
BRNO UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

ALGORITHMIC AND MATHEMATICAL
PRINCIPLES OF AUTOMATIC NUMBER PLATE
RECOGNITION SYSTEMS

B.SC. THESIS

AUTHOR ONDREJ MARTINSKY

BRNO 2007

 ii

Copyright © 2007 Ondrej Martinsky

The author is indebted to the supervisor of this thesis, doc. Ing. František Zbořil, CSc. for his
great help.

THIS WORK IS A PART OF THE RESEARCH PLAN "SECURITY-ORIENTED
RESEARCH IN INFORMATION TECHNOLOGY, MSM 0021630528" AT BRNO
UNIVERSITY OF TECHNOLOGY

Licensed under the terms of Creative Commons License, Attribution-NonCommercial-NoDerivs
2.5. You are free to copy, distribute and transmit this work under the following conditions. You
must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work). You may not use this work for
commercial purposes. For further information, please read the full legal code at
http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode

 iii

Abstract
This work deals with problematic from field of artificial intelligence, machine vision and neural
networks in construction of an automatic number plate recognition system (ANPR). This
problematic includes mathematical principles and algorithms, which ensure a process of number
plate detection, processes of proper characters segmentation, normalization and recognition.
Work comparatively deals with methods achieving invariance of systems towards image skew,
translations and various light conditions during the capture. Work also contains an
implementation of a demonstration model, which is able to proceed these functions over a set of
snapshots.
Key Words:

Machine vision, artificial intelligence, neural networks, optical character recognition, ANPR

 iv

Contents

1 Introduction 1
1.1 ANPR systems as a practical application of artificial intelligence 1
1.2 Mathematical aspects of number plate recognition systems 1
1.3 Physical aspects of number plate recognition systems 2
1.4 Notations and mathematical symbols 3

2 Principles of number plate area detection 5
2.1 Edge detection and rank filtering 5

2.1.1 Convolution matrices 5
2.2 Horizontal and vertical image projection 7
2.3 Double-phase statistical image analysis 8

2.3.1 Vertical detection - band clipping 9
2.3.2 Horizontal detection - plate clipping 10

2.4 Heuristic analysis and priority selection of number plate candidates 13
2.4.1 Priority selection and basic heuristic analysis of bands 13
2.4.2 Deeper analysis 14

2.5 Deskewing mechanism 15
2.5.1 Detection of skew 16
2.5.2 Correction of skew 18

3 Principles of plate segmentation 20
3.1 Segmentation of plate using a horizontal projection 20
3.2 Extraction of characters from horizontal segments 22

3.2.1 Piece extraction 22
3.2.2 Heuristic analysis of pieces 23

4 Feature extraction and normalization of characters 25
4.1 Normalization of brightness and contrast 25

4.1.1 Histogram normalization 25
4.1.2 Global thresholding 27
4.1.3 Adaptive thresholding 28

4.2 Normalization of dimensions and resampling 29
4.2.1 Nearest-neighbor downsampling 29
4.2.2 Weighted-average downsampling 30

4.3 Feature extraction 31
4.3.1 Pixel matrix 31
4.3.2 Detection of character edges 32
4.3.3 Skeletonization and structural analysis 35

5 Recognition of characters 42
5.1 General classification problem 42
5.2 Biological neuron and its mathematical models 43

 v

5.2.1 McCulloch-Pitts binary threshold neuron 44
5.2.2 Percepton 45

5.3 Feed-forward neural network 46
5.4 Adaptation mechanism of feed-forward neural network 47

5.4.1 Active phase 48
5.4.2 Partial derivatives and gradient of error function 49
5.4.3 Adaptation phase 50

5.5 Heuristic analysis of characters 53

6 Syntactical analysis of a recognized plate 56
6.1 Principle and algorithms 56

6.1.1 Recognized character and its cost 56
6.1.2 Syntactical patterns 57
6.1.3 Choosing the right pattern 57

7 Tests and final considerations 59
7.1 Choosing the representative set of snapshots 59
7.2 Evaluation of a plate number correctness 60

7.2.1 Binary score 60
7.2.2 Weighted score 61

7.3 Results 61

Summary 62
Appendix A: Case study 63

Appendix B: Demo recognition software – user’s manual 73
Bibliography 76

 vi

List of Figures
1.1.a Illuminated number plate 3
1.1.b Snapshot degraded by the significant motion blur 3
2.1 Convolution matrix 6
2.2 Various rank and edge detection filters 7
2.3 Vertical projection of an image into a y axis 8

2.4 Double-phase plate clipping 9
2.5 Vertical projection of the snapshot after convolution with a rank vector 10
2.6 Band detected by an analysis of a vertical projection 10
2.7 Horizontal projection of the band and its derivative 12
2.8 Wider area of the number plate after deskewing 12
2.9 Principle of a number plate positivity determination using the color histogram 15
2.10 Difference between the rotated and sheared number plate 16
2.11 Illustration of Hough transformation 16
2.12 Example of the Hough transformation 17
2.13 Example of a number plate before and after deskewing 19
3.1 Example of a number plate after application of the adaptive thresholding 20
3.2 Piece extraction algorithm 22
3.3.a Segmentation phase input 24
3.3.b Segmentation phase output 24
4.1 Histogram normalization by the Lagrange interpolating polynomial 26
4.2 Partially shadowed number plate 28
4.3 Chow and Kaneko approach of adaptive thresholding 28
4.4 Principle of the downsampling 30
4.5 Nearest-neighbor and weighted-average downsampling 31
4.6 The “pixel matrix” feature extraction method 32
4.7 Region layouts in character bitmap 33
4.8 Possible types of 2x2 edges in character bitmap 33
4.9 The four-pixel and eight-pixel neighborhood 35
4.10 Skeletonization algorithm 38
4.11 Types of structural elements in character bitmap 39
4.12 Different types of junctions in two instances of the same character 39
4.13.ab Combination of structural constraints and neural networks 40
4.13.c Example of the 9x13 upper-case alphabet 40
4.14 Rectangular and polar coordinate systems in the character bitmap 41
5.1 General classification problem 43
5.2 Biological neuron 44
5.3.a Parts of the biological neuron 44
5.3.b Synaptic connections between dendrites and terminal buttons 44
5.4.a Summation and gain function of the percepton 46
5.4.b Sigmoid saturation function 46
5.5 Three layer feed-forward neural network 47
5.6 Dependency of an error function on a number of neurons 48
5.7 Finding a global minimum in the error landscape 51
5.8 Character segments after application of the piece extraction algorithm 53
7.1 Different types of car snapshots 60

 vii

List of Tables
4.1 Structural constraints of characters 40
5.1 Table of segment properties related to the figure 6.8 55
7.1 Recognition rates of the ANPR system 61

 1

Chapter 1

Introduction

1.1 ANPR systems as a practical application of artificial intelligence

Massive integration of information technologies into all aspects of modern life caused demand
for processing vehicles as conceptual resources in information systems. Because a standalone
information system without any data has no sense, there was also a need to transform
information about vehicles between the reality and information systems. This can be achieved
by a human agent, or by special intelligent equipment which is be able to recognize vehicles by
their number plates in a real environment and reflect it into conceptual resources. Because of
this, various recognition techniques have been developed and number plate recognition systems
are today used in various traffic and security applications, such as parking, access and border
control, or tracking of stolen cars.

In parking, number plates are used to calculate duration of the parking. When a vehicle
enters an input gate, number plate is automatically recognized and stored in database. When a
vehicle later exits the parking area through an output gate, number plate is recognized again and
paired with the first-one stored in the database. The difference in time is used to calculate the
parking fee. Automatic number plate recognition systems can be used in access control. For
example, this technology is used in many companies to grant access only to vehicles of
authorized personnel.

In some countries, ANPR systems installed on country borders automatically detect and
monitor border crossings. Each vehicle can be registered in a central database and compared to a
black list of stolen vehicles. In traffic control, vehicles can be directed to different lanes for a
better congestion control in busy urban communications during the rush hours.

1.2 Mathematical aspects of number plate recognition systems

In most cases, vehicles are identified by their number plates, which are easily readable for
humans, but not for machines. For machine, a number plate is only a grey picture defined as a
two-dimensional function),(yxf , where x and y are spatial coordinates, and f is a light
intensity at that point. Because of this, it is necessary to design robust mathematical machinery,
which will be able to extract semantics from spatial domain of the captured image. These
functions are implemented in so-called “ANPR systems”, where the acronym “ANPR” stands
for an “Automatic Number Plate Recognition”. ANPR system means transformation of data
between the real environment and information systems.

The design of ANPR systems is a field of research in artificial intelligence, machine vision,
pattern recognition and neural networks. Because of this, the main goal of this thesis is to study
algorithmic and mathematical principles of automatic number plate recognition systems.

Chapter two deals with problematic of number plate area detection. This problematic
includes algorithms, which are able to detect a rectangular area of the number plate in original
image. Humans define the number plate in a natural language as a “small plastic or metal plate
attached to a vehicle for official identification purposes”, but machines do not understand this
definition. Because of this, there is a need to find an alternative definition of the number plate
based on descriptors, which will be comprehensible for machines. This is a fundamental
problem of machine vision and of this chapter.

Chapter three describes principles of the character segmentation. In most cases, characters
are segmented using the horizontal projection of a pre-processed number plate, but sometimes

 2

these principles can fail, especially if detected number plates are too warped or skewed. Then,
more sophisticated segmentation algorithms must be used.

Chapter four deals with various methods normalization and detection of characters. At first,
character dimensions and brightness must be normalized to ensure invariance towards a size and
light conditions. Then, a feature extraction algorithm must be applied on a character to filter
irrelevant data. It is necessary to extract features, which will be invariant towards character
deformations, used font style etc.

Chapter five studies pattern classifiers and neural networks and deals with their usage in
recognition of characters. Characters can be classified and recognized by the simple nearest
neighbor algorithm (1NN) applied to a vector of extracted features, or there is also possibility to
use one of the more sophisticated classification methods, such as feed-forward or Hopfield
neural networks. This chapter also presents additional heuristic analyses, which are used for
elimination of non-character elements from the plate.

Sometimes, the recognition process may fail and the detected plate can contain errors. Some
of these errors can be detected by a syntactical analysis of the recognized plate. If we have a
regular expression, or a rule how to evaluate a country-specific license plate, we can reconstruct
defective plates using this rule. For example, a number zero “0” can be automatically repaired to
a character “O” on positions, where numbers are not allowed. Chapter six deals with this
problematic.

1.3 Physical aspects of number plate recognition systems

Automatic number plate recognition system is a special set of hardware and software
components that proceeds an input graphical signal like static pictures or video sequences, and
recognizes license plate characters from it. A hardware part of the ANPR system typically
consists of a camera, image processor, camera trigger, communication and storage unit.

The hardware trigger physically controls a sensor directly installed in a lane. Whenever the
sensor detects a vehicle in a proper distance of camera, it activates a recognition mechanism.
Alternative to this solution is a software detection of an incoming vehicle, or continual
processing of the sampled video signal. Software detection, or continual video processing may
consume more system resources, but it does not need additional hardware equipment, like the
hardware trigger.

Image processor recognizes static snapshots captured by the camera, and returns a text
representation of the detected license plate. ANPR units can have own dedicated image
processors (all-in-one solution), or they can send captured data to a central processing unit for
further processing (generic ANPR). The image processor is running on special recognition
software, which is a key part of whole ANPR system.

Because one of the fields of application is a usage on road lanes, it is necessary to use a
special camera with the extremely short shutter. Otherwise, quality of captured snapshots will
be degraded by an undesired motion blur effect caused by a movement of the vehicle. For
example, usage of the standard camera with shutter of 1/100 sec to capture a vehicle with speed
of 80 km/h will cause a motion skew in amount of 0.22 m. This skew means the significant
degradation of recognition abilities.

There is also a need to ensure system invariance towards the light conditions. Normal
camera should not be used for capturing snapshots in darkness or night, because it operates in a
visible light spectrum. Automatic number plate recognition systems are often based on cameras
operating in an infrared band of the light spectrum. Usage of the infrared camera in combination
with an infrared illumination is better to achieve this goal. Under the illumination, plates that are
made from reflexive material are much more highlighted than rest of the image. This fact makes
detection of license plates much easier.

 3

Figure 1.1: (a) Illumination makes detection of reflexive image plates easier. (b) Long

camera shutter and a movement of the vehicle can cause an undesired motion blur effect.

1.4 Notations and mathematical symbols

Logic symbols

p q⊕ Exclusive logical disjunction (xor p q)
p q∧ Logical conjunction (and p q)
p q∨ Logical disjunction (or p q)

p¬ Exclusion (not p)

Mathematical definition of image

(),f x y x and y are spatial coordinates of an image, and f is an intensity of light at

that point. This function is always discrete on digital computers.

0 0x y∈ ∧ ∈ℕ ℕ , where 0ℕ denotes the set of natural numbers including
zero.

()f p The intensity of light at point p . () (),f p f x y= , where [],p x y=

Pixel neighborhoods

1 4 2Np pɺɺ Pixel 1p is in a four-pixel neighborhood of pixel 2p (and vice versa)

1 8 2Np pɺɺ Pixel 1p is in an eight-pixel neighborhood of pixel 2p (and vice versa)

Convolutions

() ()a x b x∗ Discrete convolution of signals ()a x and ()b x

() ()a x b x∗ɶ Discrete periodical convolution of signals ()a x and ()b x

 4

Vectors and sets

[],x ym The element in xth column and yth row of matrix m .

maxA The maximum value contained in the set A . The scope of elements can be
specified by additional conditions

min A The minimum value contained in the set A
mean A The mean value of the elements contained in the set A
median A The median value of the elements contained in the set A
A The cardinality of the set A . (Number of elements contained in the set)

x Vectors or any other ordered sequences of numbers are printed bold.

ix The elements of vectors are denoted as ix , where i is a sequence number

(starting with zero), such as 0 1i n∈ −… , where n = x is a cardinality of the

vector (number of elements)

[]ax The element a of the vector x . For example, the vector x can contain

elements a , b , c , d , such as (), , ,a b c d=x
()ix If there is more than one vector denoted as x , they are distinguished by their

indexes i . The upper index ()i does not mean the ith element of vector.

Intervals

a x b< < x lies in the interval between a and b . This notation is used when x is the
spatial coordinate in image (discrete as well as continuous)

x a b∈ … This notation has the same meaning as the above one, but it is used when x is
a discrete sequence number.

Quantificators

x∃ There exists at least one x
!x∃ There exists exactly one x
n x∃ There exists exactly n x

x¬∃ There does not exist x
x∀ For every x

Rounding

x   Number x rounded down to the nearest integer

x   Number x rounded up to the nearest integer

 5

Chapter 2

Principles of number plate
area detection
The first step in a process of automatic number plate recognition is a detection of a number plate
area. This problematic includes algorithms that are able to detect a rectangular area of the
number plate in an original image. Humans define a number plate in a natural language as a
“small plastic or metal plate attached to a vehicle for official identification purposes”, but
machines do not understand this definition as well as they do not understand what “vehicle”,
“road”, or whatever else is. Because of this, there is a need to find an alternative definition of a
number plate based on descriptors that will be comprehensible for machines.

Let us define the number plate as a “rectangular area with increased occurrence of
horizontal and vertical edges”. The high density of horizontal and vertical edges on a small area
is in many cases caused by contrast characters of a number plate, but not in every case. This
process can sometimes detect a wrong area that does not correspond to a number plate. Because
of this, we often detect several candidates for the plate by this algorithm, and then we choose
the best one by a further heuristic analysis.

Let an input snapshot be defined by a function (),f x y , where x and y are spatial

coordinates, and f is an intensity of light at that point. This function is always discrete on

digital computers, such as 0 0x y∈ ∧ ∈ℕ ℕ , where 0ℕ denotes the set of natural numbers
including zero. We define operations such as edge detection or rank filtering as mathematical
transformations of function f .

The detection of a number plate area consists of a series of convolve operations. Modified
snapshot is then projected into axes x and y . These projections are used to determine an area
of a number plate.

2.1 Edge detection and rank filtering

We can use a periodical convolution of the function f with specific types of matrices m to
detect various types of edges in an image:

() () [] () () ()
1 1

0 0

, , , , mod ,mod
w h

w h
i j

f x y f x y x y f x y x i y j
− −

= =

′  = ∗ = ⋅ − − ∑∑m mɶ

where w and h are dimensions of the image represented by the function f

Note: The expression [],x ym represents the element in xth column and yth row of matrix m .

2.1.1 Convolution matrices

Each image operation (or filter) is defined by a convolution matrix. The convolution matrix
defines how the specific pixel is affected by neighboring pixels in the process of convolution.

 6

Individual cells in the matrix represent the neighbors related to the pixel situated in the centre of
the matrix. The pixel represented by the cell y in the destination image (fig. 2.1) is affected by

the pixels 0 8x x… according to the formula:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8y x m x m x m x m x m x m x m x m x m= × + × + × + × + × + × + × + × + ×

Figure 2.1: The pixel is affected by its neighbors according to the convolution matrix.

Horizontal and vertical edge detection

To detect horizontal and vertical edges, we convolve source image with matrices hem and vem .
The convolution matrices are usually much smaller than the actual image. Also, we can use
bigger matrices to detect rougher edges.

1 1 1

0 0 0

1 1 1
he

− − − 
 =  
 
 

m ;

1 0 1

1 0 1

1 0 1
ve

− 
 = − 
 − 

m

Sobel edge detector

The Sobel edge detector uses a pair of 3x3 convolution matrices. The first is dedicated for
evaluation of vertical edges, and the second for evaluation of horizontal edges.

1 2 1

0 0 0

1 2 1
x

− − − 
 =  
 
 

G ;

1 0 1

2 0 2

1 0 1
y

− 
 = − 
 − 

G

The magnitude of the affected pixel is then calculated using the formula 2 2
x y= +G G G . In

praxis, it is faster to calculate only an approximate magnitude as x y= +G G G .

Horizontal and vertical rank filtering

Horizontally and vertically oriented rank filters are often used to detect clusters of high density
of bright edges in the area of the number plate. The width of the horizontally oriented rank filter
matrix is much larger than the height of the matrix (w h≫), and vice versa for the vertical rank
filter (w h≪).

To preserve the global intensity of an image, it is necessary to each pixel be replaced with
an average pixel intensity in the area covered by the rank filter matrix. In general, the
convolution matrix should meet the following condition:

 7

[]
1 1

0 0

, 1.0
w h

hr
i j

i j
− −

= =

=∑∑m

where w and h are dimensions of the matrix.
The following pictures show the results of application of the rank and edge detection filters.

Figure 2.2: (a) Original image (b) Horizontal rank filter (c) Vertical rank filter (d)
Sobel edge detection (e) Horizontal edge detection (f) Vertical edge detection

2.2 Horizontal and vertical image projection

After the series of convolution operations, we can detect an area of the number plate according
to a statistics of the snapshot. There are various methods of statistical analysis. One of them is a
horizontal and vertical projection of an image into the axes x and y .

The vertical projection of the image is a graph, which represents an overall magnitude of the
image according to the axis y (see figure 2.3). If we compute the vertical projection of the
image after the application of the vertical edge detection filter, the magnitude of certain point
represents the occurrence of vertical edges at that point. Then, the vertical projection of so
transformed image can be used for a vertical localization of the number plate. The horizontal
projection represents an overall magnitude of the image mapped to the axis x .

 8

Figure 2.3: Vertical projection of image to a y axis

Let an input image be defined by a discrete function (),f x y . Then, a vertical projection yp of

the function f at a point y is a summary of all pixel magnitudes in the yth row of the input

image. Similarly, a horizontal projection at a point x of that function is a summary of all
magnitudes in the xth column.

We can mathematically define the horizontal and vertical projection as:

() ()
1

0

,
h

x
j

p x f x j
−

=

=∑ ; () ()
1

0

,
w

y
i

p y f i y
−

=
=∑

where w and h are dimensions of the image.

2.3 Double-phase statistical image analysis

The statistical image analysis consists of two phases. The first phase covers the detection of a
wider area of the number plate. This area is then deskewed, and processed in the second phase
of analysis. The output of double-phase analysis is an exact area of the number plate. These two
phases are based on the same principle, but there are differences in coefficients, which are used
to determine boundaries of clipped areas.

The detection of the number plate area consists of a “band clipping” and a “plate clipping”.
The band clipping is an operation, which is used to detect and clip the vertical area of the
number plate (so-called band) by analysis of the vertical projection of the snapshot. The plate
clipping is a consequent operation, which is used to detect and clip the plate from the band (not
from the whole snapshot) by a horizontal analysis of such band.

Snapshot

Assume the snapshot is represented by a function (),f x y , where 0 1x x x≤ ≤ and 0 1y y y≤ ≤ .

The []0 0,x y represents the upper left corner of the snapshot, and []1 1,x y represents the bottom

right corner. If w and h are dimensions of the snapshot, then 0 0x = , 0 0y = , 1 1x w= − and

1 1y h= − .

 9

Band

The band b in the snapshot f is an arbitrary rectangle ()0 0 1 1, , ,b b b bb x y x y= , such as:

() () ()0 min 1 max min 0 1 maxb b b bx x x x y y y y= ∧ = ∧ ≤ < ∧

Plate

Similarly, the plate p in the band b is an arbitrary rectangle ()0 0 1 1, , ,p p p pp x y x y= , such as:

() () ()0 0 1 1 0 0 0 0b p p b p b p bx x x x y y y y≤ ≤ ≤ ∧ = ∧ =

The band can be also defined as a vertical selection of the snapshot, and the plate as a horizontal
selection of the band. The figure 2.4 schematically demonstrates this concept:

0by

1by

0px 1px

Figure 2.4: The double-phase plate clipping. Black color represents the first phase of plate clipping,
and red color represents the second one. Bands are represented by dashed lines, and plates by solid

lines.

2.3.1 Vertical detection – band clipping

The first and second phase of band clipping is based on the same principle. The band clipping is
a vertical selection of the snapshot according to the analysis of a graph of vertical projection. If

h is the height of the analyzed image, the corresponding vertical projection ()r
yp y contains h

values, such as 0; 1y h∈ − .

The graph of projection may be sometimes too “ragged” for analysis due to a big statistical

dispersion of values ()r
yp y . There are two approaches how to solve this problem. We can blur

the source snapshot (costly solution), or we can decrease the statistical dispersion of the ragged

projection r
yp by convolving its projection with a rank vector:

() () []r
y y hrp y p y y= ∗mɶ

where hrm is the rank vector (analogous to the horizontal rank matrix in section 2.1.1). The

width of the vector hrm is nine in default configuration.
After convolution with the rank vector, the vertical projection of the snapshot in figure 2.3

can look like this:

 10

()yp y

0y
0%

100%

1y
y

0by bmy 1by

Figure 2.5: The vertical projection of the snapshot 2.3 after convolution with a rank vector. The figure

contains three detected candidates. Each highlighted area corresponds to one detected band.

The fundamental problem of analysis is to compute peaks in the graph of vertical projection.
The peaks correspond to the bands with possible candidates for number plates. The maximum
value of ()yp y corresponding to the axle of band can be computed as:

(){ }
0 1

arg maxbm y
y y y

y p y
≤ ≤

=

The 0by and 1by are coordinates of band, which can be detected as:

() (){ }
() (){ }

0

1

0

1

max

min

bm

bm

b y y y bm
y y y

b y y y bm
y y y

y y p y c p y

y y p y c p y

≤ ≤

≤ ≤

= ≤ ⋅

= ≤ ⋅

yc is a constant, which is used to determine the foot of peak bmy . In praxis, the constant is

calibrated to 1 0.55c = for the first phase of detection, and 2 0.42c = for the second phase.

Figure 2.6: The band detected by the analysis of vertical projection

This principle is applied iteratively to detect several possible bands. The 0by and 1by
coordinates are computed in each step of iterative process. After the detection, values of
projection yp in interval 0 1,b by y are zeroized. This idea is illustrated by the following

pseudo-code:

let L to be a list of detected candidates
for i :=0 to number_of_bands_to_be_detected do
begin

detect 0by and 1by by analysis of projection yp

save 0by and 1by to a list L

zeroize interval 0 1,b by y

end

The list L of coordinates 0by and 1by will be sorted according to value of peak (bmy). The
band clipping is followed by an operation, which detects plates in a band.

 11

2.3.2 Horizontal detection – plate clipping

In contrast with the band clipping, there is a difference between the first and second phase of
plate clipping.

First phase

There is a strong analogy in a principle between the band and plate clipping. The plate clipping
is based on a horizontal projection of band. At first, the band must be processed by a vertical
detection filter. If w is a width of the band (or a width of the analyzed image), the

corresponding horizontal projection ()r
xp x contains w values:

() ()
1

0

,
b

b

y

x
j y

p x f x j
=

= ∑

Please notice that ()xp x is a projection of the band, not of the whole image. This can be

achieved by a summation in interval 0 1,b by y , which represents the vertical boundaries of the

band. Since the horizontal projection ()r
xp x may have a big statistical dispersion, we decrease

it by convolving with a rank vector (() () []r
x x vrp x p x x= mɶ⊻). The width of the rank vector is

usually equal to a half of an estimated width of the number plate.

Then, the maximum value corresponding to the plate can be computed as:

(){ }
0 1

arg maxbm x
x y x

x p x
≤ ≤

=

The 0bx and 1bx are coordinates of the plate, which can be then detected as:

() (){ }
() (){ }

0

1

0

1

max

min

bm

bm

b x x x bm
x x x

b x x x bm
x x x

x x p x c p x

x x p x c p x

≤ ≤

≤ ≤

= ≤ ⋅

= ≤ ⋅

where xc is a constant, which is used to determine the foot of peak bmx . The constant is

calibrated to 0.86xc = for the first phase of detection.

Second phase

In the second phase of detection, the horizontal position of a number plate is detected in another
way. Due to the skew correction between the first and second phase of analysis, the wider plate
area must be duplicated into a new bitmap. Let (),nf x y be a corresponding function of such

bitmap. This picture has a new coordinate system, such as [0,0] represents the upper left corner
and [1, 1]w h− − the bottom right, where w and h are dimensions of the area. The wider area of
the number plate after deskewing is illustrated in figure 2.8.

 In contrast with the first phase of detection, the source plate has not been processed by the
vertical detection filter. If we assume that plate is white with black borders, we can detect that
borders as black-to-white and white-to-black transitions in the plate. The horizontal projection

()xp x of the image is illustrated in the figure 2.7.a. To detect the black-to-white and white-to-

black transitions, there is a need to compute a derivative ()xp x′ of the projection ()xp x . Since

the projection is not continuous, the derivation step cannot be an infinitely small number

 12

(
0

lim
x

h x
→

≠). If we derive a discrete function, the derivation step h must be an integral number

(for example 4h =). Let the derivative of ()xp x be defined as:

() () ()x x
x

p x p x h
p x

h

− −′ =

Where 4h = .

()xp x

0

0%

100%

1w −
x

()xp x′

1w −
x

Figure 2.7: (a) The horizontal projection ()xp x of the plate in figure 2.8. (b) The derivative

of ()xp x . Arrows denote the “BW” and “WB” transitions, which are used to determine the

boundaries of the plate.

Figure 2.8: The wider area of the number plate after deskewing.

The left and right boundary of the plate can be determined by an analysis of the projection

()xp x′ . The left corner 0px is represented by the black-to-white transition (positive peak in

figure 2.7.b), and right corner 1px by the white-to-black transition (negative peak in figure

2.7.b):

() (){ }{ }
() (){ }{ }

0
00

2

1
0

2

min max

max min

p x d xw x wx

p x d xw x wx w

x x p x c p x

x x p x c p x

≤ <≤ <

≤ <≤ <

′ ′= ≥ ⋅

′ ′= ≤ ⋅

where dc is a constant used to determine the most left negative and the most right positive peak.
The left and right corners must lie on the opposite halves of the detected plate according to the

constraints 0
2
w

x≤ < for 0px , and
2
w

x w≤ < for 1px .

 13

In this phase of the recognition process, it is not possible to select a best candidate for a
number plate. This can be done by a heuristic analysis of characters after the segmentation.

2.4 Heuristic analysis and priority selection of number plate
candidates

In general, the captured snapshot can contain several number plate candidates. Because of this,
the detection algorithm always clips several bands, and several plates from each band. There is a
predefined value of maximum number of candidates, which are detected by analysis of
projections. By default, this value is equals to nine.

There are several heuristics, which are used to determine the cost of selected candidates
according to their properties. These heuristics have been chosen ad hoc during the practical
experimentations. The recognition logic sorts candidates according to their cost from the most
suitable to the least suitable. Then, the most suitable candidate is examined by a deeper heuristic
analysis. The deeper analysis definitely accepts, or rejects the candidate. As there is a need to
analyze individual characters, this type of analysis consumes big amount of processor time.

The basic concept of analysis can be illustrated by the following steps:

1. Detect possible number plate candidates.
2. Sort them according to their cost (determined by a basic heuristics).
3. Cut the first plate from the list with the best cost.
4. Segment and analyze it by a deeper analysis (time consuming).
5. If the deeper analysis refuses the plate, return to the step 3.

2.4.1 Priority selection and basic heuristic analysis of bands

The basic analysis is used to evaluate the cost of candidates, and to sort them according to this
cost. There are several independent heuristics, which can be used to evaluate the cost iα . The
heuristics can be used separately, or they can be combined together to compute an overall cost
of candidate by a weighted sum:

1 2 3 40.15 0.25 0.4 0.4α α α α α= ⋅ + ⋅ + ⋅ + ⋅

 Heuristics Illustration Description

1 0 1b by yα = −

The height of band in pixels. Bands
with a lower height will be preferred.

()2

1

y bmp y
α = ()y bmp y

The “ ()y bmp y ” is a maximum value of

peak of vertical projection of snapshot,
which corresponds to the processed
band. Bands with a higher amount of
vertical edges will be preferred.

()
1

0

3

1
b

b

y

y
y y

p y

α

=

=

∑

0by 1by

∑

This heuristics is similar to the previous
one, but it considers not only the value
of the greatest peak, but a value of area
under the graph between points 0by and

1by . These points define a vertical
position of the evaluated band.

 14

0 1
4

0 1

5
p p

b b

x x

y y
α

−
= −

−

The proportions of the one-row number
plates are similar in the most countries.
If we assume that width/height ratio of
the plate is about five, we can compare
the measured ratio with the estimated
one to evaluate the cost of the number
plate.

2.4.2 Deeper analysis

The deeper analysis determines the validity of a candidate for the number plate. Number plate
candidates must be segmented into the individual characters to extract substantial features. The
list of candidates is iteratively processed until the first valid number plate is found. The
candidate is considered as a valid number plate, if it meets the requirements for validity.

Assume that plate p is segmented into several characters 0 1np p −… , where n is a number

of characters. Let iw be a width of ith character (see figure 2.9.a). Since all segmented
characters have roughly uniform width, we can use a standard deviation of these values as a
heuristics:

()
1

2
1

0

1 n

i
i

w w
n

β
−

=

= −∑

where w is an arithmetic average of character widths
1

0

1 n

i
i

w w
n

−

=

= ∑ .

If we assume that the number plate consists of dark characters on a light background, we
can use a brightness histogram to determine if the candidate meets this condition. Because some
country-specific plates are negative, we can use the histogram to deal with this type of plates
(see figure 2.9.b).

Let ()H b be a brightness histogram, where b is a certain brightness value. Let minb and

maxb be a value of a darkest and lightest point. Then, ()H b is a count of pixels, whose values

are equal to b . The plate is negative when the heuristics 2β is negative:

() ()
max

min

2

mid

mid

b b

b b b b

H b H bβ
= =

   
= −   

  
  

∑ ∑

where midb is a middle point in the histogram, such as max min

2mid

b b
b

−= .

 15

0p 1p 2p 3p 4p 5p 6p 7p 8p 9p

()2w p

P
ix
el n

u
m
b
ers

minb midb maxb

b

()H b

Figure 2.9: (a) The number plate must be segmented into individual characters for deeper
heuristic analysis. (b) Brightness histogram of the number plate is used to determine the

positivity of the number plate.

2.5 Deskewing mechanism

The captured rectangular plate can be rotated and skewed in many ways due to the positioning
of vehicle towards the camera. Since the skew significantly degrades the recognition abilities, it
is important to implement additional mechanisms, which are able to detect and correct skewed
plates.

The fundamental problem of this mechanism is to determine an angle, under which the plate
is skewed. Then, deskewing of so evaluated plate can be realized by a trivial affine
transformation.

It is important to understand the difference between the “sheared” and “rotated” rectangular
plate. The number plate is an object in three-dimensional space, which is projected into the two-
dimensional snapshot during the capture. The positioning of the object can sometimes cause the
skew of angles and proportions.

If the vertical line of plate pv is not identical to the vertical line of camera objective cv , the

plate may be sheared. If the vertical lines pv and cv are identical, but the axis pa of plate is not

parallel to the axis of camera ca , the plate may be rotated. (see figure 2.10)

 16

cv

pv

pa

ca

pa

ca

c pv v=

p c p ca a v v∧ =�

pa

ca p c p ca a v v∧ =�

p c p ca a v v∧ ≠�

c pv v=

 Figure 2.10: (a) Number plate captured under the right angle (b) rotated plate (c)
Sheared plate

2.5.1 Detection of skew

Hough transform is a special operation, which is used to extract features of a specific shape
within a picture. The classical Hough transform is used for the detection of lines. The Hough
transform is widely used for miscellaneous purposes in the problematic of machine vision, but I
have used it to detect the skew of captured plate, and also to compute an angle of skew.

It is important to know, that Hough transform does not distinguish between the concepts
such as “rotation” and “shear”. The Hough transform can be used only to compute an
approximate angle of image in a two-dimensional domain.

The mathematical representation of line in the orthogonal coordinate system is an equation
y a x b= ⋅ + , where a is a slope and b is a y-axis section of so defined line. Then, the line is a
set of all points [,]x y , for which this equation is valid. We know that the line contains an
infinite number of points as well as there are an infinite number of different lines, which can
cross a certain point. The relation between these two assertions is a basic idea of the Hough
transform.

The equation y a x b= ⋅ + can be also written as b x a y= − ⋅ + , where x and y are
parameters. Then, the equation defines a set of all lines (,)a b , which can cross the point [,]x y .
For each point in the “XY” coordinate system, there is a line in an “AB” coordinate system (so
called “Hough space”)

[]0 0,x y

x

y

a

b

0 0b x a y= ⋅ +

k

l
m k

l
m

Figure 2.11: The “XY” and “AB” (“Hough space”) coordinate systems. Each point []0 0,x y in the

“XY” coordinate system corresponds to one line in the Hough space (red color). The are several points
(marked ask , l , m) in the Hough space, that correspond to the lines in the “XY” coordinate system,

which can cross the point.[]0 0,x y .

 17

Let (,)f x y be a continuous function. For each point [],a b in Hough space, there is a line in

the “XY” coordinate system. We compute a magnitude of point [],a b as a summary of all

points in the “XY” space, which lie on the line a x b⋅ + .
Assume that (),f x y is a discrete function, which represents the snapshot with definite

dimensions ()w h× . To compute the Hough transform of the function like this, it is necessary to
normalize it into a unified coordinate system in the following way:

2
1

x
x

w

⋅′ = − ;
2

1
y

y
h

⋅′ = −

Although the space defined by a unified coordinate system is always discrete (floating point) on
digital computers, we will assume that it is continuous. Generally, we can define the Hough
transform (),h a b′ ′ ′ of a continuous function (),f x y′ ′ ′ in the unified coordinate system as:

() ()
1

1

, ,h a b f x a x b dx
−

′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ +∫

x′

y′ b′

a′

b′

θ

2

π−
2

π0 0−∞ −∞

Figure 2.12: (a) Number plate in the unified “XY ” coordinate system after application

of the horizontal edge detection filter (b) Hough transform of the number plate in the
“ Bθ ” coordinate system (c) Colored Hough transform in the “ AB ” coordinate system.

We use the Hough transform of certain image to evaluate its skew angle. You can see the
colored Hough transform on the figure 2.12.c. The pixels with a relatively high value are
marked by a red color. Each such pixel corresponds to a long white line in the figure 13.a. If we
assume that the angle of such lines determines the overall angle, we can find the longest line as:

() (){ }
0 1
0 1

, arg max ,m m
a
b

a b h a b
′≤ ≤
′≤ ≤

′ ′ ′ ′ ′=

To compute the angle of such a line, there is a need to transform it back to the original
coordinate system:

[] 1 1
, ,

2 2
m m

m m

a b
a b w h

′ ′− − = ⋅ ⋅ 
 

where w and h are dimensions of the evaluated image. Then, the overall angle θ of image can
be computed as:

()arctan maθ =

 18

The more sophisticated solution is to determine the angle from a horizontal projection of the
Hough transform h′ . This approach is much better because it covers all parallel lines together,
not only the longest one:

ˆ 1ˆ arctan
2

ma
wθ

′ − = ⋅ 
 

 ; (){ }
1 1

ˆ arg maxm a
a

a p a′′− ≤ ≤
′ ′=

where ()ap a′ ′ is a horizontal projection of the Hough space, such as:

() ()
1

1

,ap a f a b db′
−

′ ′ ′ ′ ′= ∫

2.5.2 Correction of skew

The second step of a deskewing mechanism is a geometric operation over an image (),f x y . As

the skew detection based on Hough transform does not distinguish between the shear and
rotation, it is important to choose the proper deskewing operation. In praxis, plates are sheared
in more cases than rotated. To correct the plate sheared by the angle θ , we use the affine
transformation to shear it by the negative angle θ− .

For this transformation, we define a transformation matrix A :

()1 0 1 tan 0

1 0 0 1 0

0 0 1 0 0 1

y

x

S

S

θ − 
  = =   
     

A

where xS and yS are shear factors. The xS is always zero, because we shear the plate only in a

direction of the Y-axis.
Let P be a vector representing the certain point, such as [], ,1x y=P where x and y are

coordinates of that point. The new coordinates [], ,1s s sx y=P of that point after the shearing can

be computed as:

s = ⋅P P A

where A is a corresponding transformation matrix.
Let the deskewed number plate be defined by a function sf . The function sf can be

computed in the following way:

() [] [] [] [](), , ,1 1,0,0 , , ,1 0,1,0
T T

sf x y f x y x y= ⋅ ⋅ ⋅ ⋅A A

After the substitution of the transformation matrix A :

() []
()

[]
()1 tan 0 1 1 tan 0 0

, , ,1 0 1 0 0 , , ,1 0 1 0 1

0 0 1 0 0 0 1 0
sf x y f x y x y

θ θ    − −   
       = ⋅ ⋅ ⋅ ⋅       
              

 19

 Figure 2.13: (a) Original number plate. (b) Number plate after deskewing.

 20

Chapter 3

Principles of plate
segmentation
The next step after the detection of the number plate area is a segmentation of the plate. The
segmentation is one of the most important processes in the automatic number plate recognition,
because all further steps rely on it. If the segmentation fails, a character can be improperly
divided into two pieces, or two characters can be improperly merged together.

We can use a horizontal projection of a number plate for the segmentation, or one of the
more sophisticated methods, such as segmentation using the neural networks. If we assume
only one-row plates, the segmentation is a process of finding horizontal boundaries between
characters. Section 3.2 deals with this problematic.

The second phase of the segmentation is an enhancement of segments. The segment of a
plate contains besides the character also undesirable elements such as dots and stretches as well
as redundant space on the sides of character. There is a need to eliminate these elements and
extract only the character. Section 3.3 deals with these problems.

3.1 Segmentation of plate using a horizontal projection

Since the segmented plate is deskewed, we can segment it by detecting spaces in its horizontal
projection. We often apply the adaptive thresholding filter to enhance an area of the plate before
segmentation. The adaptive thresholding is used to separate dark foreground from light
background with non-uniform illumination. You can see the number plate area after the
thresholding in figure 3.1.a.

After the thresholding, we compute a horizontal projection ()xp x of the plate (),f x y . We

use this projection to determine horizontal boundaries between segmented characters. These
boundaries correspond to peaks in the graph of the horizontal projection (figure 3.1.b).

()xp x

av

mv

bv

x

y

x

Figure 3.1: (a) Number plate after application of the adaptive thresholding (b) Horizontal
projection of plate with detected peaks. Detected peaks are denoted by dotted vertical lines.

 21

The goal of the segmentation algorithm is to find peaks, which correspond to the spaces
between characters. At first, there is a need to define several important values in a graph of the
horizontal projection ()xp x :

• mv - The maximum value contained in the horizontal projection ()xp x , such as

(){ }
0
maxm x

x w
v p x

≤ <
= , where w is a width of the plate in pixels.

• av - The average value of horizontal projection ()xp x , such as ()
1

0

1 w

a x
x

v p x
w

−

=

= ∑

• bv - This value is used as a base for evaluation of peak height. The base value is

always calculated as 2b a mv v v= ⋅ − . The av must lie on vertical axis between the values

bv and mv .

The algorithm of segmentation iteratively finds the maximum peak in the graph of vertical
projection. The peak is treated as a space between characters, if it meets some additional
conditions, such as height of peak. The algorithm then zeroizes the peak and iteratively repeats
this process until no further space is found. This principle can be illustrated by the following
steps:

1. Determine the index of the maximum value of horizontal projection:

(){ }
0

arg maxm x
x w

x p x
≤ <

=

2. Detect the left and right foot of the peak as:

() (){ }
0
max

m
l x x x m

x x
x x p x c p x

≤ ≤
= ≤ ⋅

() (){ }min
m

r x x x m
x x w

x x p x c p x
≤ <

= ≤ ⋅

3. Zeroize the horizontal projection ()xp x on interval ,l rx x

4. If ()x m w mp x c v< ⋅ , go to step 7.

5. Divide the plate horizontally in the point mx .

6. Go to step 1.
7. End.

Two different constants have been used in the algorithm above. The constant xc is used to

determine foots of peak mx . The optimal value of xc is 0.7.

The constant wc determines the minimum height of the peak related to the maximum value

of the projection (mv). If the height of the peak is below this minimum, the peak will not be

considered as a space between characters. It is important to choose a value of constant wc
carefully. An inadequate small value causes that too many peaks will be treated as spaces, and
characters will be improperly divided. A big value of wc causes that not all regular peaks will
be treated as spaces, and characters will be improperly merged together. The optimal value of

wc is 0.86. To ensure a proper behavior of the algorithm, constants xc and wc should meet the
following condition:

() () (), , :l m r w m x l x rx x x P c v p x p x∀ ∈ ⋅ > ∧

where P is a set of all detected peaks mx with corresponding foots lx and rx .

 22

 3.2 Extraction of characters from horizontal segments

The segment of plate contains besides the character also redundant space and other undesirable
elements. We understand under the term “segment” the part of a number plate determined by a
horizontal segmentation algorithm. Since the segment has been processed by an adaptive
thresholding filter, it contains only black and white pixels. The neighboring pixels are grouped
together into larger pieces, and one of them is a character. Our goal is to divide the segment into
the several pieces, and keep only one piece representing the regular character. This concept is
illustrated in figure 3.2.

Piece 1

Piece 2

Piece 3

Piece 4

Horizontal

segment

Figure 3.2: Horizontal segment of the number plate contains several groups (pieces) of neighboring

pixels.

3.2.1 Piece extraction

Let the segment be defined by a discrete function (),f x y in the relative coordinate system,

such as []0,0 is an upper left corner of the segment, and [1, 1]w h− − is a bottom right corner,

where w and h are dimensions of the segment. The value of (),f x y is “1” for the black

pixels, and “0” for the white space.
The piece Ρ is a set of all neighboring pixels [],x y , which represents a continuous element.

The pixel [],x y belongs to the piece Ρ if there is at least one pixel [],x y′ ′ from the Ρ , such as

[],x y and [],x y′ ′ are neighbors:

[] [] [] []4, , : , N ,x y x y x y x y′ ′ ′ ′∈Ρ ⇔ ∃ ∈Ρ ɺɺ

The notation 4Na bɺɺ means a binary relation “a is a neighbor of b in a four-pixel
neighborhood”:

[] []4, N , 1 1x y x y x x y y′ ′ ′ ′⇔ − = ⊕ − =ɺɺ

Algorithm

The goal of the piece extraction algorithm is to find and extract pieces from a segment of the
plate. This algorithm is based on a similar principle as a commonly known “seed-fill”
algorithm.

 23

• Let piece Ρ be a set of (neighboring) pixels [],x y

• Let S be a set of all pieces Ρ from a processed segment defined by the function

(),f x y .

• Let X be a set of all black pixels: [] (){ }, , 1X x y f x y= =

• Let A be an auxiliary set of pixels

Principle of the algorithm is illustrated by the following pseudo-code:

let set 0S = /

let set [] () [] [] []{ }, , 1 0,0 , ,X x y f x y x y w h= = ∧ ≤ <

while set X is not empty do
begin

let set 0Ρ = /

let set 0A = /

pull one pixel from set X and insert it into set A

while set A is not empty do
begin

let [],x y be a certain pixel from A

pull pixel [],x y from a set A

if () [] [] [] [], 1 , 0,0 , ,f x y x y A x y w h= ∧ ∉ ∧ ≤ < then

begin

pull pixel [],x y from set A and insert it into set Ρ

insert pixels []1,x y− , []1,x y+ , [], 1x y − , [], 1x y + into set A

end
end

add Ρ to set S
end

Note 1: The operation “pull one pixel from a set” is non-deterministic, because a set is an
unordered group of elements. In real implementation, a set will be implemented as an ordered
list, and the operation “pull one pixel from a set” will be implemented as “pull the first pixel
from a list”

Note 2: The mathematical conclusion [] [] []min min max max, , ,x y x y x y< < means “The pixel [],x y

lies in a rectangle defined by pixels []min min,x y and []max max,x y ”. More formally:

[,]R[,] R Rx y x y x x y y′ ′ ′ ′⇔ ∧

where R is a one of the binary relations: ‘< ’, ’ > ’, ’ ≤ ’, ’ ≥ ’ and ’= ’.

3.2.2 Heuristic analysis of pieces

The piece is a set of pixels in the local coordinate system of the segment. The segment usually
contains several pieces. One of them represents the character and others represent redundant
elements, which should be eliminated. The goal of the heuristic analysis is to find a piece, which
represents character.

Let us place the piece Ρ into an imaginary rectangle ()0 0 1 1, , ,x y x y , where 0 0[,]x y is an

upper left corner, and 1 1[,]x y is a bottom right corner of the piece:

 24

{ } { }
{ } { }

0 0

1 1

min [,] min [,]

max [,] max [,]

x x x y y y x y

x x x y y y x y

= ∈Ρ = ∈Ρ

= ∈Ρ = ∈Ρ

The dimensions and area of the imaginary rectangle are defined as 0 1w x x= − , 0 1h y y= − and

S w h= ⋅ . Cardinality of the set Ρ represents the number of black pixels bn . The number of

white pixels wn can be then computed asw bn S n w h= − = ⋅ − Ρ . The overall magnitude M of a

piece is a ratio between the number of black pixels bn and the area S of an imaginary rectangle

/bM n S= .

In praxis, we use the number of white pixels wn as a heuristics. Pieces with a higher value

of wn will be preferred.

The piece chosen by the heuristics is then converted to a monochrome bitmap image. Each

such image corresponds to one horizontal segment. These images are considered as an output of
the segmentation phase of the ANPR process (see figure 3.3)

Figure 3.3: The input (a) and output (b) example of the segmentation phase of the ANPR
recognition process.

 25

Chapter 4

Feature extraction and
normalization of characters
To recognize a character from a bitmap representation, there is a need to extract feature
descriptors of such bitmap. As an extraction method significantly affects the quality of whole
OCR process, it is very important to extract features, which will be invariant towards the
various light conditions, used font type and deformations of characters caused by a skew of the
image.

The first step is a normalization of a brightness and contrast of processed image segments.
The characters contained in the image segments must be then resized to uniform dimensions
(second step). After that, the feature extraction algorithm extracts appropriate descriptors from
the normalized characters (third step). This chapter deals with various methods used in the
process of normalization.

4.1 Normalization of brightness and contrast

The brightness and contrast characteristics of segmented characters are varying due to different
light conditions during the capture. Because of this, it is necessary to normalize them. There are
many different ways, but this section describes the three most used: histogram normalization,
global and adaptive thresholding.

Through the histogram normalization, the intensities of character segments are re-
distributed on the histogram to obtain the normalized statistics.

Techniques of the global and adaptive thresholding are used to obtain monochrome
representations of processed character segments. The monochrome (or black & white)
representation of image is more appropriate for analysis, because it defines clear boundaries of
contained characters.

4.1.1 Histogram normalization

The histogram normalization is a method used to re-distribute intensities on the histogram of the
character segments. The areas of lower contrast will gain a higher contrast without affecting the
global characteristic of image.

Consider a grayscale image defined by a discrete function (),f x y . Let I be a total number

of gray levels in the image (for example 256I =). We use a histogram to determine the number
of occurrences of each gray level i , 0 1i I∈ −… :

() [] (){ }, 0 0 ,H i x y x w y h f x y i= ≤ < ∧ ≤ < ∧ =

The minimum, maximum and average value contained in the histogram is defined as:

(){ }min
0
0

min ,
x w
y h

H f x y
≤ <
≤ <

= ; (){ }max
0
0

max ,
x w
y h

H f x y
≤ <
≤ <

= ; ()
1 1

0 0

1
,

w h

avg
x y

H f x y
w h

− −

= =

=
⋅ ∑∑

 26

where the values minH , maxH and avgH are in the following relation:

min max0 1avgH H H I≤ ≤ ≤ ≤ −

The goal of the histogram normalization is to obtain an image with normalized statistical

characteristics, such as min 0H = , max 1H I= − ,
2avg

I
H = . To meet this goal, we construct a

transformation function ()g i as a Lagrange polynomial with interpolation points

[] []1 1 min, ,0x y H= , []2 2, ,
2avg

I
x y H

 =  
 

 and [] []3 3 max, , 1x y H I= − :

()
33

1 1

k
j

j kj k
k j

i x
g i y

x x= =
≠

 
− =  − 

 

∑ ∏

This transformation function can be explicitly written as:

() 3 32 1 1 2
1 2 3

1 2 1 3 2 1 2 3 3 1 3 2

i x i xi x i x i x i x
g i y y y

x x x x x x x x x x x x

− −− − − −= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
− − − − − −

After substitution of concrete points, and concrete number of gray levels 256I = :

() maxmin min

min max max min max

128 255 avg

avg avg avg

i Hi Hi H i H
g i

H H H H H H H H

−−− −= + ⋅ ⋅ + ⋅ ⋅
− − − −

minH0 avgH maxH
i

1I −

()g i

brightness before transformation

2

I

Figure 4.1: We use the Lagrange interpolating polynomial as a transformation function to normalize

the brightness and contrast of characters.

The Lagrange interpolating polynomial as a transformation function is a costly solution. It is
like harvesting one potato by a tractor. In praxis, there is more useful to construct the
transformation using a simple linear function that spreads the interval min max,H H into the

unified interval 0, 1I − :

 27

() ()min

max min

1
i H

g i I
H H

−= −
−

The normalization of image is proceeded by the transformation function in the following way:

() ()(), ,nf x y g f x y=

4.1.2 Global Thresholding

The global thresholding is an operation, when a continuous gray scale of an image is reduced
into monochrome black & white colors according to the global threshold value. Let 0,1 be a

gray scale of such image. If a value of a certain pixel is above the threshold t , the new value of
the pixel will be zero. Otherwise, the new value will be one for pixels with values above the
threshold t .

Let v be an original value of the pixel, such as 0,1v ∈ . The new value v′ is computed as:

)0 0,

1 ,1

if v t
v

if v t

 ∈′ = 
∈

The threshold value t can be obtained by using a heuristic approach, based on a visual
inspection of the histogram. We use the following algorithm to determine the value of t
automatically:

1. Select an initial estimate for threshold t (for example 0.5t =)

2. The threshold t divides the pixels into the two different sets: [] (){ }, ,aS x y f x y t= < ,

and [] (){ }, ,bS x y f x y t= ≥ .

3. Compute the average gray level values aµ and bµ for the pixels in sets aS and bS as:

()
[],

1
,

a

a
a x y S

f x y
S

µ
∈

= ∑ ; ()
[],

1
,

b

b
b x y S

f x y
S

µ
∈

= ∑

4. Compute a new threshold value ()1

2 a bt µ µ= +

5. Repeat steps 2, 3, 4 until the difference t△ in successive iterations is smaller than
predefined precision pt

Since the threshold t is global for a whole image, the global thresholding can sometimes fail.
Figure 4.2.a shows a partially shadowed number plate. If we compute the threshold t using the
algorithm above, all pixels in a shadowed part will be below this threshold and all other pixels
will be above this threshold. This causes an undesired result illustrated in figure 4.2.b.

 28

P
ix
el n

u
m
b
ers

t

b

()H b

A
B

C

Figure 4.2: (a) The partially shadowed number plate. (b) The number plate after
thresholding. (c) The threshold value t determined by an analysis of the histogram.

4.1.3 Adaptive thresholding

The number plate can be sometimes partially shadowed or nonuniformly illuminated. This is
most frequent reason why the global thresholding fail. The adaptive thresholding solves several
disadvantages of the global thresholding, because it computes threshold value for each pixel
separately using its local neighborhood.

Chow and Kaneko approach

There are two approaches to finding the threshold. The first is the Chow and Kaneko approach,
and the second is a local thresholding. The both methods assumes that smaller rectangular
regions are more likely to have approximately uniform illumination, more suitable for
thresholding. The image is divided into uniform rectangular areas with size of m n× pixels. The
local histogram is computed for each such area and a local threshold is determined. The
threshold of concrete point is then computed by interpolating the results of the subimages.

1

4

2

5

3

6

?

Figure 4.3: The number plate (from figure 4.2) processed by the Chow and Kaneko approach of the
adaptive thresholding. The number plate is divided into the several areas, each with own histogram

and threshold value. The threshold value of a concrete pixel (denoted by) is computed by
interpolating the results of the subimages (represented by pixels 1-6).

Local thresholding

The second way of finding the local threshold of pixel is a statistical examination of
neighboring pixels. Let [],x y be a pixel, for which we compute the local threshold t . For

 29

simplicity we condider a square neighborhood with width 2 1r⋅ + , where [],x r y r− − ,

[],x r y r− + , [],x r y r+ − and [],x r y r+ + are corners of such square. There are severals

approaches of computing the value of threshold:

• Mean of the neighborhood : () (){ }, mean ,
x r i x r
y r j y r

t x y f i j
− ≤ ≤ +
− ≤ ≤ +

=

• Median of the neighborhood : () (){ }, median ,
x r i x r
y r j y r

t x y f i j
− ≤ ≤ +
− ≤ ≤ +

=

• Mean of the minimum and maximum value of the heighborhood:

() (){ } (){ }1
, min , max ,

2 x r i x r x r i x r
y r j y r y r j y r

t x y f i j f i j
− ≤ ≤ + − ≤ ≤ +
− ≤ ≤ + − ≤ ≤ +

 
 = +
 
 

The new value (),f x y′ of pixel [],x y is then computes as:

()
() ())
() ()

0 , 0, ,
,

1 , 0, ,

if f x y t x y
f x y

if f x y t x y

 ∈′ = 
∈

4.2 Normalization of dimensions and resampling

Before extracting feature descriptors from a bitmap representation of a character, it is necessary
to normalize it into unified dimensions. We understand under the term “resampling” the process
of changing dimensions of the character. As original dimensions of unnormalized characters are
usually higher than the normalized ones, the characters are in most cases downsampled. When
we downsample, we reduce information contained in the processed image.

There are several methods of resampling, such as the pixel-resize, bilinear interpolation or
the weighted-average resampling. We cannot determine which method is the best in general,
because the successfulness of particular method depends on many factors. For example, usage
of the weighed-average downsampling in combination with a detection of character edges is not
a good solution, because this type of downsampling does not preserve sharp edges (discussed
later). Because of this, the problematic of character resampling is closely associated with the
problematic of feature extraction.

We will assume that m n× are dimensions of the original image, and m n′ ′× are
dimensions of the image after resampling. The horizontal and vertical aspect ratio is defined as

/xr m m′= and /yr n n′= , respectively.

4.2.1 Nearest-neighbor downsampling

The principle of the nearest-neighbor downsamping is a picking the nearest pixel in the original
image that corresponds to a processed pixel in the image after resampling. Let (),f x y be

a discrete function defining the original image, such as 0 x m≤ < and 0 y n≤ < . Then, the

function (),f x y′ ′ ′ of the image after resampling is defined as:

(), ,
x y

x y
f x y f

r r

   ′ ′′ ′ ′  =         

 30

where 0 x m′ ′≤ < and 0 y n′ ′≤ < .

If the aspect ratio is lower than one, then each pixel in the resampled (destination) image
corresponds to a group of pixels in the original image, but only one value from the group of
source pixels affects the value of the pixel in the resampled image. This fact causes a significant
reduction of information contained in original image (see figure 4.5).

Figure 4.4: One pixel in the resampled image corresponds to a group of pixels in the original image

Although the nearest neighbor downsamping significantly reduces information contained in the
original image by ignoring a big amount of pixels, it preserves sharp edges and the strong
bipolarity of black and white pixels. Because of this, the nearest neighbor downsamping is
suitable in combination with the “edge detection” feature extraction method described in section
4.3.2.

4.2.2 Weighed-average downsampling

In contrast with the nearest-neighbor method, the weighted-average downsamping considers all
pixels from a corresponding group of pixels in the original image.

Let xr and yr be a horizontal and vertical aspect ratio of the resampled image. The value of

the pixel [],x y′ ′ in the destination image is computed as a mean of source pixels in the range

[]min min,x y to []max max,x y :

() () () ()
max max

min minmax min max min

1
, ,

x y

i x j y

f x y f i j
x x y y = =

′ ′ ′ =
− ⋅ − ∑ ∑

where:

min
x

x
x

r

 ′
=  
 

 ; min
y

y
y

r

 ′
=  
  

 ; max

1

x

x
x

r

 ′ +=  
 

 ; max

1

y

y
y

r

 ′ +=  
  

 31

The weighted-average method of downsampling does not preserve sharp edges of the image (in
contrast with the previous method). You can see the visual comparison of these two methods in
Figure 4.5.

m

n

m′

n′

m

n

m′

n′

Figure 4.5: (a) Nearest-neighbor resampling significantly reduces information contained in
the original image, but it preserves sharp edges. (b) Weighted average resampling gives a

better visual result, but the edges of the result are not sharp.

4.3 Feature extraction

Information contained in a bitmap representation of an image is not suitable for processing by
computers. Because of this, there is need to describe a character in another way. The description
of the character should be invariant towards the used font type, or deformations caused by a
skew. In addition, all instances of the same character should have a similar description. A
description of the character is a vector of numeral values, so-called “descriptors”, or “patterns”:

()0 1, , nx x −=x …

Generally, the description of an image region is based on its internal and external
representation. The internal representation of an image is based on its regional properties, such
as color or texture. The external representation is chosen when the primary focus is on shape
characteristics. The description of normalized characters is based on its external characteristics
because we deal only with properties such as character shape. Then, the vector of descriptors
includes characteristics such as number of lines, bays, lakes, the amount of horizontal, vertical
and diagonal or diagonal edges, and etc. The feature extraction is a process of transformation of
data from a bitmap representation into a form of descriptors, which are more suitable for
computers.

If we associate similar instances of the same character into the classes, then the descriptors
of characters from the same class should be geometrically closed to each other in the vector
space. This is a basic assumption for successfulness of the pattern recognition process.

This section deals with various methods of feature extraction, and explains which method is
the most suitable for a specific type of character bitmap. For example, the “edge detection”
method should not be used in combination with a blurred bitmap.

4.3.1 Pixel matrix

The simplest way to extract descriptors from a bitmap image is to assign a brightness of each
pixel with a corresponding value in the vector of descriptors. Then, the length of such vector is
equal to a square (w h⋅) of the transformed bitmap:

 32

(),modi w

i
x f i

w

  =   
  

where 0, , 1i w h∈ ⋅ −… .

Bigger bitmaps produce extremely long vector of descriptors, which is not suitable for
recognition. Because of this, size of such processed bitmap is very limited. In addition, this
method does not consider geometrical closeness of pixels, as well as its neighboring relations.
Two slightly biased instances of the same character in many cases produce very different
description vectors. Even though, this method is suitable if the character bitmaps are too blurry
or too small for edge detection.

251, 181, 068, 041, 032, 071, 197,

196, 014, 132, 213, 187, 043, 041,

174, 011, 200, 254, 254, 232, 164,

202, 014, 012, 128, 242, 255, 255,

253, 212, 089, 005, 064, 196, 253,

255, 255, 251, 196, 030

=x

, 009, 165,

127, 162, 251, 254, 197, 009, 105,

062, 005, 100, 144, 097, 006, 170,

207, 083, 032, 051, 053, 134, 250

 
 
 
 
 
 
 
 
 
 
 
 
 
 

w

h

Figure 4.6: The “pixel matrix” feature extraction method

4.3.2 Detection of character edges

In contrast with the previous method, the detection of character edges does not consider
absolute positioning of each pixel, but only a number of occurrences of individual edge types in
a specific region of the character bitmap. Because of this, the resulting vector is invariant
towards the intra-regional displacement of the edges, and towards small deformations of
characters.

Bitmap regions

Let the bitmap be described by a discrete function (),f x y , where w and h are dimensions,

such as 0 x w≤ < and 0 y h≤ < . We divide it into six equal regions organized to three rows and
two columns in the following way:

Let () ()
min min,i ix y 

  and () ()
max max,i ix y 

  be an upper left and bottom right point of a rectangle,

which determinates the region ir , such as:

• Region 0r : (0)
min 0x = , (0)

min 0y = , (0)
max 1

2
w

x
 = −  

, (0)
max 1

3
h

y
 = −  

• Region 1r : (1)
min 2

w
x

 =   
 , (1)

min 0y = , (1)
max 1x w= − , (1)

max 1
3
h

y
 = −  

• Region 2r : (2)
min 0x = , (2)

min 3
h

y
 =   

 , (2)
max 1

2
w

x
 = −  

 , (2)
max

2
1

3
h

y
⋅ = −  

• Region 3r : (3)
min 2

w
x

 =   
 , (3)

min 3
h

y
 =   

 , (3)
max 1x w= − , (3)

max
2

1
3
h

y
⋅ = −  

 33

• Region 4r : (4)
min 0x = , (4)

min
2
3
h

y
⋅ =   

 , (4)
max 2

w
x

 =   
 , (4)

max 1y h= −

• Region 5r : (5)
min 2

w
x

 =   
 , (5)

min
2
3
h

y
⋅ =   

 , (5)
max 1x w= − , (5)

max 1y h= −

There are several ways how to distribute regions in the character bitmap. The regions can be
disjunctive as well as they can overlap each other. The figure 4.7 shows the several possible
layouts of regions.

Figure 4.7: Layouts of regions in the character bitmap. The regions can be disjunctive as well as they

can overlap each other.

Edge types in region

Let us define an edge of the character as a 2x2 white-to-black transition in a bitmap. According
to this definition, the bitmap image can contain fourteen different edge types illustrated in figure
4.8.

Figure 4.8: The processed bitmap can contain different types of 2x2 edges.

The statistics of occurrence of each edge type causes uselessly long vector of descriptors.
Because of this, the “similar” types of edges are considered as the same. The following lists
shows how the edges can be grouped together:

1. 0 + 1 (vertical edges)
2. 2 + 3 (horizontal edges)
3. 4 + 6 + 9 (“/”-type diagonal edges)
4. 5 + 7 + 8 (“\”-type diagonal edges)
5. 10 (bottom right corner)
6. 11 (bottom left corner)
7. 12 (top right corner)
8. 13 (top left corner)

For simplicity, assume that edge types are not grouped together. Let η be a number of different

edge types, where ih is a 2x2 matrix that corresponds to the specific type of edge:

0

1 0

1 0

 
=  
 

h , 1

0 1

0 1

 
=  
 

h , 2

1 1

0 0

 
=  
 

h , 3

0 0

1 1

 
=  
 

h , 4

1 0

0 1

 
=  
 

h , 5

0 1

1 0

 
=  
 

h , 6

1 0

0 0

 
=  
 

h

7

0 1

0 0

 
=  
 

h , 8

0 0

1 0

 
=  
 

h , 9

0 0

0 1

 
=  
 

h , 10

0 1

1 1

 
=  
 

h , 11

1 0

1 1

 
=  
 

h , 12

1 1

0 1

 
=  
 

h , 13

1 1

1 0

 
=  
 

h

 34

Let ρ be a number of rectangular regions in the character bitmap, where ()
min
ix , ()

min
iy , ()

max
ix and

()
max
iy are boundaries of the region ir (0 1i ρ∈ −…). If the statistics consider η different edge

types for each of ρ regions, the length of the resulting vector x is computed as η ρ⋅ :

0 1 1(, , ,)x x xη ρ⋅ −=x …

Feature extraction algorithm

At first, we have to embed the character bitmap (),f x y into a bigger bitmap with white

padding to ensure a proper behavior of the feature extraction algorithm. Let the padding be one
pixel wide. Then, dimensions of the embedding bitmap will be 2w + and 2h + . The
embedding bitmap (),f x y′ is then defined as:

() () ()
1 0 0 1 1

,
1, 1 0 0 1 1

if x y x w y h
f x y

f x y if x y x w y h

= ∨ = ∨ = + ∨ = +
′ =  − − ¬ = ∨ = ∨ = + ∨ = +

where w and h are dimensions of character bitmap before embedding. Color of the padding is
white (value of 1). The coordinates of pixels are shifted one pixel towards the original position.

The structure of vector of output descriptors is illustrated by the pattern below. The notation

@j irh means “number occurrences of an edge represented by the matrix jh in the region ir ”.

()
10 1

0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1

region region region

@ , @ , , @ , @ , @ , , @ , @ , @ , , @

rr r

r r r r r r r r r

ρ

η η ρ ρ η ρ

−

− − − − − −=x h h h h h h h h h… … …
	

�

�	

�

� 	

�

�

We compute the position k of the @j irh in the vector x as k i jη= ⋅ + , where η is the

number of different edge types (and also the number of corresponding matrices).

The following algorithm demonstrates the computation of the vector of descriptors x :

zeroize vector x

for each region ir , where 0, , 1i ρ∈ −… do

begin

for each pixel [],x y in region ir ,where
() ()
min max
i ix x x≤ ≤ and

() ()
min max
i iy y y≤ ≤ do

begin

for each matrix jh , where 0, , 1j η∈ −… do

begin

if
() ()

() ()
, 1,

, 1 1, 1j

f x y f x y

f x y f x y

′ ′ +
=  ′ ′+ + + 

h then

begin

let k i jη= ⋅ +

let 1k k= +x x

end
end

end
end

 35

4.3.3 Skeletonization and structural analysis

The feature extraction techniques discussed in the previous two chapters are based on the
statistical image processing. These methods do not consider structural aspects of analyzed
images. The small difference in bitmaps sometimes means a big difference in the structure of
contained characters. For example, digits ‘6’ and ‘8’ have very similar bitmaps, but there is a
substantial difference in their structures.

The structural analysis is based on higher concepts than the edge detection method. It does
not deal with terms such as “pixels” or “edges”, but it considers more complex structures (like
junctions, line ends or loops). To analyze these structures, we must involve the thinning
algorithm to get a skeleton of the character. This chapter deals with the principle of
skeletonization as well as with the principle of structural analysis of skeletonized image.

The concept of skeletonization

The skeletonization is a reduction of the structural shape into a graph. This reduction is
accomplished by obtaining a skeleton of the region via the skeletonization algorithm. The
skeleton of a shape is mathematically defined as a medial axis transformation. To define the
medial axis transformation and skeletonization algorithm, we must introduce some elementary
prerequisite terms.

Let Nɺɺ be a binary relation between two pixels [],x y and [],x y′ ′ , such as Na bɺɺ means “a

is a neighbor of b ”. This relation is defined as:

[] []
[] []

8

4

, N , 1 1 for eight-pixel neighbourhood

, N , 1 1 for four-pixel neighbourhood

x y x y x x y y

x y x y x x y y

′ ′ ′ ′⇔ − = ∨ − =
′ ′ ′ ′⇔ − = ⊕ − =

ɺɺ

ɺɺ

The border B of character is a set of boundary pixels. The pixel [],x y is a boundary pixel, if it

is black and if it has at least one white neighbor in the eight-pixel neighborhood:

[] () [] () [] []8, , 0 , : , 1 , N ,x y B f x y x y f x y x y x y′ ′ ′ ′∈ ⇔ = ∧ ∃ = ∧ ɺɺ

The inner region I of character is a set of black pixels, which are not boundary pixels:

[] () [], , 0 ,x y I f x y x y B∈ ⇔ = ∧ ∉

Figure 4.9: (a) Illustration of the four-pixel and eight-pixel neighborhood. (b) The set of

boundary and inner pixels of character.

The piece Ρ is then a union of all boundary and inner pixels (B IΡ = ∪). Since there is only
one continuous group of black pixels, all black pixels belong to the piece Ρ . The principle and
the related terminology of the skeletonization are similar to the piece extraction algorithm
discussed in section 3.2.1.

 36

Medial axis transformation

The medial axis transformation of the piece Ρ defined as follows. For each inner pixel p I∈ ,

we find the closest boundary pixel bp B∈ . If a pixel p has more than one such neighbor, it is
said to belong to the medial axis (or skeleton) of the Ρ . The concept of the closest boundary
pixel depends on the definition of the Euclidean distance between two pixels in the orthogonal
coordinate system. Mathematically, the medial axis (or skeleton) S is a subset of the Ρ defined
as:

() () (){ }1 2 1 2 1 2: , , min ,
p B

p S p p p B p B d p p d p p d p p
′∈

′∈ ⇔ ∃ ∃ ∈ ∧ ∈ ∧ = =

The pixel p belongs to the medial axis S if there exists at least two pixels 1p and 2p , such as

Euclidean distance between pixels p and 1p is equal to the distance between pixels p and 2p ,
and these pixels are closest boundary pixels to pixel p .

The Euclidean distance between two pixels []1 1 1,p x y= and []2 2 2,p x y= is defined as:

() () ()2 22
1 2 1 2 1 2,d p p x x x x= − ⋅ −

Skeletonization algorithm

Direct implementation of the mathematical definition of the medial axis transformation is
computationally expensive, because it involves calculating the distance from every inner pixel
from the set I to every pixel on the boundary B .

The medial axis transformation is intuitively defined by a so-called “fire front” concept.
Consider that a fire is lit along the border. All fire fronts will advance into the inner of character
at the same speed. The skeleton of a character is then a set of pixels reached by more than one
fire front at the same time.

The skeletonization (or thinning) algorithm is based on the “fire front” concept. The
thinning is a morphological operation, which preserves end-pixels and does not break
connectivity. Assume that pixels of the piece are black (value of zero), and background pixels
are white (value of one).

The thinning is an iterative process of two successive steps applied to boundary pixels of a

piece. With reference to the eight-pixel neighborhood notation in figure 4.9, the first step flags a
boundary pixel p for deletion if each of the following conditions is satisfied:

• At least one of the top, right and bottom neighbor of the pixel p must be white (the

pixel p is white just when it does not belong to the piece Ρ).

t r bp p p∉Ρ ∨ ∉Ρ ∨ ∉Ρ

• At least one of the left, right and bottom neighbor of pixel p must be white.

l r bp p p∉Ρ ∨ ∉Ρ ∨ ∉Ρ

• The pixel p must have at least two, and at most six black neighbors from the piece Ρ .
This condition prevents the algorithm from erasing end-points and from breaking the
connectivity.

 37

{ }82 N 6p p p p′ ′ ′≤ ∧ ∉Ρ ≤ɺɺ

• The number of white-to-black transitions in the ordered sequence

, , , , , , , ,t tr r br b bl l tl tp p p p p p p p p must be equal to one.

() () () ()
() () () () 1

t tr tr r r br br b

b bl bl l l tl tl t

v p p v p p v p p v p p

v p p v p p v p p v p p

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ =

() 0

1

if x
v x

if x


=  ¬

The first step flags pixel p for deletion, if its neighborhood meets the conditions above.
However, the pixel is not deleted until all other pixels have been processed. If at least one of the
conditions is not satisfied, the value of pixel p is not changed.

After step one has been applied to all boundary pixels, the flagged pixels are definitely
deleted in the second step. Every iteration of these two steps thins the processed character. This
iterative process is applied until no further pixels are marked for deletion. The result of thinning
algorithm is a skeleton (or medial axis) of the processed character.

• Let the piece Ρ be a set of all black pixels contained in skeletonized character.
• Let B be a set of all boundary pixels.

The following pseudo-code demonstrates the thinning algorithm more formally. This algorithm
proceeds the medial axis transformation over a piece Ρ .

do // iterative thinning process

let continue = false

let 0B = /

for each pixel p in piece Ρ do // create a set of boundary pixels

if 8: Np p p p′ ′ ′∃ ∉Ρ ∧ ɺɺ then // if the pixel p has at least one white neighbor

insert pixel p into set B // but keep it also in Ρ

for each pixel p in set B do // 1.step of the iteration

begin
// if at least one condition is violated, skip this pixel

if ()t r bp p p¬ ∉Ρ ∨ ∉Ρ ∨ ∉Ρ then continue

if ()l r bp p p¬ ∉Ρ ∨ ∉Ρ ∨ ∉Ρ then continue

if { }()82 N 6p p p p′ ′ ′¬ ≤ ∧ ∉Ρ ≤ɺɺ then continue

 if

() () () ()
() () () () 1

t tr tr r r br br b

b bl bl l l tl tl t

v p p v p p v p p v p p

v p p v p p v p p v p p

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ ≠

then
begin

continue
end
// all tests passed
flag point p for deletion

let continue = true

 38

end

for each pixel p in set B do // 2.step of the iteration

if p is flagged then

pull point p from piece Ρ

while continue = true

Note: The pixel p belongs to the piece Ρ when it is black: () 0p f p∈Ρ ⇔ =

Figure 4.10: (a) The character bitmap before skeletonization. (b) The thinning algorithm

iteratively deletes boundary pixels. Pixels deleted in the first iteration are marked by a
light gray color. Pixels deleted in the second and third iteration are marked by dark gray.

(c) The result of the thinning algorithm is a skeleton (or a medial axis).

Structural analysis of skeletonized character

The structural analysis is a feature extraction method that considers more complex structures
than pixels. The basic idea is that the substantial difference between two compared characters
cannot be evaluated by the statistical analysis. Because of this, the structural analysis extracts
features, which describe not pixels or edges, but the more complex structures, such as junctions,
line ends and loops.

Junction

The junction is a point, which has at least three black neighbors in the eight-pixel neighborhood.
We consider only two types of junctions: the junction of three and four lines. The number of
junctions in the skeletonized piece Ρ is mathematically defined as:

{ }{ }
{ }{ }

3 3
8

3 4
8

: , N

: , N

j

j

n p p p p p p

n p p p p p p

′ ′ ′= ∃ ⊆ Ρ ∧

′ ′ ′= ∃ ⊆ Ρ ∧

ɺɺ

ɺɺ

Line end

The line end is a point, which has exactly one neighbor in the eight-pixel neighborhood. The
number of line-ends in a skeletonized piece Ρ is defined as:

{ }{ }1 1 8 1! : , Nen p p p p p p= ∃ ⊆ Ρ ∧ ɺɺ

The following algorithm can be used to detect the number of junctions and number line-ends in
a skeletonized piece Ρ :

 39

let 0jn =

let 0en =

for each pixel p in piece Ρ do

begin

let neighbors 0=

for each pixel p′ in neighborhood { }, , , , , , ,t tr r br b bl l tlp p p p p p p p do

if p′∈Ρ then

let neighbors neighbors+1=

if neighbors 1= then

let +1e en n=

else if neighbors 3≥ then

let +1j jn n=

end

Figure 4.11: (a, b) The junction is a pixel, which as at least three neighbors in eight-
pixel neighborhood. (c) The line end is a pixel, which has only one neighbor in eight-
pixel neighborhood (d) The loop is a group of pixels, which encloses the continuous

white space.

Loops

It is not easy to determine the number of loops ln in the skeletonized character. The algorithm
is based on the following principle. At first, we must negate the bitmap of the skeletonized
character. Black pixels will be considered as background and white pixels as foreground. The
number of loops in the image is equal to a number of lakes, which are surrounded by these
loops. Since the lake is a continuous group of white pixels in the positive image, we apply the
piece extraction algorithm on the negative image to determine the number of black pieces. Then,
the number of loops is equal to the number of black pieces minus one, because one piece
represents the background of the original image (negated to the foreground). Another way is to
use a series of morphological erosions.

Figure 4.12: (a) We determine the number of lakes in skeleton by applying the

piece-extraction algorithm on negative image. The negative image (b) contains three
pieces. Since the piece 3 is a background, only two pieces are considered as lakes.

(c)(d) The similar skeletons of the same character can differ in the number of
junctions

 40

Since we do not know the number of edges of the skeleton, we cannot use the standard
cyclomatic equation know from the graph theory. In addition, two similar skeletons of the same
character can sometimes differ in a number of junctions (see figure 4.12). Because of this, it is
not recommended to use constraints based on the number of junctions.

Structural constraints

To improve the recognition process, we can assume structural constraints in the table 4.1. The
syntactical analysis can be combined by other methods described in previous chapters, such as
edge detection method or pixel matrix.

The simplest way is to use one global neural network that returns several candidates and
then select the best candidate that meets the structural constraints (figure 4.13.a). More
sophisticated solution is to use the structural constraints for adaptive selection of local neural
networks (figure 4.13.b).

 Line ends Loops Junctions
0 BDO08 CEFGHIJKLMNSTUVWXYZ123457 CDGIJLMNOSUVWZ012357

1 PQ69 ADOPQR09 EFKPQTXY469

2 ACGIJLMNRSUVWZ123457 B8 ABHR8

3 EFTY

4 HKX

Table 4.1: Structural constraints of characters.

A

B
C

Figure 4.13: (a, b) Structural constraints can be applied before and after the recognition by
the neural network. (c) Example of the skeletonized alphabet.

Feature extraction

In case we know the position of structural elements, we can form a vector of descriptors directly
from this information. Assume that there are several line-ends, loops, and junctions in the

 41

image. The position of loop is defined by its centre. To form the vector, we must convert
rectangular coordinates of the element into polar coordinates [],r θ (see figure 4.14):

2 2r x y′ ′= + ;
y

atg
x

θ ′ =  ′ 
 ;

2 x w
x

w

⋅ −′ = ;
2 y h

y
h

⋅ −′ =

where x′ and y′ are normalized rectangular coordinates.

The length and the structure of resulting vector vary according to a number and type of

structural elements contained in the character. Since the structural constraints divide characters
into the several classes, there are several possible types of description vector. Each type of
vector corresponds to one class of character.

For example, consider character with two line ends and one junction. This constraint
determines the following class of possible characters: (G, I, J, L, M, N, S, U, V, W, Z, 1, 2, 3, 5,
7). We define a vector of descriptors to distinguish between these characters as follows:

(

)

1 1 2 2 3 3

line endline end junction
21

, , , , ,r r rθ θ θ=x

w

h

[],x y [],r θ

r θ

1−
1−

1

1

0

0

Figure 4.14: (a) The skeleton of the character contains several structural elements, such

as junctions, loops and line ends. (b, c) Each element can be positioned in the
rectangular or polar coordinate system.

 42

Chapter 5

Recognition of characters
The previous chapter deals with various methods of feature extraction. The goal of these
methods is to obtain a vector of descriptors (so-called pattern), which comprehensively
describes the character contained in a processed bitmap. The goal of this chapter is to introduce
pattern recognition techniques, such as neural networks, which are able to classify the patterns
into the appropriate classes.

5.1 General classification problem

The general classification problem is formulated using the mapping between elements in two
sets. Let A be a set of all possible combinations of descriptors, and B be a set of all classes.
The classification means the projection of group of similar element from the set A into a
common class represented by one element in the set B . Thus, one element in the set B
corresponds to one class. Usually the group of distinguishable instances of the same character
corresponds to the one class, but sometimes one class represents two mutually indistinguishable
characters, such as “0” and “O”.

Let F be a hypothetic function that assign each element from the set A to an element from
the set B :

:

ˆ ()

F A B

F

→
=x x

where A∈x is a description vector (pattern) which describes the structure of classified
character and ̂ B∈x is a classifier, which represents the semantics of such character .

The function F is the probably best theoretical classificator, but its construction is
impossible since we cannot deal with each combination of descriptors. In praxis, we construct
pattern classifier by using only a limited subset of the A B→ mappings. This subset is known
as a “training set”, such as tA A⊂ and tB B⊂ . Our goal is to construct an approximation

(),F x wɶ of the hypothetic function F , where w is a parameter that affects the quality of the

approximation:

()
()

:

ˆ ,

t tF A B

F

→

=

w

x x w

ɶ

ɶ

where tA A∈ ⊂x , ˆ tB B∈ ⊂x . Formally we can say that ()F̂ w is a restriction of the projection

F over a set tA A⊂ . We assume that for each i tA∈x we know the desired value ˆ i tB∈x :

0 0 1 1 2 2 1 1ˆ ˆ ˆ ˆ, , , , n n− −→ → → →x x x x x x x x…

 43

A B

F

()F wɶ

tA tB

x x̂

Figure 5.1: The projection between sets A and B . The F is a hypothetic function that maps every

possible combination of input pattern A∈x to a corresponding class ˆ B∈x . This projection is

approximated by a function ()F wɶ , which maps input patterns from training set tA into the

corresponding classes from the set tB

The problem is to find an optimal value (or values) of a parameter w . The w is typically a
vector (or matrix) of syntactical weights in a neural network. According to this parameter, the

values of the function (),F x wɶ should be as closest as possible to the values of ()F x for input

patterns x from the training set tA . We define an error function to evaluate worthiness of the

parameter w :

() ()()
1 2

0

1
ˆ,

2

m

i i
i

E F
−

=

= −∑w x w xɶ

where m is a number of patterns 0 1m−x x… in the training set tA . Let +w to be an optimal

value of the parameter w , such as (){ }arg min
W

E+ ∈
=

w
w w . Then, the approximation (),F +x wɶ of

the function ()F x is considered as adapted. The adapted approximation (),F +x wɶ simulates

original function ()F x for patterns x from the training set tA . In addition, this approximation

is able to predict the output classifier x̂ for unknown pattern x from the “test” set xA

(x tA A A= −). The function with such prediction ability partially substitutes the hypothetic

classificator ()F x . Since the function (),F x wɶ is only a model, we use a feed-forward neural

network for its implementation.

5.2 Biological neuron and its mathematical models

For a better understanding of artificial neural network architecture, there is a need to explain the
structure and functionality of a biological neuron. The human brain is a neural network of about
ten billions interconnected neurons. Each neuron is a cell that uses a biochemical reaction to
process and transmit information. The neural cell has a body of size about several micrometers
and thousands of input connections called “dendrites”. It also has one output connection called
“axon”, which can be several meters long. The data flow in the biological neural network is
represented by electrical signal, which propagates along the axon. When the signal reaches a
synaptic connection between the axon and a consecutive dendrite, it relieves molecules of
chemical agent (called mediators or neuro-transmitters) into such dendrite. This action causes a
local change of polarity of a dendrite transmission membrane. The difference in the polarity of
the transmission membrane activates a dendrite-somatic potential wave, which advances in a
system of branched dendrites into the body of neuron.

 44

Figure 5.2: The biological neuron

The biological neural network contains two types of synaptic connections. The first is an
excitive connection, which amplifies the passing signal. The second (inhibitive) connection
suppresses the signal. The behavior of the connection is represented by its “weight”. The neural
network contains mechanism which is able to alter the weights of connections. Because of this,
the system of synaptic weights is a realization of human memory. As the weights are
continually altered, the old information is being forgotten little by little.

terminal buttons

terminal button of axon

dendrite

neuro-transmitters

Cell body

axon

dendrite

Figure 5.3: (a) Schematic illustration of the neural cell (b) The synaptic connection

between a dendrite and terminal button of the axon

Since the problematic of the biological neuron is very difficult, the scientists proposed several
mathematical models, such as McCulloch-Pitts binary threshold neuron, or the percepton.

5.2.1 McCulloch-Pitts binary threshold neuron

The McCulloch-Pitts binary threshold neuron was the first model proposed by McCulloch and
Pitts in 1943. The neuron has only two possible output values (0 or 1) and only two types of the
synaptic weights: the fully excitative and the fully inhibitive. The excitative weight (1) does not
affect the input, but the inhibitive one negates it (-1).

 45

The weighted inputs are counted together and processed by a neuron as follows:

()

1

,
0

0 0

1 0

J

i j j i
j

y g w x

if
g

if

ϑ

ξ
ξ

ξ

−

=

 
= ⋅ − 

 
 

<
=  ≥

∑

This type of neuron can perform logical functions such as AND, OR, or NOT. In addition,
McCulloch and Pitts proved that synchronous array of such neurons is able to realize arbitrary
computational function, similarly as a Turing machine. Since the biological neurons have not
binary response (but continuous), this model of neuron is not suitable for its approximation.

5.2.2 Percepton

Another model of neuron is a percepton. It has been proved that McCulloch-Pitts networks with
modified synaptic connections can be trained for the recognition and classification. The training
is based on a modification of a neuron weights, according to the reaction of such neuron as
follows. If the neuron is not active and it should be, we increase the weights. If the neuron is
active and it should not be, we decrease them. This principle was been used in a first model of
the neural classifier called ADALINE (adaptive linear neuron). The major problem of such
networks is that they are not able to solve linearly nonseparable problems.

This problem has been solved when the scientists Rumelhart, Hilton and Williams proposed
the error back-propagation method of learning for multilayered percepton networks. The simple
McCulloch-Pitts binary threshold neurons have been replaced by neurons with continuous
saturation input/output function.

Percepton has multiple analogous inputs and one analogous output. Let 1o jx x −… be inputs

with corresponding weights ,0 , 1i i jw w −… . The weighted inputs are counted, thresholded and

saturated together in the following way:

()

1

,
0

1

1

J

i j j i
j

y g w x

g
e ξ

ϑ

ξ

−

=

−

 
= ⋅ − 

 
 

=
+

∑

where ()g ξ is a sigmoid saturation function (see figure 5.4.b) and iϑ is a threshold value.

Sometimes, the threshold is implemented as a dedicated input with a constant weight of -1 (see
figure 5.4.a). Then, the function of a neuron can be simplified to ()y g= ⋅x w , where x is a

vector of inputs (including the threshold value), and w is a vector of weights (including the
constant weight -1).

 46

0x

1x

2x

1Jx −

∑ g y

ϑ

1

1 e ξ−+

ξ

Figure 5.4: (a) The summation Σ and gain (saturation) g function of the percepton with a

threshold implemented as a dedicated input. (b) The sigmoid saturation function.

5.3 Feed-forward neural network

Formally, the neural network is defined as an oriented graph (),G N E= , where N is a non-

empty set of neurons, and E is a set of oriented connections between neurons. The connection

(),e n n E′ ∈ is a binary relation between two neurons n and n′ . The set of all neurons N is

composed of disjunctive sets 0N , 1N , 2N , where iN is a set of all neurons from the ith layer.

0 1 2N N N N= ∪ ∪

The jth weight of a ith neuron in a kth layer is denoted as ()
,
k

i jw and the threshold of ith neuron in a

kth layer is denoted as ()k
iϑ . Numbers of neurons for the input (0), hidden (1) and output (2)

layer are denoted as m , n , o , such as 0m N= , 1n N= and 2o N= .

The number of neurons in the input layer (m) is equal to a length of an input pattern x in
order that each value of the pattern is dedicated to one neuron. Neurons in the input layer do not
perform any computation function, but they only distribute values of an input pattern to neurons
in the hidden layer. Because of this, the input layer neuron has only one input directly mapped

into multiple outputs. Because of this, the threshold value (0)
iϑ of the input layer neuron is equal

to zero, and the weights of inputs (0)
,0iw are equal to one.

The number of neurons in the hidden layer (n) is scalable, but it affects the recognition
abilities of a neural network at a whole. Too few neurons in the hidden layer causes that the
neural network would not be able to learn new patterns. Too many neurons cause network to be
overlearned, so it will not be able to generalize unknown patterns as well.

The information in a feed-forward neural network is propagated from lower layers to upper
layers by one-way connections. There are connections only between adjacent layers, thus feed-
forward neural network does not contain feedback connections, or connections between
arbitrary two layers. In addition, there exist no connections between neurons from the same
layer.

 47

(2)
0ϑ (2)

1ϑ (2)
1oϑ −

0x 1x 1mx −

0y 1y 1oy −

(1)
0ϑ (1)

1ϑ (1)
1nϑ −

(0)
0ϑ (0)

1ϑ (0)
1mϑ −

0z 1z 1nz −

(1)
,i jw

(2)
,i jw

D
at
a
fl
o
w

Figure 5.5: Architecture of the three layer feed-forward neural network.

5.4 Adaptation mechanism of feed-forward neural network

There has been proven that a multilayered neural network composed of perceptons with a
sigmoid saturation function can solve an arbitrary non-linear problem. Mathematically, for each

function : m oF →ℝ ℝ there exists a multilayered feed-forward neural network that is able to
realize this function. The proof is based on the Kolmogorov’s theorem, which tells that every

continuously growing function f defined on interval 0,1
m

 can be written as:

() ()
2 1

0 1 ,
0 0

m m

m i i j j
i j

f x x xα φ
⋅ −

−
= =

 
=  

 
 

∑ ∑…

where iα are properly chosen continuous functions with one parameter.

The problem is how to construct the neural network corresponding to a given non-linear

function. At first, we choose a proper topology of the network. The number of neurons in the
input and output layer is given by lengths of the input and output patterns, while the number of
neurons in the hidden layer is scalable.

An adaptation of the neural network means finding the optimal parameter +w of the

approximation function (),F x wɶ discussed in section 5.1. Let us define two error functions to

evaluate a worthiness of the parameter w :

()()21
,

2

tA

t i i
i

E F= −∑ x w xɶ ɶ ; ()()21
,

2

xA

x i i
i

E F= −∑ x w xɶ ɶ

where subscript “t” means “train”, and “x” means “test”. The tE is an error function defined for

patterns from the training set, and xE for patterns from the test set. The response of the neural

network to an input pattern x is given as (),i iy F= x wɶ .

The error function tE goes down as a number of neurons in the hidden layer grows. This

relation is valid also between the function tE and a number of iterative steps of the adaptation
process. These relations can be mathematically described as follows:

 48

lim 0t
n

E
→∞

= ; lim 0t
k

E
→∞

=

where n is the number of neurons in the input layer and k is the number of iteration steps of
the adaptation process.

The error function xE does not have a limit at zero as n and k goes to infinity. Because of
this, there exists an optimal number of neurons and optimal number of iteration steps, in which
the function xE has a minimum (see figure 5.6).

 or n k

xE

tE

E

Figure 5.6: Dependency of error functions tE and xE on the number of neurons in input layer (n)

and the number of iteration steps (k).

For simplicity, we will assume only a feed-forward neural network with one layer of hidden
neurons defined in section 5.3. All neurons in adjacent layers are connected by oriented
connections. There are no feedback connections, or connections between neurons within a
single layer.

The activities of hidden and output neurons are defined as:

1
(1) (1)
,

0
activities of neurons in the hidden layer

m

i i j j i
j

z g w x ϑ
−

=

 
= ⋅ − 

 
 
∑ ;

1
(2) (2)
,

0
activities of neurons in the output layer

n

i i j j i
j

y g w z ϑ
−

=

 
= ⋅ − 

 
 
∑

where ()g ξ is a sigmoid saturation function (see figure 5.4.b).

5.4.1 Active phase

Evaluation of the activities of hidden and output neurons is performed in so-called “active
phase”. The active phase consists of two steps in three-layer neural networks. The first step is an
evaluation of activities iz in the hidden layer, and the second step is an evaluation of activities

iy . Since the evaluation of activities is performed from bottom layers to top ones, the term
“feed-forward” refers to this principle. The active phase corresponds to an approximation

(),F x wɶ of function ()F x , and it is performed every time when there is a need to classify the

input pattern x .
The following pseudo-code demonstrates the active phase of feed-forward neural network.

The notation is the same as in figure 5.5.

 49

procedure activePhase (input: w , // vector of thresholds and weights
 x ; // input pattern to be classified
 output: z , // vector of activities of neurons in hidden layer
 y // vector of activities of neurons in output layer (neural

network response)
)
begin

// first step: evaluate activities of neurons in the hidden layer
for each neuron in hidden layer with index 0, , 1i n∈ −… do
begin

let
(1)
iξ ϑ =  w

for each input with index 0, , 1j m∈ −… do

let
(1)
,i j jw xξ ξ  = + ⋅ w

let ()iz g ξ=

end

// second step: evaluate activities of neurons in the output layer
for each neuron in output layer with index 0, , 1i o∈ −… do
begin

let
(2)
iξ ϑ =  w

for each input with index 0, , 1j n∈ −… do

let
(2)
,i j jw zξ ξ  = + ⋅ w

let ()iy g ξ=

end
end

5.4.2 Partial derivatives and gradient of error function

The goal of the training phase is to find optimal values of thresholds and weights to minimize
the error function tE . Adaptation phase is an iterative process in which a response y to an input

pattern x is compared with the desired response x̂ . The difference between the obtained and
desired response is used for a correction of weights. The weights are iteratively altered until the
value of the error function tE is negligible.

Gradient of error function related to a single pattern

We compute a gradient g of an error function related to a single pattern x with desired and

obtained responses y and x̂ . The gradient g is computed in direction from upper layers to
lower layers as follows:

At first, we compute components of the gradient related to thresholds (2)
iϑ in the output

layer as

() ()(2)
ˆ 1i i i i

i

E
y x y y

ϑ
∂ = − ⋅ − ⋅

∂

 50

Then, we compute components of the gradient related to thresholds (1)
iϑ in the hidden layer.

These components are computed using the components
(2)
i

E

ϑ
∂

∂
 from the previous step as

follows:

()
1

(2)
,(1) (2)

0

1
o

i i i j
ji i

E E
z y w

ϑ ϑ

−

=

∂ ∂= ⋅ − ⋅
∂ ∂∑

Similarly, we compute components of the gradient related to weights (2)
,i jw and (1)

,i jw in the

following way:

(2) (2)
,

j
i j i

E E
z

w ϑ
∂ ∂= ⋅

∂ ∂
 ;

(1) (1)
,

j
i j i

E E
x

w ϑ
∂ ∂= ⋅

∂ ∂

The gradient g is a vector of components is given as follows:

(1) (1) (2) (2) (1) (1) (2) (2)
0 1 0 1 0,0 1, 1 0,0 1, 1

, , , , , , , , , , ,
n o n m o n

E E E E E E E E

w w w wϑ ϑ ϑ ϑ− − − − − −

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=  
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

g ⋯ ⋯ ⋯ ⋯

Overall gradient

The overall gradient is defined as a summary of gradients related to individual patterns of the
training set tA . Let ˆ/x xg be a gradient related to a training pair ̂/x x . The overall gradient is

computed as ˆ/
ˆ/

tA

∑ x x
x x

g .

5.4.3 Adaptation phase

The adaptation phase is an iterative process of finding optimal values of weight and thresholds,
for which a value of the error function tE is in a local minimum. The figure 5.7 schematically

illustrates a graph of the function tE - so called “error landscape”. Generally, the error

landscape is 1+w dimensional, where w is a cardinality of the vector of thresholds and

weights, such as:

()(1) (1) (2) (2) (1) (1) (2) (2)
0 1 0 1 0,0 1, 1 0,0 1, 1, , , , , , , , , , ,n o n m o nw w w wϑ ϑ ϑ ϑ− − − − − −=w ⋯ ⋯ ⋯ ⋯

 51

tE

w

Figure 5.7: The numeric approach of finding the global minimum in the error landscape.

The vector of optimal thresholds and weights +w is represented by a global minimum in the
error landscape. Since we cannot compute this minimum analytically, we have to use a numeric
approach. There are various numeric optimization algorithms, such as Newton’s method, or the
gradient descent. We use the gradient descent algorithm to find the global minimum in the error
landscape. The single step of the iterative algorithm can looks like follows:

()

()

1 () () () 1 ()
()

1 () () () 1 ()
, , , ,()

,

k l k l k l k l
i i i ik l

i

k l k l k l k l
i j i j i j i jk l

i j

E

E
w w w w

w

ϑ ϑ λ µ ϑ ϑ
ϑ

λ µ

+ −

+ −

∂= − + ⋅ −
∂

∂= − + ⋅ −
∂

where ()
,

k l
i jw is a weight of the connection between the ith neuron in lth layer and jth neuron in l-

1th layer computed in a kth step of iterative process.

The speed of convergence is represented by a parameter λ . Too small value of the
parameter λ causes excessively slow convergence. Too big value of the λ breaks the
monotony of convergence. The µ is a momentum value, which prevents the algorithm of
getting stuck in local minimums.

Note: The notation
()l
i

E

ϑ
 ∂
 ∂ 

g means “the component
()l
i

E

ϑ
∂

∂
 of the vector (or gradient). The

()l
i

E

ϑ
∂

∂
 is a partial derivative of error function E by the threshold value ()l

iϑ . Similarly, the

()
,
l

i j

E

w

∂
∂

 is a partial derivative of function E by the value of weight ()
,
l

i jw .

The whole adaptation algorithm of feed-forward neural network can be illustrated by the

following pseudo code.

 52

procedure adaptation (input: tA , // training set of patterns ˆ/x x

 λ , // speed of convergence
 µ , // momentum value

 maxk , // maximum number of iterations

 ε , // precision of adaptation process

 output: +w , // vector of optimal weights and thresholds

)
begin

initialize weights and thresholds in w to random values

let prev =w w // we haven’t a previous value of w at the beginning

let 0k = , E = ∞

while maxk k E ε≤ ∧ > do

begin
// compute overall gradient
zeroize overall gradient g

for each pair ˆ/x x of tA do

begin

// compute gradient ˆ/x xg for training pair ˆ/x x

zeroize gradient ˆ/x xg

activePhase(w , x , z , y) // compute activities z , y

for each threshold
(2)
iϑ do () ()ˆ/ (2)

ˆ 1i i i i
i

E
y x y y

ϑ
 ∂ = − ⋅ − ⋅ ∂ 

x xg

for each threshold
(1)
iϑ do

()
1

(2)
ˆ ˆ/ / ,(1) (2)

0

1
o

i i i j
ji i

E E
z y w

ϑ ϑ

−

=

   ∂ ∂
 = ⋅ − ⋅ ⋅     ∂ ∂   

∑x x x xg g w

for each weight
(2)
,i jw do ˆ ˆ/ /(2) (2)

,
j

i j i

E E
z

w ϑ
   ∂ ∂= ⋅   ∂ ∂    

x x x xg g

for each weight
(1)
,i jw do ˆ ˆ/ /(1) (1)

,
j

i j i

E E
x

w ϑ
   ∂ ∂= ⋅   ∂ ∂    

x x x xg g

let ˆ/= + x xg g g

end
// alter values of thresholds and weights according to the gradient g

for each threshold
()l
iϑ in +w do

let ()() () () ()
()

l l l l
next i i i prev il

i

Eϑ ϑ λ µ ϑ ϑ
ϑ

 ∂
       = − ⋅ + ⋅ −        ∂ 

w w g w w

for each weight
()
,
l

i jw in +w do

let ()() () () ()
, , , ,()

,

l l l l
next i j i j i j prev i jl

i j

E
w w w w

w
λ µ

 ∂
       = − ⋅ + ⋅ −        ∂  

w w g w w

let prev =w w , next=w w

end

let + =w w

end

 53

5.5 Heuristic analysis of characters

The segmentation algotithm described in chapter three can sometimes detect redundant
elements, which do not correspond to proper characters. The shape of these elements after
normalization is often similar to the shape of characters. Because of this, these elements are not
reliably separable by traditional OCR methods, although they vary in size as well as in contrast,
brightness or hue. Since the feature extraction methods described in chapter four do not consider
these properties, there is a need to use additional heuristic analyses to filter non-character
elements. The analysis expects all elements to have similar properties. Elements with
considerably different properties are treated as invalid and excluded from the recognition
process.

The analysis consists of two phases. The first phase deals with statistics of brighness and
contrast of segmented characters. Characters are then normalized and processed by the piece
extraction algorithm.

Since the piece extraction and normalization of brightness disturbs statistical properties of
segmented characters, it is necessary to proceed the first phase of analysis before the application
of the piece extraction algorithm.

In addition, the heights of detected segments are same for all characters. Because of this,
there is a need to proceed the analysis of dimensions after application of the piece extraction
algorithm. The piece extraction algorithm strips off white padding, which surrounds the
character.

Respecting the constraints above, the sequence of steps can be assembled as follows:

1. Segment the plate (result is in figure 5.8.a).
2. Analyse the brightness and contrast of segments and exclude faulty ones.
3. Apply the piece extraction algorithm on segments (result is in figure 5.8.b).
4. Analyse the dimensions of segments and exclude faulty ones.

Figure 5.8: Character segments before (a) and after (b) application of the piece extraction
algorithm. This algorithm disturbs statistical properties of brightness and contrast.

If we assume that there are not big differences in brightness and contrast of segments, we can
exclude the segments, which considerably differs from the mean. Let ith segment of plate be
defined by a discrete function (),if x y , where iw and ih are dimensions of the element. We

define the following statistical properties of an element:

The global brightness of such segment is defined as a mean of brightnesses of individual

pixels:

()()

0 0

,
i iw h

i
b

x y

p f x y
= =

=∑∑

 54

The global contrast of the ith segment is defined as a standard deviation of brightnesses of
individual pixels:

()()2()

0 0()

,
i iw h

i
b

x yi
c

i i

p f x y

p
w h

= =

−
=

⋅

∑∑

The function (),f x y represents only an intensity of grayscale images, but the additional

heuristic analysis of colors can be involved to improve the recognition process. This analysis
separates character and non-character elements on color basis. If the captured snapshot is
represented by a HSV color model, we can directly compute the global hue and saturation of the
segments as a mean of hue and saturation of individual pixels:

()()

0 0

,
i iw h

i
h

x y

p h x y
= =

=∑∑ ; ()()

0 0

,
i iw h

i
s

x y

p s x y
= =

=∑∑

where (),h x y and (),s x y is a hue and saturation of the certain pixel in the HSV color model.

If the captured snapshot is represented by a RGB color model, there is need to transform it to
the HSV model first.

To determine the validity of the element, we compute an average value of a chosen property

over all elements. For example, the average brightness is computed as
1

()

0

n
i

b b
i

p p
−

=

=∑ , where n is

a number of elements. The element i is considered as valid, if its global brightness ()i
bp does

not differ more than 16 % from the average brightness bp . The threshold values of individual
properties have been calibrated as follows:

brightness (BRI)
()

0.16
i

b b

b

p p

p

−
< Contrast (CON)

()

0.1
i

c c

c

p p

p

−
<

hue (HUE)
()

0.145
i

h h

h

p p

p

−
< Saturation (SAT)

()

0.24
i

s s

s

p p

p

−
<

Height (HEI) 0.2ih h

h

−
< width/height ratio

(WHR)
0.1 0.92i

i

w

h
< <

If the segment violates at least one of the constraints above, it is considered as invalid and
excluded from the recognition process. The table 5.1 contains properties of elements from figure
5.8. According to this table, elements 0 and 10 have been refused due to an uncommon
width/height ratio, and elements 1 and 4 due to a small height.

 55

 i BRI CON HUE SAT HEI WHR
Violated

constraints

 0 0.247 0.038 0.152 0.236 0.189 0.093 BRI,HUE,WHR

 1 0.034 0.096 0.181 0.134 -0.554 0.833 HUE,HEI

 2 0.002 0.018 0.030 0.038 0.040 0.642

 3 0.084 0.012 0.003 0.061 0.189 0.625

 4 0.001 0.003 0.021 0.059 -0.777 1.666 HEI,WHR

 5 0.117 0.016 0.002 0.063 0.189 0.625

 6 0.063 0.016 0.007 0.056 0.189 0.562

 7 0.025 0.011 0.025 0.028 0.114 0.533

 8 0.019 0.025 0.012 0.034 0.114 0.600

 9 0.019 0.048 0.009 0.045 0.114 0.533

 10 0.062 0.009 0.041 0.018 0.189 0.095 WHR

Table 5.1: Properties of segments in figure 5.8. The meaning of abbreviations is as follows:
BRI=brightness, CON=contrast, HUE=hue, SAT=saturation, HEI=height, WHR=width/height ratio.

 56

Chapter 6

Syntactical analysis of
recognized plate

6.1 Principle and algorithms

In some situations when the recognition mechanism fails, there is a possibility to detect a failure
by a syntactical analysis of the recognized plate. If we have country-specific rules for the plate,
we can evaluate the validity of that plate towards these rules. Automatic syntax-based correction
of plate numbers can increase recognition abilities of the whole ANPR system.

For example, if the recognition software is confused between characters „8“ and „B“, the
final decision can be made according to the syntactical pattern. If the pattern allows only digits
for that position, the character „8“ will be used rather than the character „B“.

Another good example is a decision between the digit „0“ and the character „O“. The very
small difference between these characters makes their recognition extremely difficult, in many
cases impossible.

6.1.1 Recognized character and its cost

In most cases, characters are recognized by neural networks. Each neuron in an output layer of a
neural network typically represents one character. Let ()0 9, , , , ,A Zy y y y=y … … be

a vector of output activities. If there are 36 characters in the alphabet, the vector y will be also
36-dimensional.

Let iy be an ith component of the vector y . Then, iy means how much does the input
character corresponds to the ith character in the alphabet, which is represented by this
component. The recognized character χ is represented by the greatest component of the vector
y :

{ }()
0
max i

i z
chr yχ

≤ ≤
=

where ()ichr y is the character, which is represented by the ith component of vector y .

Let ()Sy be a vector y descendingly sorted according to the values of components. Then,

the recognized character is represented by the first component of so sorted vector:

()()
0
Schr yχ =

When the recognition process fails, the first component of ()Sy can contain invalid
character, which does not match the syntax pattern. Then, it is necessary to use the next valid
character with a worse cost.

 57

6.1.2 Syntactical patterns

In praxis, ANPR systems must deal with many different types of plate numbers. Number plates
are not unified, so each country has own type. Because of this, number plate recognition system
should be able to recognize a type of the number plate, and automatically assign the correct
syntactical pattern to it. The assignation of the right syntactical pattern is a fundamental problem
in syntactical analysis.

Syntactical pattern is a set of rules defining characters, which can be used on a certain
position in a plate number. If the plate number P is a sequence of n alphanumerical characters

()(0) (1)np p −=P … , then the syntactical pattern `P is a n -tuple of sets ()(0) (1)` ` ` np p −=P … ,

and ()` ip is a set of all allowed characters for the ith position in a plate.
For example, czech number plates can contain digit on a first position followed by a

character denoting the region, where the plate has been registered and five other digits for
a registration number of a car. Formally, the syntactical pattern ̀P for czech number plates can
looks like this:

{ } { }
{ } { } { }
{ } { } { }

0,1,2,3,4,5,6,7,8,9 , C,B,K,H,L,T,N,E,P,A,S,U,J,Z ,

0,1,2,3,4,5,6,7,8,9 , 0,1,2,3,4,5,6,7,8,9 ,0,1,2,3,4,5,6,7,8,9 ,`

0,1,2,3,4,5,6,7,8,9 , 0,1,2,3,4,5,6,7,8,9 ,0,1,2,3,4,5,6,7,8,9

 
 

=  
  
 

P

6.1.3 Choosing the right pattern

If there are n syntactical patterns (0) (1)` ` n−P P… , we have to choose the most suitable one for
the evaluated plate number P . For this purpose, we define a metrics (or a cost) δ for a
computation of a similarity between the evaluated plate number and the corresponding
syntactical pattern:

{ } { }
1

() () () 2

()
0

0

1
() 10` `

max

n
i i i

i
i j

j z

p p p
y

δ
−

−

=
≤ ≤

 
 = ∉ + ×
  
 

∑P ,

where { }() () ()`i i ip p p∉ is a number of characters, which do not match to corresponding

positions in the syntactical pattern `P . Let ()iy be an output vector for the ith-recognized

character in a plate. The greatest component of that vector { }()

0
max i

j
j z

y
≤ ≤

 then indicates how

successfully the plate has been recognized. Then, the reciprocal value of { }()

0
max i

j
j z

y
≤ ≤

 is a cost

of the character. Another way of the cost evaluation is a usage of the Smith-Waterman
algorithm to compute the difference between the recognized plate number and the syntactical
pattern.

For example, assume that plate number ‘0B01234’ has been recognized as ‘0801234’, and

the recognition pattern does not allow digit at the second position of a plate. If the character “8”
has been recognized with similarity ratio of 0.90, and other characters with the ratio of 0.95, the
metrics for this pattern is determined as follows.

()
2 2 2 2 2 2 210 10 10 10 10 10 10

() 1 1,07426`
0.95 0.90 0.95 0.95 0.95 0.95 0.95

δ
− − − − − − − 

= + + + + + + + = 
 

P

 58

If there is a pattern that exactly matches to the evaluated plate number, we can say that number
has been correctly recognized, and no further corrections are needed. In addition, it is not
possible to detect a faulty number plate, if it does not break rules of a syntactical pattern.
Otherwise, it is necessary to correct detected plate using the pattern with lowest cost δ :

(){ }() ()

0
arg min` `sel i

i n
δ

≤ <
=P P

The correction of a plate means the replacement of each invalid character by another one. If the

character ()ip at the ith position of the plate P does not match the selected pattern ()` selP , it will

be replaced by the first valid one from ()sy . ()sy is a sorted vector of output activities denoting

how much the recognized character is similar to an individual character from the alphabet.
Heuristic analysis of a segmented plate can sometimes incorrectly evaluate non-character

elements as characters. Acceptance of the non-character elements causes that the recognized
plate will contain redundant characters. Redundant characters occur usually on sides of the
plate, but rarely in the middle.

If the recognized plate number is longer than the longest syntax pattern, we can select the
nearest pattern, and drop the redundant characters according to it.

 59

Chapter 7

Tests and final
considerations

7.1 Choosing the representative set of snapshots

I have captured many of static snapshots of vehicles for the test purposes. Random moving and
standing vehicles with Slovak and Czech number plates have been included. At first, my
objective was to find a representative set of number plates, which are recognizable by humans.
Of course, the set like this contains extremely wide spectrum of plates, such as clear and easy
recognizable as well as plates degraded by the significant motion blur or skew.

Then, a recognition ability of a machine is represented by a ratio between the number of
plates, which have been recognized by the machine, and the number of plates recognized by a
human. Practically, it is impossible to build a machine with the same recognition abilities as a
human has. Because of this, the test like this is extremely difficult and useless.

In praxis, it is more useful to find a representative set of number plates, which can be
captured by an ANPR camera. The position of the camera has a significantly affects the quality
of captured images, and a successfulness of the whole recognition process. The suitable position
of the camera towards the lane can lead to a better set of all possible snapshots. In some
situations, we can avoid of getting skewed snapshots by a suitable positioning of the camera.
Sometimes, this is cleverer than a development of the robust de-skewing mechanisms.

Let S be a representative set of all snapshots, which can be captured by a concrete instance
of the ANPR camera. Some of the snapshots in this set can be blurred, some of them can be too
small, too big, too skewed or too deformed. Because of this, I have divided the whole set into a
following subsets:

lesbc SSSSSS ∪∪∪∪=

where cS is a subset of “clear” plates, bS is a subset of blurred plates, sS is a subset of skewed

plates, eS is a subset of plates, which has a difficult surrounding environment, and lS is a

subset of plates with little characters.

 60

A B

C D

Figure 7.1: Typical snapshot from the set of (a) clear plates (b) plates with little, or blurred
characters (c) skewed plates (d) plates with difficult surrounding environment

7.2 Evaluation of a plate number correctness

Plate numbers recognized by a machine can sometimes differ from the correct ones. Because of
this, there is a need to define formulas and rules, which will be used to evaluate a degree of
plate correctness.

Let P be a plate number, and { }(0) (-1), , nS = P P… be a set of all tested plate numbers.

Then, recognition rate ()R S of the ANPR system tested on set S is calculated as:

() ()
1

()

0

1 n
i

i

R S s
n

−

=

= ∑ P ,

where n is a cardinality of the set S , and ()s P is a correctness score of the plate P . The
correctness score is a value, which express how successfully the plate has been recognized.

Now the question is how to define the correctness score of individual plates. There are two
different approaches, how to evaluate it. The first is a binary score, and the second is a weighted
score.

7.2.1 Binary score

Let us say, that plate number P is a sequence of n alphanumerical characters

()(0) (1), , np p −=P … . If ()rP is the plate number recognized by a machine, and ()cP is the

correct one, then binary score bs of plate ()rP is evaluated as follows:

 61

()
() ()

()

() ()

0

1

r c
r

b r c

if
s

if

 ≠= 
=

P P
P

P P

Two plate numbers are equal, if all characters on corresponding positions are equal:

() ()() () () ():r c r r
i ji j p p i j= ⇔ ∀ ∀ ≠ ⇒ ≠P P ,

where ()r
ip is the ith character of plate number ()rP

7.2.2 Weighted score

If ()rP is a plate number recognized by a machine, and ()cP is the correct one, then weighted

score ws of plate ()rP is given as:

() { }
{ }

() () ()

()

()

r r c
i i i

r
w r

i

p p p m
s

np

=
= =P

where m is the number of correctly recognized characters, and n is the number of all characters
in plate.

For example if the plate “KE123AB” has been recognized as “KE128AB”, the weighted
correctness score for this plate is 0.85, but the binary score is 0.

7.3 Results

The table 7.1 shows recognition rates, which has been achieved while testing on various set of
number plates. According to the results, this system gives good responses only to clear plates,
because skewed plates and plates with difficult surrounding environment causes significant
degradation of recognition abilities.

 Total number
of plates

Total number
of characters

Weighted score

Clear plates 68 470 87.2
Blurred plates 52 352 46.87
Skewed plates 40 279 51.64
Average plates 177 1254 73.02

Table 7.1: Recognition rates of the ANPR system.

 62

Summary

The objective of this thesis was to study and resolve algorithmic and mathematical aspects of
the automatic number plate recognition systems, such as problematic of machine vision, pattern
recognition, OCR and neural networks. The problematic has been divided into several chapters,
according to a logical sequence of the individual recognition steps. Even though there is a
strong succession of algorithms applied during the recognition process, chapters can be studied
independently.

This work also contains demonstration ANPR software, which comparatively demonstrates
all described algorithms. I had more choices of programming environment to choose from.
Mathematical principles and algorithms should not be studied and developed in a compiled
programming language. I have considered usage of the Matlab™ and the Java™. Finally, I
implemented ANPR in Java rather than in Matlab, because Java™ is a compromise
programming environment between the Matlab™ and compiled programming language, such as
C++. Otherwise, I would have to develop algorithms in Matlab, and then rewrite them into a
compiled language as a final platform for their usage in the real environment.

ANPR solution has been tested on static snapshots of vehicles, which has been divided into
several sets according to difficultness. Sets of blurry and skewed snapshots give worse
recognition rates than a set of snapshots, which has been captured clearly. The objective of the
tests was not to find a one hundred percent recognizable set of snapshots, but to test the
invariance of the algorithms on random snapshots systematically classified to the sets according
to their properties.

 63

Appendix A: Case study

134.jpg width:488 px height:366 px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 488 px height: 30 px

Detected plate Skew detection

1.44°

Segmentation Number of detected characters: 10

Recognized plate

RK959AF

 64

149.jpg width:526 px height:350 px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 526 px height: 28 px

Detected plate Skew detection

0.0°

Segmentation Number of detected characters: 10

Recognized plate

RK959AD

 65

034.jpg width:547 px height:410 px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 547 px height: 42 px

Detected plate Skew detection

-2.656°

Segmentation Number of detected characters: 11

Recognized plate

LM010BE

 66

049.jpg width:410 px height:360 px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 410 px height: 27 px

Detected plate Skew detection

-5.762°

Segmentation Number of detected characters: 10

Recognized plate

RK878AC

 67

040.jpg width:576 px height:432 px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 576 px height: 21 px

Detected plate Skew detection

0.0°

Segmentation Number of detected characters: 11

Recognized plate

BA738DE

 68

098.jpg width: 425 px height: 330
px

The plate has been
successfully recognized
- no further comment

needed.

Detected band width: 425 px height: 28 px

Detected plate Skew detection

0.0°

Segmentation Number of detected characters: 9

Recognized plate

1B19839

 69

60.jpg width:424 px height:336 px Class: blurred characters

A significant blur
caused improper
detection of the band in
a graph of vertical
projection. In addition,
further heuristic
analyses did not detect
this fault. Because of
this, the incorrect
candidate to number
plate has been
deskewed and then
segmented even though
it does not have any
semantics.

Point of failure: vertical
projection and heuristic
analysis of band.

Detected band width: 424 px height: 141 px

Detected plate Skew detection

0.136°

Segmentation Number of detected characters: 6

Recognized plate

N/A

 70

023.jpg width:354 px height:308 px Class: difficult environment

This is a typical
snapshot with a
difficult surrounding
environment. The table
in the background
contains more
characters in one line
than a number plate in
the foreground. This
fact causes a bigger
amount of horizontal
edges in an area of the
table. The three
detected peaks in the
graph of the horizontal
projection correspond
to three rows in the
table. Although the
number plate candidate
is wrong, the further
analysis did not refuse
it, because the number
of characters (10) is
within the allowed
range.

Detected band width: 354 px height: 19 px

Detected plate Skew detection

-1.169°

Segmentation Number of detected characters: 10

Recognized plate

0CNCKEP

 71

044.jpg width:530 px height:397 px Class: skewed plates

The part of graph
corresponding to the
peak “2” (in vertical
graph) has a wider
distribution due to the
improper vertical
projection caused by a
skew of the plate.
Because of this, the
bottom of the last
character “E” has been
cut off improperly.

Point of failure :
vertical projection –
band clipping

Detected band width: 530 px height: 30 px

Detected plate Skew detection

5.599°

Segmentation Number of detected characters: 7

Recognized plate

RK892AF

 72

067.jpg width:402 px height:298 px Class: extremely small characters

This snapshot contains
extremely small
characters, which are
not distinguishable by a
machine. The number
plate has been properly
detected and characters
have been segmented as
well, but it is very hard
to distinguish between
the “B” and “8” on the
first position and
between the “6” and
“8” on the third
position of plate.

Point of failure :
character recognition

Detected band width: 402 px height: 21 px

Detected plate Skew detection

4.00°

Segmentation Number of detected characters: 10

Recognized plate

8Y849A4

 73

Appendix B: Demo recognition software - User’s manual

JavaANPR is an ANPR recognition software that demonstrates principles described in this
thesis. It is written in the Java programming language. If you want to run it, you will need the
Java 1.5.0 SE runtime environment (or higher).

After downloading the distribution package, please unpack it into a chosen directory. The
distribution package contains compiled program classes, jar archive, source codes and
additional program resources such as bitmaps, neural networks etc.

build Compiled classes
dist Distribution directory, contains JAR file and additional resources
lib Compile-time libraries
nbproject Project metadata and build configuration
resources Resources, configuration file, bitmaps, neural networks
src Source files

1. Cleaning, compiling and building the project (optional)

Normally, you do not have to compile the project, because distribution package already contains
precompiled binaries. If you want to recompile it again, you can do it using the “Apache Ant”
utility.

At first, change a working directory to the “javaanpr”, and type the following command to
clean the previous build of the JavaANPR. Issuing this command will delete whole content of
the build and dist directories:

javaanpr # ant clean

Then, issue the “ant compile ” and “ant jar ” commands. The “compile ” target will
compile all source files in the src directory. The “jar ” target will create the “dist ” directory
with a jar archive and additional run-time resources.

javaanpr # ant compile
javaanpr # ant jar

2. Running the viewer

You can run the interactive ANPR viewer using the ant by typing the following command:

javaanpr # ant run

If you do not have installed the ANT utility, you can run viewer manually by the following
commands:

javaanpr # cd ./dist
dist # java –jar javaanpr.jar

Another way to run the viewer is a double-click to a javaanpr.jar archive (in the MS
Explorer)

 74

Figure B.1: Graphical user interface of the JavaANPR viewer

Important: By default, the program expects the configuration file “config.xml” and other
resources in the working directory. Because of this, please do not run the jar archive from other
directories. Otherwise, the program will not be able to start.

3. Using command-line arguments

Besides the graphical user interface, program also contains additional functions, which are
accessible using the command-line arguments. For more information about it, please run the jar
file with a “-help” command:

Automatic number plate recognition system
Copyright (c) Ondrej Martinsky, 2006-2007

Licensed under the Educational Community License

Usage : java -jar javaanpr.jar [-options]

Where options include:

 -help Displays this help
 -gui Run GUI viewer (default choice)
 -recognize -i <snapshot>

Recognize single snapshot
 -recognize -i <snapshot> -o <dstdir>

Recognize single snapshot and save report html into
specified directory

 -newconfig -o <file>
Generate default configuration file

 -newnetwork -o <file>
Train neural network according to specified feature
extraction method and learning parameters (in confi g.
file) and saves it into output file

 -newalphabet -i <srcdir> -o <dstdir>
Normalize all images in <srcdir> and save it to <ds tdir>.

3.1 Command-line recognition

If you do not want to use the GUI viewer, you can recognize snapshot by issuing the following
command. The recognized plate will be written to standard output.

 75

dist # java –jar javaanpr.jar –recognize –i <name o f image>

3.2 Recognition report

Sometimes, it is good to see inside the recognition process of concrete image. Because of this,
JavaANPR supports a generation of HTML reports. The recognition report contains images and
verbose debugging information about each step of the recognition process. HTML report can be
used to determine a point, in which the recognition process failed.

The following command will recognize the image specified by its name, and save the report
into a specified destination directory:

dist # java –jar javaanpr.jar –recognize –i <name o f image>
-o <destination directory>

3.3 Creating the default configuration file

Configuration file contains settings and parameters, which are needed during the recognition
process. If configuration file does not exist, program will not be able to start. Because of this,
JavaANPR is able to generate a default configuration file with recommended configuration
settings by the following command:

dist # java –jar javaanpr.jar -newconfig -o <file>

 76

Bibliography

[1] Fajmon B.: Numeric Math and Probability , scripts, Faculty of Electrical Engineering
and Communication, Brno, Czech Republic, 2005

[2] Fraser N.: Introduction to Neural Networks,
http://www.virtualventures.ca/~neil/neural/neuron.html

[3] Fukunaga K.: Introduction to statistical pattern recognition, Academic Press, San
Diego, USA, 1990

[4] Gonzalez R., Woods R.: Digital Image Processing, Prentice Hall, Upper Saddle River,
New Jersey, 2002

[5] Kovar M.: Discreet Math, scripts, Faculty of Electrical Engineering
and Communication, Brno, Czech Republic, 2003

[6] Kuba M.: Neural Networks, scripts, Faculty of Informatics, Masaryk University, Brno,
Czech Republic

[7] Kvasnicka V., Benuskova L., Pospichal J., Farkas I., Tino P., Kral A.: Introduction to
Neural Networks, Technical University, Kosice, Slovak Republic

[8] Minsky M., Papert S.: Perceptons. An Introduction to Computational Geometry , MIT
Press:. Cambridge, Massachusetts, 1969

[9] Shapiro V., Dimov D., Bonchev S., Velichkov V., Gluhchev G.: Adaptive License Plate
Image Extraction, International Conference Computer Systems and Technologies,
Rousse, Bulgaria, 2004

[10] Smagt P.: Comparative study of neural network algorithms applied to optical
character recognition, International conference on Industrial and engineering
applications of artificial intelligence and expert systems, Charleston, South Carolina,
USA, 1990

[11] Srivastava R: Transformations and distortions tolerant recognition of numerals using
neural networks, ACM Annual Computer Science Conference, San Antonio, Texas,
USA, 1991

[12] Wang J., Jean J.: Segmentation of merged characters by neural networks and
shortest-path, Symposium on Applied Computing, Indianapolis, Indiana, USA, 1993

[13] Zboril F.: Neural Networks, Department of Intelligent Systems, Faculty of Information
Technology, BUT Brno, Czech Republic

[14] Zhang Y., Zhang C.: New Algorithm for Character Segmentation of License Plate,
Intelligent Vehicles Symposium, IEEE, 2003

[15] ANPR-tutorial.com , Quercus technologies, 2006

