of normals in the neighbourhood of v. This
matrix has been used in [2] for construction of quadric
error metric and was shown to have a couple of it’s in-
teresting properties. C presents us with a robust local
vertex feature, which reflects the character of the ver-
tex neighbourhood. The zero-mean covariance C ma-
trix can be interpreted as a quadratic form defined for v
and forms a quadric centered at v. Since quadric matri-
ces are always symmetric, we can perform it’s spectral
decomposition into A and X , where A’s columns are the
eigenvectors of C and λi are the corresponding eigen-
values :

C = AXA−1,whereX = diag(λ1,λ2,λ3)1

Now let’s take a look at the eigenvalues of C. We can
distinguish three main cases :

• if λ1 ∼= λ2 ∼= λ3, then there is a large variation of
normals in every direction around the vertex and it
can be assumed to be a corner.

• if λ1 ∼= λ2 < λ3, then there is a direction of maxi-
mum covariance of neighbourhood normals and the
direction corresponds to an edge.

• if λ1 < λ2 ∼= λ3, then there are two directions of
maximum covariance and the vertex lies on a flat
arrea.

Let e1,e2,e3 denote the eigenvectors of C. In the sec-
ond case, the e3 is aligned with the direction of the edge.
In the third case, e3 will be perpendicular to the ideal
plane of the flat area. Let us define vertex v′ which is
the average of vertices from a neighbourhood of size M.

v′ =
1
M

M

∑
i=0

vi

Then w = v− v′ would be the vector along which the
vertex would move using the laplacian operator.

Now the essential idea of our smoothing method is
that instead of v̂ = v+αw as in laplacian smoothing,
we compute the new position of v as :

v̂ = v+αAYA−1w,Y = diag(λ−1
1 ,λ−1

2 ,λ−1
3)

In the following chapter, we will explain the motiva-
tion for and interpretation of the formula.

3 USING VERTEX NORMAL COVARI-
ANCE FOR SMOOTHING

Consider a vertex and it’s zero mean local covariance
matrix C. The eigenvectors of C form an orthogonal
basis with the center at the current vertex. We have
designed following procedure for smoothing of a cur-
rent vertex v (see figure 1 graphical interpretation of the
scheme in 2D) :

1. compute position difference vector w after applying
the laplacian operator

2. compute eigenvalues and eigenvectors of zero mean
covariance matrix for v’s neighbourhood. We have
been using the neighbourhood of 3 surrounding tri-
angle layers, because if less layers are used, the co-
variance statistic is less robust.

3. express w within the basis formed by eigenvectors
of C to obtain w′ expressed in new basis coordinates

4. weight the coordinates of w′ by inverse eigenvalues
of C to obtain w′1

w'
w'ww

Figure 1: left : w denotes the vector to the new position
of vertex, right : w′ denotes the same vector after having
its coordinates weightened by eigenvalues of C in the
local coordinates of C’s eigenvectors

5. multiply w′1 by the smoothing factor α , which regu-
lates the amount of smoothing

6. express w′1 back within the canonical basis of three
dimensional space to get the final displacement vec-
tor for the current vertex

These steps are to be performed on the whole mesh.
Our algorithm is also iterative, so multiple runs are of-
ten required to achieve desired result.

3.1 Improving the eigenvalue weighting
by heuristic

When we look at our weighting formula for a vertex,
we can see, that we are using the inverse eigenvalues
of C as the weights for laplacian operator. This works
in theory, however on real models, we have to adjust
the weighting so that extreme values ad therefore ex-
treme deformations are not permitted. Let fw denote a
function mapping a three dimensional vector onto an-
other. Let λ denote the vector of eigenvalues. Then, the
smoothing formula will take the following form :

v̂ = v+αAYA−1w,Y = diag(fw(λ))

a) b)

c) d)

Figure 2: visualizing vertex weights a) original mesh b)
covariances as degenerated elipsoids c) noisy mesh d)
visualization on noisy mesh

The weighting function we have been using
is a heuristic. The function is fw(λ1,λ2,λ3) =

normalize(λ)−
2
3). The normalization of eigenvalues

will ensure, the weights sum to one and the vertex
displacement will not be greater than using the standard
laplacian operator. The − 2

3 power reduces the large
differences between weights for a vertex.

3.2 Vizualizing vertex weights

The algorithm therefore treats directions of eigenvector
differently. The smaller the smaller the weight corre-
sponding to a direction is, the stiffer will be the move-
ment of this vertex in that particular direction. Figure
1 shall give us better idea behind the algorithm. Sug-
gested method of visualizing C can be found in [2]. C
is the main part of quadric - an ellipsoid centered at the
current vertex and with it’s principal axes aligned with
the eigenvectors of C and its principal radii proportional
to the inverse eigenvalues. We can use the same prin-
ciple but the ellipsoid will be slightly deformed by our
weighting finction fw.

a) b)

c) d)

Figure 3: iterations of our algorithm on cube model a)
original mesh b) iteration 1 c) iteration 3 d) iteration 7

Figure 2 shows the visualization. At the corner of
the cube (green), the ellipsoid resembles a sphere. This
means, that the weights are close to being equal in all
directions and the movement of this point should be re-
stricted the most. At an edge vertex, the ellipsoid is
reduced to elongated line, which is aligned along the
direction in which the vertex can move without dam-
aging the edge. At a flat area vertex, the ellipsoid re-
duces to a disc. The left set of images show a cube that
is no longer regular, but we can see, that the ellipsoid
characteristics still hold. Figure 3 shows the result of
smoothing the noisy cube using our algorithm.

4 EXPERIMENTAL RESULTS
We have tested our method and compared it’s results to
the algorithms presented in section 1 ([4], [5], [1]). We
had a collection of 3D meshes, which include geomet-
rical primitives (cube, sphere, cylinder, torus, etc.) to
test the feature preservation properties and a collection
of real models (Stanford bunny, Stanford dragon, skull
model, etc). The rough data for the smoothing algo-
rithm were obtained by adding a gaussian noise to the
mesh. For the σ2 of the noise, we have chosen values
between 0.05 to 0.1 times the mesh size. The noise was
added in normal direction (see fig. 3). Each model was
well tessellated.

The metric chosen for algorithm performance evalua-
tion was histogram based. Since the original, noisy and
smoothed models are topologically equivalent we have
chosen following metrics :

• Histogram of angles between normals of corre-
sponding faces. The method, which outperforms the
others should have minimal amount of correspond-
ing normal angle differences (HN).

• Histogram of distance between corresponding ver-
tices. This metric reflects the ability of the method
to preserve the volume of the model (HV).

For the methods that require parameter tuning, we
have adjusted the parameters to perform as good as pos-
sible for every particular model.

4.1 Cube model analysis
The figure 4 Shows the results obtained on the cube
model. The HN(original) shows the high peak of zero
angle flat vertices and a small peak of edge vertices.
The slim and high peak can be seen on HN(our) is
showing, that our method was able outperform the oth-
ers as far as edge preservation is concerned.

The HN(bmds) shows that the bilateral mesh denois-
ing algorithm can be viewed as the second best as far as
edge preservation is concerned. The HN(our) shows,
that average of normal deviations is shifted towards
zero deviation. On this particular model, the best ob-
served shape preserving was achieved by our method.

The figure 5 shows HV histograms of the cube model.
According to this metric, our method is outperformed
by hc and tabuin. If we compare HV (our) with
HV (bmds), we see that better volume preservation was
achieved with our method, than with bmds. Figure 9
shows visual comparison of the results on the cube
model.

4.2 Real model analysis
The cube model discussed above was an example from
the set of ideal model with clearly distinguishable fea-
tures. We have tested our method on Following his-
tograms were obtained from the models of the Stan-
ford bunny. Figure 6 shows that the shape similarity

a) b)

c) d)

e) f)

Figure 4: HN Histogram of corresponding normal angle
differences a) the model b) HN(noisy) c) HN(taubin) d)
HN(bmds) e) HN(hc) f) HN(our)

a) b)

c) d)

e) f)

Figure 5: HV Histogram of distances between cor-
responding vertices a) the model, b) HV (noise), c)
HV (taubin), d) HV (bmds), e) HV (hc), e) HV (our)

of HN(original) and HN(our) is good (see fig. 8 for
visual comparison).

The comparison of HV histograms (figure 7) shows
that the best volume preservation was achieved by hc

a) b)

c) d)

e) f)

Figure 6: HN Histogram of corresponding normal angle
differences a) the model, b) HN(noisy), c) HN(taubin),
d) HN(bmds), e) HN(hc), f) HN(our)

a) b)

c) d)

e) f)

Figure 7: HV Histogram of distances between cor-
responding vertices a) the model, b) HV (noisy), c)
HV (taubin), d) HV (bmds), e) HV (hc), f) HV (our)

algorithm. our method has shown comparable results
with taubin method and clearly outperformed bmds.

4.3 Summary
Tables 1 and 2 sumarizes the results on several mod-
els we have used. In order to quantify the results, we
have reduced the histogram metric to computing mean
and standard deviation of the data. The key idea is, that
if the original model and the smoothed one are simi-
lar, then the angles between corresponding face normals
should be small and the distance between correspond-
ing vertices should be small as well.

taubin bmds hc our
cube (µ) 0.156 0.13 0.148 0.117
cube (σ2) 0.09 0.181 0.174 0.125
cylinder (µ) 0.106 0.076 0.084 0.084
cylinder (σ2) 0.103 0.166 0.157 0.155
bunny (µ) 0.270 0.216 0.143 0.128
bunny (σ2) 0.171 0.228 0.094 0.103
dragon (µ) 0.214 0.277 0.17 0.182
dragon (σ2) 0.252 0.335 0.231 0.274
bull (µ) 0.121 0.145 0.143 0.11
bull (σ2) 0.114 0.165 0.083 0.108
skull (µ) 0.38 0.53 0.25 0.267
skull (σ2) 0.401 0.62 0.256 0.302
Table 1: Angles of corresponding face normals(rad)

For the models to be similar in shape, we need the
mean angle difference to be small. The edge preserv-
ing ability manifests itself through the standard devia-
tion of angles (this can be observed on ideal meshes).
For the models to be similar in volume, we expect the
corresponding vertices distance to be small. Therefore
the average distance, the better the models correspond
volume-wise.

taubin bmds hc our
cube (µ) 0.099 0.146 0.076 0.129
cube (σ2) 0.045 0.07 0.056 0.06
cylinder (µ) 0.067 0.073 0.075 0.071
cylinder (σ2) 0.035 0.038 0.046 0.038
bunny (µ) 0.046 0.053 0.034 0.05
bunny (σ2) 0.021 0.032 0.022 0.023
dragon (µ) 0.031 0.044 0.033 0.031
dragon (σ2) 0.015 0.023 0.018 0.015
bull (µ)l 0.572 0.41 0.356 0.389
bull (σ2) 0.255 0.2 0.19 0.192
skull (µ) 0.31 0.455 0.562 0.713
skull (σ2) 0.747 0.277 0.346 0.446
Table 2: Distance between corresponding vertices

On the ideal models (cube, cylinder), the best shape
preserving algorithms are bmds with our method be-
ing only slightly less effective. On real models, the

best shape preserving methods are hc and our method.
With the volume preservation, our algorithm outper-
forms bmds and is comparable with taubin and hc.

5 CONCLUSION
We have been trying to develop a smoothing method,
that would aim to perform well on different types of
meshes and would not require extensive amount of tun-
ing to do so. Our method is not the best performing in
all cases however it’s performance is rather stable and
comparable to the best methods for particular case. An-
other advantage of our method is it’s robustness, since
we are using broader vertex statistics (zero mean co-
variance).

5.1 Future work
We would like to focus on developing a robust smooth-
ing method based on local normal covariance. Our ap-
proach currently extends the standard laplacian opera-
tor by locally modifying it’s results to reflect local mesh
characteristics. In the future, we would like to explore
following possibilities for improving the method per-
formance :

• Explicitly clustering the vertex characteristics
(eigenvalues) into categories edge, corner, flat and
designing and applying custom smoothing function
based on vertex type.

• Finding connectivity between vertices of the same
type and using the average computed from vertices
of the same type.

We would also like to explore other applications of
the vertex normal covariance feature, for example using
it for other mesh related tasks (matching, registration,
etc.)

REFERENCES
[1] Vollmer J. , Mencel R., Muller H.: Improved laplacian smoothing

of noisy surface meshes, Research report No. 711 /1999, June
1999

[2] Garland M., Heckbert, P.: Surface simplification using quadric
error metrics. In: Proceedings, Siggraph 97, USA, 1997, s. 209-
216

[3] Taubin G.: A signal processing approach to fair surface design.
In: Proceedings of SIGGRAPH 1995

[4] Taubin G.: Geometric signal processing on polygonal meshes:
Eurographics 2000 State of The Art Report(STAR), September
2000.

[5] Fleishman, S., Drori I., Cohen-Or, D. : Bilateral mesh denoising.
In: Proceedings of SIGGRAPH 2003

[6] Kai-Wah, L., Wen-Ping, W. : Feature-Preserving Mesh Denois-
ing via Bilateral Normal Filtering, In: Proceedings of 9th Inter-
national Conference on Computer Aided Design and Computer
Graphics 2005

[7] Field, D.A. : Laplacian Smoothing and Delaunay Triangulations,
Communications in Applied Numerical Methods, Wiley, Vol 4,
pp.709-712, 1988

a) b) c)

d) e) f)

Figure 8: the stanford bunny a) original b) noisy c) taubin d) bmds e) hc f) our

a) b) c)

d) e) f)

Figure 9: cube a) original b) noisy c) taubin d) bmds e) hc f) our

a) b) c)

d) e) f)

Figure 10: cylinder a) original b) noisy c) taubin d) bmds e) hc f) our

a) b) c)

d) e) f)

Figure 11: bull a) original b) noisy c) taubin d) bmds e) hc f) our

