
BRNO UNIVERSITY OF TECHNOLOGY 
  
 
 
 

FACULTY OF INFORMATION TECHNOLOGY 
DEPARTMENT OF INTELLIGENT SYSTEMS 
 
  
  
 
 

ALGORITHMIC AND MATHEMATICAL 
PRINCIPLES OF AUTOMATIC NUMBER PLATE 
RECOGNITION SYSTEMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
B.SC. THESIS 
 

AUTHOR   ONDREJ MARTINSKY 
  

BRNO 2007   
 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2007 Ondrej Martinsky 

The author is indebted to the supervisor of this thesis, doc. Ing. František Zbořil, CSc. for his 
great help. 

THIS WORK IS A PART OF THE RESEARCH PLAN "SECURITY-ORIENTED 
RESEARCH IN INFORMATION TECHNOLOGY, MSM 0021630528" AT BRNO 
UNIVERSITY OF TECHNOLOGY 

Licensed under the terms of Creative Commons License, Attribution-NonCommercial-NoDerivs 
2.5. You are free to copy, distribute and transmit this work under the following conditions. You 
must attribute the work in the manner specified by the author or licensor (but not in any way 
that suggests that they endorse you or your use of the work). You may not use this work for 
commercial purposes. For further information, please read the full legal code at  
http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode  



 iii  

Abstract 
This work deals with problematic from field of artificial intelligence, machine vision and neural 
networks in construction of an automatic number plate recognition system (ANPR). This 
problematic includes mathematical principles and algorithms, which ensure a process of number 
plate detection, processes of proper characters segmentation, normalization and recognition. 
Work comparatively deals with methods achieving invariance of systems towards image skew, 
translations and various light conditions during the capture. Work also contains an 
implementation of a demonstration model, which is able to proceed these functions over a set of 
snapshots. 
Key Words: 

Machine vision, artificial intelligence, neural networks, optical character recognition, ANPR 
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Chapter 1 

Introduction 

1.1 ANPR systems as a practical application of artificial intelligence 

Massive integration of information technologies into all aspects of modern life caused demand 
for processing vehicles as conceptual resources in information systems. Because a standalone 
information system without any data has no sense, there was also a need to transform 
information about vehicles between the reality and information systems. This can be achieved 
by a human agent, or by special intelligent equipment which is be able to recognize vehicles by 
their number plates in a real environment and reflect it into conceptual resources. Because of 
this, various recognition techniques have been developed and number plate recognition systems 
are today used in various traffic and security applications, such as parking, access and border 
control, or tracking of stolen cars. 

In parking, number plates are used to calculate duration of the parking. When a vehicle 
enters an input gate, number plate is automatically recognized and stored in database. When a 
vehicle later exits the parking area through an output gate, number plate is recognized again and 
paired with the first-one stored in the database. The difference in time is used to calculate the 
parking fee. Automatic number plate recognition systems can be used in access control. For 
example, this technology is used in many companies to grant access only to vehicles of 
authorized personnel. 

In some countries, ANPR systems installed on country borders automatically detect and 
monitor border crossings. Each vehicle can be registered in a central database and compared to a 
black list of stolen vehicles. In traffic control, vehicles can be directed to different lanes for a 
better congestion control in busy urban communications during the rush hours. 

1.2 Mathematical aspects of number plate recognition systems 

In most cases, vehicles are identified by their number plates, which are easily readable for 
humans, but not for machines. For machine, a number plate is only a grey picture defined as a 
two-dimensional function ),( yxf , where x  and y  are spatial coordinates, and f  is a light 
intensity at that point. Because of this, it is necessary to design robust mathematical machinery, 
which will be able to extract semantics from spatial domain of the captured image. These 
functions are implemented in so-called “ANPR systems”, where the acronym “ANPR” stands 
for an “Automatic Number Plate Recognition”. ANPR system means transformation of data 
between the real environment and information systems.  

The design of ANPR systems is a field of research in artificial intelligence, machine vision, 
pattern recognition and neural networks. Because of this, the main goal of this thesis is to study 
algorithmic and mathematical principles of automatic number plate recognition systems. 

Chapter two deals with problematic of number plate area detection. This problematic 
includes algorithms, which are able to detect a rectangular area of the number plate in original 
image. Humans define the number plate in a natural language as a “small plastic or metal plate 
attached to a vehicle for official identification purposes”, but machines do not understand this 
definition. Because of this, there is a need to find an alternative definition of the number plate 
based on descriptors, which will be comprehensible for machines. This is a fundamental 
problem of machine vision and of this chapter. 

Chapter three describes principles of the character segmentation. In most cases, characters 
are segmented using the horizontal projection of a pre-processed number plate, but sometimes 
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these principles can fail, especially if detected number plates are too warped or skewed. Then, 
more sophisticated segmentation algorithms must be used. 

Chapter four deals with various methods normalization and detection of characters. At first, 
character dimensions and brightness must be normalized to ensure invariance towards a size and 
light conditions. Then, a feature extraction algorithm must be applied on a character to filter 
irrelevant data. It is necessary to extract features, which will be invariant towards character 
deformations, used font style etc. 

Chapter five studies pattern classifiers and neural networks and deals with their usage in 
recognition of characters. Characters can be classified and recognized by the simple nearest 
neighbor algorithm (1NN) applied to a vector of extracted features, or there is also possibility to 
use one of the more sophisticated classification methods, such as feed-forward or Hopfield 
neural networks. This chapter also presents additional heuristic analyses, which are used for 
elimination of non-character elements from the plate. 

Sometimes, the recognition process may fail and the detected plate can contain errors. Some 
of these errors can be detected by a syntactical analysis of the recognized plate. If we have a 
regular expression, or a rule how to evaluate a country-specific license plate, we can reconstruct 
defective plates using this rule. For example, a number zero “0” can be automatically repaired to 
a character “O” on positions, where numbers are not allowed. Chapter six deals with this 
problematic. 

1.3 Physical aspects of number plate recognition systems 

Automatic number plate recognition system is a special set of hardware and software 
components that proceeds an input graphical signal like static pictures or video sequences, and 
recognizes license plate characters from it. A hardware part of the ANPR system typically 
consists of a camera, image processor, camera trigger, communication and storage unit. 

The hardware trigger physically controls a sensor directly installed in a lane. Whenever the 
sensor detects a vehicle in a proper distance of camera, it activates a recognition mechanism. 
Alternative to this solution is a software detection of an incoming vehicle, or continual 
processing of the sampled video signal. Software detection, or continual video processing may 
consume more system resources, but it does not need additional hardware equipment, like the 
hardware trigger. 

Image processor recognizes static snapshots captured by the camera, and returns a text 
representation of the detected license plate. ANPR units can have own dedicated image 
processors (all-in-one solution), or they can send captured data to a central processing unit for 
further processing (generic ANPR). The image processor is running on special recognition 
software, which is a key part of whole ANPR system. 

Because one of the fields of application is a usage on road lanes, it is necessary to use a 
special camera with the extremely short shutter. Otherwise, quality of captured snapshots will 
be degraded by an undesired motion blur effect caused by a movement of the vehicle. For 
example, usage of the standard camera with shutter of 1/100 sec to capture a vehicle with speed 
of 80 km/h will cause a motion skew in amount of 0.22 m. This skew means the significant 
degradation of recognition abilities. 

There is also a need to ensure system invariance towards the light conditions. Normal 
camera should not be used for capturing snapshots in darkness or night, because it operates in a 
visible light spectrum. Automatic number plate recognition systems are often based on cameras 
operating in an infrared band of the light spectrum. Usage of the infrared camera in combination 
with an infrared illumination is better to achieve this goal. Under the illumination, plates that are 
made from reflexive material are much more highlighted than rest of the image. This fact makes 
detection of license plates much easier. 
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Figure 1.1:  (a) Illumination makes detection of reflexive image plates easier. (b) Long 

camera shutter and a movement of the vehicle can cause an undesired motion blur effect. 

1.4 Notations and mathematical symbols 

Logic symbols 

p q⊕  Exclusive logical disjunction ( xor p q ) 
p q∧  Logical conjunction (  and p q ) 
p q∨  Logical disjunction (  or p q ) 

p¬  Exclusion (not p ) 

Mathematical definition of image 

( ),f x y  x  and y  are spatial coordinates of an image, and f  is an intensity of light at 

that point. This function is always discrete on digital computers. 

0 0x y∈ ∧ ∈ℕ ℕ , where 0ℕ  denotes the set of natural numbers including 
zero. 

 

( )f p  The intensity of light at point p .  ( ) ( ),f p f x y= , where [ ],p x y=  

Pixel neighborhoods 

1 4 2Np pɺɺ  Pixel 1p  is in a four-pixel neighborhood of pixel 2p  (and vice versa) 

1 8 2Np pɺɺ  Pixel 1p  is in an eight-pixel neighborhood of pixel 2p  (and vice versa) 

Convolutions 

( ) ( )a x b x∗  Discrete convolution of signals ( )a x  and  ( )b x  

( ) ( )a x b x∗ɶ  Discrete periodical convolution of signals ( )a x  and  ( )b x  
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Vectors and sets 

[ ],x ym  The element in xth column and yth row of matrix m . 

maxA  The maximum value contained in the set A . The scope of elements can be 
specified by additional conditions 

min A  The minimum value contained in the set A  
mean A  The mean value of the elements contained in the set A   
median A  The median value of the elements contained in the set A  
A  The cardinality of the set A . (Number of elements contained in the set) 

x  Vectors or any other ordered sequences of numbers are printed bold.  

ix  The elements of vectors are denoted as ix , where i  is a sequence number 

(starting with zero), such as 0 1i n∈ −… , where n = x  is a cardinality of the 

vector (number of elements) 

[ ]ax  The element a  of the vector x . For example, the vector x  can contain 

elements a , b , c , d , such as ( ), , ,a b c d=x  
( )ix  If there is more than one vector denoted as x , they are distinguished by their 

indexes i . The upper index ( )i  does not mean the ith element of vector. 

Intervals 

a x b< <  x  lies in the interval between a  and b . This notation is used when x  is the 
spatial coordinate in image (discrete as well as continuous) 

x a b∈ …  This notation has the same meaning as the above one, but it is used when x  is 
a discrete sequence number. 

Quantificators 

x∃  There exists at least one x  
!x∃  There exists exactly one x  
n x∃  There exists exactly n x  

x¬∃  There does not exist x  
x∀  For every x  

Rounding  

x    Number x  rounded down to the nearest integer 

x    Number x  rounded up to the nearest integer 
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Chapter 2 

Principles of number plate 
area detection 
The first step in a process of automatic number plate recognition is a detection of a number plate 
area. This problematic includes algorithms that are able to detect a rectangular area of the 
number plate in an original image. Humans define a number plate in a natural language as a 
“small plastic or metal plate attached to a vehicle for official identification purposes”, but 
machines do not understand this definition as well as they do not understand what “vehicle”, 
“road”, or whatever else is. Because of this, there is a need to find an alternative definition of a 
number plate based on descriptors that will be comprehensible for machines.  

Let us define the number plate as a “rectangular area with increased occurrence of 
horizontal and vertical edges”. The high density of horizontal and vertical edges on a small area 
is in many cases caused by contrast characters of a number plate, but not in every case. This 
process can sometimes detect a wrong area that does not correspond to a number plate. Because 
of this, we often detect several candidates for the plate by this algorithm, and then we choose 
the best one by a further heuristic analysis. 

Let an input snapshot be defined by a function ( ),f x y , where x  and y  are spatial 

coordinates, and f  is an intensity of light at that point. This function is always discrete on 

digital computers, such as 0 0x y∈ ∧ ∈ℕ ℕ , where 0ℕ  denotes the set of natural numbers 
including zero.  We define operations such as edge detection or rank filtering as mathematical 
transformations of function f . 

The detection of a number plate area consists of a series of convolve operations. Modified 
snapshot is then projected into axes x  and y . These projections are used to determine an area 
of a number plate. 

2.1 Edge detection and rank filtering 

We can use a periodical convolution of the function f  with specific types of matrices m  to 
detect various types of edges in an image: 

( ) ( ) [ ] ( ) ( ) ( )
1 1

0 0

, , , , mod ,mod
w h

w h
i j

f x y f x y x y f x y x i y j
− −

= =

′  = ∗ = ⋅ − − ∑∑m mɶ  

where w  and h  are dimensions of the image represented by the function f  
 

Note: The expression [ ],x ym  represents the element in xth column and yth row of matrix m . 

2.1.1 Convolution matrices 

Each image operation (or filter) is defined by a convolution matrix. The convolution matrix 
defines how the specific pixel is affected by neighboring pixels in the process of convolution. 
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Individual cells in the matrix represent the neighbors related to the pixel situated in the centre of 
the matrix. The pixel represented by the cell y  in the destination image (fig. 2.1) is affected by 

the pixels 0 8x x…  according to the formula: 

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8y x m x m x m x m x m x m x m x m x m= × + × + × + × + × + × + × + × + ×  

 
Figure 2.1: The pixel is affected by its neighbors according to the convolution matrix. 

Horizontal and vertical edge detection 

To detect horizontal and vertical edges, we convolve source image with matrices hem  and vem . 
The convolution matrices are usually much smaller than the actual image. Also, we can use 
bigger matrices to detect rougher edges. 

1 1 1

0 0 0

1 1 1
he

− − − 
 =  
 
 

m   ; 

1 0 1

1 0 1

1 0 1
ve

− 
 = − 
 − 

m  

Sobel edge detector 

The Sobel edge detector uses a pair of 3x3 convolution matrices. The first is dedicated for 
evaluation of vertical edges, and the second for evaluation of horizontal edges. 

1 2 1

0 0 0

1 2 1
x

− − − 
 =  
 
 

G  ; 

1 0 1

2 0 2

1 0 1
y

− 
 = − 
 − 

G  

The magnitude of the affected pixel is then calculated using the formula 2 2
x y= +G G G . In 

praxis, it is faster to calculate only an approximate magnitude as x y= +G G G . 

Horizontal and vertical rank filtering 

Horizontally and vertically oriented rank filters are often used to detect clusters of high density 
of bright edges in the area of the number plate. The width of the horizontally oriented rank filter 
matrix is much larger than the height of the matrix ( w h≫ ), and vice versa for the vertical rank 
filter ( w h≪ ).  

To preserve the global intensity of an image, it is necessary to each pixel be replaced with 
an average pixel intensity in the area covered by the rank filter matrix. In general, the 
convolution matrix should meet the following condition:  
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[ ]
1 1

0 0

, 1.0
w h

hr
i j

i j
− −

= =

=∑∑m  

where w  and h  are dimensions of the matrix. 
The following pictures show the results of application of the rank and edge detection filters.  

 

 

Figure 2.2:  (a) Original image (b) Horizontal rank filter (c) Vertical rank filter (d) 
Sobel edge detection (e) Horizontal edge detection (f) Vertical edge detection 

2.2 Horizontal and vertical image projection 

After the series of convolution operations, we can detect an area of the number plate according 
to a statistics of the snapshot. There are various methods of statistical analysis. One of them is a 
horizontal and vertical projection of an image into the axes x  and y .  

The vertical projection of the image is a graph, which represents an overall magnitude of the 
image according to the axis y  (see figure 2.3). If we compute the vertical projection of the 
image after the application of the vertical edge detection filter, the magnitude of certain point 
represents the occurrence of vertical edges at that point. Then, the vertical projection of so 
transformed image can be used for a vertical localization of the number plate. The horizontal 
projection represents an overall magnitude of the image mapped to the axis x .  
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Figure 2.3: Vertical projection of image to a y  axis 

Let an input image be defined by a discrete function ( ),f x y . Then, a vertical projection yp  of 

the function f  at a point y  is a summary of all pixel magnitudes in the yth row of the input 

image. Similarly, a horizontal projection at a point x  of that function is a summary of all 
magnitudes in the xth column. 

 
We can mathematically define the horizontal and vertical projection as: 

( ) ( )
1

0

,
h

x
j

p x f x j
−

=

=∑    ;    ( ) ( )
1

0

,
w

y
i

p y f i y
−

=
=∑  

where w  and h  are dimensions of the image.  

2.3 Double-phase statistical image analysis 

The statistical image analysis consists of two phases. The first phase covers the detection of a 
wider area of the number plate. This area is then deskewed, and processed in the second phase 
of analysis. The output of double-phase analysis is an exact area of the number plate.  These two 
phases are based on the same principle, but there are differences in coefficients, which are used 
to determine boundaries of clipped areas.  

The detection of the number plate area consists of a “band clipping” and a “plate clipping”. 
The band clipping is an operation, which is used to detect and clip the vertical area of the 
number plate (so-called band) by analysis of the vertical projection of the snapshot. The plate 
clipping is a consequent operation, which is used to detect and clip the plate from the band (not 
from the whole snapshot) by a horizontal analysis of such band. 

Snapshot 

Assume the snapshot is represented by a function ( ),f x y , where 0 1x x x≤ ≤  and 0 1y y y≤ ≤ . 

The [ ]0 0,x y  represents the upper left corner of the snapshot, and [ ]1 1,x y  represents the bottom 

right corner. If w  and h  are dimensions of the snapshot, then 0 0x = , 0 0y = , 1 1x w= −  and 

1 1y h= − . 
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Band 

The band b  in the snapshot f  is an arbitrary rectangle ( )0 0 1 1, , ,b b b bb x y x y= , such as: 

( ) ( ) ( )0 min 1 max min 0 1 maxb b b bx x x x y y y y= ∧ = ∧ ≤ < ∧  

Plate 

Similarly, the plate p  in the band b  is an arbitrary rectangle ( )0 0 1 1, , ,p p p pp x y x y= , such as: 

( ) ( ) ( )0 0 1 1 0 0 0 0b p p b p b p bx x x x y y y y≤ ≤ ≤ ∧ = ∧ =  

The band can be also defined as a vertical selection of the snapshot, and the plate as a horizontal 
selection of the band. The figure 2.4 schematically demonstrates this concept: 

0by

1by

0px 1px

 
Figure 2.4: The double-phase plate clipping. Black color represents the first phase of plate clipping, 
and red color represents the second one. Bands are represented by dashed lines, and plates by solid 

lines. 

2.3.1 Vertical detection – band clipping 

The first and second phase of band clipping is based on the same principle. The band clipping is 
a vertical selection of the snapshot according to the analysis of a graph of vertical projection. If 

h  is the height of the analyzed image, the corresponding vertical projection ( )r
yp y  contains h  

values, such as 0; 1y h∈ − .  

The graph of projection may be sometimes too “ragged” for analysis due to a big statistical 

dispersion of values ( )r
yp y .  There are two approaches how to solve this problem. We can blur 

the source snapshot (costly solution), or we can decrease the statistical dispersion of the ragged 

projection r
yp  by convolving its projection with a rank vector: 

( ) ( ) [ ]r
y y hrp y p y y= ∗mɶ  

where hrm  is the rank vector (analogous to the horizontal rank matrix in section 2.1.1). The 

width of the vector hrm  is nine in default configuration. 
After convolution with the rank vector, the vertical projection of the snapshot in figure 2.3 

can look like this: 
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( )yp y

0y
0%

100%

1y
y

0by bmy 1by

 
Figure 2.5: The vertical projection of the snapshot 2.3 after convolution with a rank vector. The figure 

contains three detected candidates. Each highlighted area corresponds to one detected band. 

 
The fundamental problem of analysis is to compute peaks in the graph of vertical projection. 
The peaks correspond to the bands with possible candidates for number plates. The maximum 
value of ( )yp y  corresponding to the axle of band can be computed as: 

( ){ }
0 1

arg maxbm y
y y y

y p y
≤ ≤

=  

The 0by  and 1by  are coordinates of band, which can be detected as: 

( ) ( ){ }
( ) ( ){ }

0

1

0

1

max

min

bm

bm

b y y y bm
y y y

b y y y bm
y y y

y y p y c p y

y y p y c p y

≤ ≤

≤ ≤

= ≤ ⋅

= ≤ ⋅
 

yc  is a constant, which is used to determine the foot of peak bmy . In praxis, the constant is 

calibrated to 1 0.55c =  for the first phase of detection, and  2 0.42c =  for the second phase. 

 
Figure 2.6: The band detected by the analysis of vertical projection 

This principle is applied iteratively to detect several possible bands. The 0by  and 1by  
coordinates are computed in each step of iterative process.  After the detection, values of 
projection yp  in interval 0 1,b by y  are zeroized. This idea is illustrated by the following 

pseudo-code: 
 

let L  to be a list of detected candidates 
for i :=0 to number_of_bands_to_be_detected do  
begin 

detect 0by  and 1by  by analysis of projection yp  

save 0by  and 1by  to a list L  

zeroize interval 0 1,b by y  

end 

 
The list L  of coordinates 0by  and 1by  will be sorted according to value of peak (bmy ). The 
band clipping is followed by an operation, which detects plates in a band. 
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2.3.2 Horizontal detection – plate clipping 

In contrast with the band clipping, there is a difference between the first and second phase of 
plate clipping. 

First phase 

There is a strong analogy in a principle between the band and plate clipping. The plate clipping 
is based on a horizontal projection of band. At first, the band must be processed by a vertical 
detection filter. If w  is a width of the band (or a width of the analyzed image), the 

corresponding horizontal projection ( )r
xp x  contains w  values: 

( ) ( )
1

0

,
b

b

y

x
j y

p x f x j
=

= ∑  

Please notice that ( )xp x  is a projection of the band, not of the whole image. This can be 

achieved by a summation in interval 0 1,b by y , which represents the vertical boundaries of the 

band. Since the horizontal projection ( )r
xp x  may have a big statistical dispersion, we decrease 

it by convolving with a rank vector ( ( ) ( ) [ ]r
x x vrp x p x x= mɶ⊻ ). The width of the rank vector is 

usually equal to a half of an estimated width of the number plate. 
 

Then, the maximum value corresponding to the plate can be computed as: 

( ){ }
0 1

arg maxbm x
x y x

x p x
≤ ≤

=  

The 0bx  and 1bx   are coordinates of the plate, which can be then detected as: 

( ) ( ){ }
( ) ( ){ }

0

1

0

1

max

min

bm

bm

b x x x bm
x x x

b x x x bm
x x x

x x p x c p x

x x p x c p x

≤ ≤

≤ ≤

= ≤ ⋅

= ≤ ⋅
 

where xc  is a constant, which is used to determine the foot of peak bmx . The constant is 

calibrated to 0.86xc =  for the first phase of detection. 

Second phase 

In the second phase of detection, the horizontal position of a number plate is detected in another 
way. Due to the skew correction between the first and second phase of analysis, the wider plate 
area must be duplicated into a new bitmap. Let ( ),nf x y  be a corresponding function of such 

bitmap. This picture has a new coordinate system, such as [0,0] represents the upper left corner 
and [ 1, 1]w h− −  the bottom right, where w  and h  are dimensions of the area. The wider area of 
the number plate after deskewing is illustrated in figure 2.8. 

   In contrast with the first phase of detection, the source plate has not been processed by the 
vertical detection filter. If we assume that plate is white with black borders, we can detect that 
borders as black-to-white and white-to-black transitions in the plate. The horizontal projection 

( )xp x  of the image is illustrated in the figure 2.7.a. To detect the black-to-white and white-to-

black transitions, there is a need to compute a derivative ( )xp x′  of the projection ( )xp x . Since 

the projection is not continuous, the derivation step cannot be an infinitely small number 
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(
0

lim
x

h x
→

≠ ). If we derive a discrete function, the derivation step h  must be an integral number 

(for example 4h = ). Let the derivative of ( )xp x  be defined as: 

( ) ( ) ( )x x
x

p x p x h
p x

h

− −′ =  

Where 4h = . 

( )xp x

0

0%

100%

1w −
x

( )xp x′

1w −
x

 

 

Figure 2.7: (a) The horizontal projection ( )xp x  of the plate in figure 2.8. (b) The derivative 

of  ( )xp x . Arrows denote the “BW” and “WB” transitions, which are used to determine the 

boundaries of the plate. 

 
Figure 2.8: The wider area of the number plate after deskewing. 

The left and right boundary of the plate can be determined by an analysis of the projection 

( )xp x′ . The left corner 0px  is represented by the black-to-white transition (positive peak in 

figure 2.7.b), and right corner 1px  by the white-to-black transition (negative peak in figure 

2.7.b): 

( ) ( ){ }{ }
( ) ( ){ }{ }

0
00

2

1
0

2

min max

max min

p x d xw x wx

p x d xw x wx w

x x p x c p x

x x p x c p x

≤ <≤ <

≤ <≤ <

′ ′= ≥ ⋅

′ ′= ≤ ⋅
 

where dc  is a constant used to determine the most left negative and the most right positive peak. 
The left and right corners must lie on the opposite halves of the detected plate according to the 

constraints 0
2
w

x≤ <  for 0px , and 
2
w

x w≤ <  for 1px . 
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In this phase of the recognition process, it is not possible to select a best candidate for a 
number plate. This can be done by a heuristic analysis of characters after the segmentation. 

2.4 Heuristic analysis and priority selection of number plate 
candidates 

In general, the captured snapshot can contain several number plate candidates. Because of this, 
the detection algorithm always clips several bands, and several plates from each band. There is a 
predefined value of maximum number of candidates, which are detected by analysis of 
projections. By default, this value is equals to nine. 

There are several heuristics, which are used to determine the cost of selected candidates 
according to their properties. These heuristics have been chosen ad hoc during the practical 
experimentations. The recognition logic sorts candidates according to their cost from the most 
suitable to the least suitable. Then, the most suitable candidate is examined by a deeper heuristic 
analysis. The deeper analysis definitely accepts, or rejects the candidate. As there is a need to 
analyze individual characters, this type of analysis consumes big amount of processor time. 

 
The basic concept of analysis can be illustrated by the following steps: 

 
1. Detect possible number plate candidates. 
2. Sort them according to their cost (determined by a basic heuristics). 
3. Cut the first plate from the list with the best cost. 
4. Segment and analyze it by a deeper analysis (time consuming). 
5. If the deeper analysis refuses the plate, return to the step 3. 

2.4.1 Priority selection and basic heuristic analysis of bands 

The basic analysis is used to evaluate the cost of candidates, and to sort them according to this 
cost. There are several independent heuristics, which can be used to evaluate the cost iα . The 
heuristics can be used separately, or they can be combined together to compute an overall cost 
of candidate by a weighted sum: 

1 2 3 40.15 0.25 0.4 0.4α α α α α= ⋅ + ⋅ + ⋅ + ⋅  

 Heuristics Illustration Description 

1 0 1b by yα = −  

 

The height of band in pixels. Bands 
with a lower height will be preferred. 

( )2

1

y bmp y
α =  ( )y bmp y

 

The “ ( )y bmp y ” is a maximum value of 

peak of vertical projection of snapshot, 
which corresponds to the processed 
band. Bands with a higher amount of 
vertical edges will be preferred. 

( )
1

0

3

1
b

b

y

y
y y

p y

α

=

=

∑
 

 

0by 1by

∑

 

This heuristics is similar to the previous 
one, but it considers not only the value 
of the greatest peak, but a value of area 
under the graph between points 0by  and 

1by . These points define a vertical 
position of the evaluated band. 
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0 1
4

0 1

5
p p

b b

x x

y y
α

−
= −

−
 

 

The proportions of the one-row number 
plates are similar in the most countries. 
If we assume that width/height ratio of 
the plate is about five, we can compare 
the measured ratio with the estimated 
one to evaluate the cost of the number 
plate. 

2.4.2 Deeper analysis 

The deeper analysis determines the validity of a candidate for the number plate. Number plate 
candidates must be segmented into the individual characters to extract substantial features. The 
list of candidates is iteratively processed until the first valid number plate is found. The 
candidate is considered as a valid number plate, if it meets the requirements for validity. 

Assume that plate p  is segmented into several characters 0 1np p −… , where n  is a number 

of characters. Let iw  be a width of ith character (see figure 2.9.a).  Since all segmented 
characters have roughly uniform width, we can use a standard deviation of these values as a 
heuristics: 

( )
1

2
1

0

1 n

i
i

w w
n

β
−

=

= −∑  

where w  is an arithmetic average of character widths 
1

0

1 n

i
i

w w
n

−

=

= ∑ . 

If we assume that the number plate consists of dark characters on a light background, we 
can use a brightness histogram to determine if the candidate meets this condition. Because some 
country-specific plates are negative, we can use the histogram to deal with this type of plates 
(see figure 2.9.b). 

Let ( )H b  be a brightness histogram, where b  is a certain brightness value. Let minb  and 

maxb  be a value of a darkest and lightest point. Then, ( )H b  is a count of pixels, whose values 

are equal to b . The plate is negative when the heuristics 2β  is negative: 

( ) ( )
max

min

2

mid

mid

b b

b b b b

H b H bβ
= =

   
= −   

  
  

∑ ∑  

where midb  is a middle point in the histogram, such as max min

2mid

b b
b

−= . 
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Figure 2.9: (a) The number plate must be segmented into individual characters for deeper 
heuristic analysis. (b) Brightness histogram of the number plate is used to determine the 

positivity of the number plate. 

2.5 Deskewing mechanism 

The captured rectangular plate can be rotated and skewed in many ways due to the positioning 
of vehicle towards the camera. Since the skew significantly degrades the recognition abilities, it 
is important to implement additional mechanisms, which are able to detect and correct skewed 
plates.  

The fundamental problem of this mechanism is to determine an angle, under which the plate 
is skewed. Then, deskewing of so evaluated plate can be realized by a trivial affine 
transformation. 

It is important to understand the difference between the “sheared” and “rotated” rectangular 
plate. The number plate is an object in three-dimensional space, which is projected into the two-
dimensional snapshot during the capture. The positioning of the object can sometimes cause the 
skew of angles and proportions. 

If the vertical line of plate pv  is not identical to the vertical line of camera objective cv , the 

plate may be sheared. If the vertical lines pv  and cv  are identical, but the axis pa  of plate is not 

parallel to the axis of camera ca , the plate may be rotated.  (see figure 2.10) 
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cv
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pa
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c pv v=
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p c p ca a v v∧ ≠�

c pv v=

 

   

 Figure 2.10: (a) Number plate captured under the right angle (b) rotated plate (c) 
Sheared plate 

2.5.1 Detection of skew 

Hough transform is a special operation, which is used to extract features of a specific shape 
within a picture. The classical Hough transform is used for the detection of lines. The Hough 
transform is widely used for miscellaneous purposes in the problematic of machine vision, but I 
have used it to detect the skew of captured plate, and also to compute an angle of skew. 

It is important to know, that Hough transform does not distinguish between the concepts 
such as “rotation” and “shear”. The Hough transform can be used only to compute an 
approximate angle of image in a two-dimensional domain. 

The mathematical representation of line in the orthogonal coordinate system is an equation 
y a x b= ⋅ + , where a  is a slope and b  is a y-axis section of so defined line. Then, the line is a 
set of all points [ , ]x y , for which this equation is valid. We know that the line contains an 
infinite number of points as well as there are an infinite number of different lines, which can 
cross a certain point. The relation between these two assertions is a basic idea of the Hough 
transform. 

The equation y a x b= ⋅ +  can be also written as b x a y= − ⋅ + , where x  and y  are 
parameters. Then, the equation defines a set of all lines ( , )a b , which can cross the point [ , ]x y . 
For each point in the “XY” coordinate system, there is a line in an “AB” coordinate system (so 
called “Hough space”) 

[ ]0 0,x y

x

y

a

b

0 0b x a y= ⋅ +

k

l
m k

l
m

 

Figure 2.11: The “XY” and “AB” (“Hough space”) coordinate systems. Each point [ ]0 0,x y  in the 

“XY” coordinate system corresponds to one line in the Hough space (red color). The are several points 
(marked ask , l , m ) in the Hough space, that correspond to the lines in the “XY” coordinate system, 

which can cross the point.[ ]0 0,x y . 
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Let ( , )f x y  be a continuous function. For each point [ ],a b  in Hough space, there is a line in 

the “XY” coordinate system. We compute a magnitude of point [ ],a b  as a summary of all 

points in the “XY” space, which lie on the line a x b⋅ + .  
Assume that ( ),f x y  is a discrete function, which represents the snapshot with definite 

dimensions ( )w h× . To compute the Hough transform of the function like this, it is necessary to 
normalize it into a unified coordinate system in the following way: 

2
1

x
x

w

⋅′ = −  ; 
2

1
y

y
h

⋅′ = −  

Although the space defined by a unified coordinate system is always discrete (floating point) on 
digital computers, we will assume that it is continuous. Generally, we can define the Hough 
transform ( ),h a b′ ′ ′  of a continuous function ( ),f x y′ ′ ′  in the unified coordinate system as: 

( ) ( )
1

1

, ,h a b f x a x b dx
−

′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ +∫  

x′

y′ b′

a′

b′

θ

2

π−
2

π0 0−∞ −∞

 

 
Figure 2.12: (a) Number plate in the unified “XY ” coordinate system after application 

of the horizontal edge detection filter (b) Hough transform of the number plate in the 
“ Bθ ” coordinate system (c) Colored Hough transform in the “ AB ” coordinate system. 

We use the Hough transform of certain image to evaluate its skew angle. You can see the 
colored Hough transform on the figure 2.12.c. The pixels with a relatively high value are 
marked by a red color. Each such pixel corresponds to a long white line in the figure 13.a. If we 
assume that the angle of such lines determines the overall angle, we can find the longest line as: 

( ) ( ){ }
0 1
0 1

, arg max ,m m
a
b

a b h a b
′≤ ≤
′≤ ≤

′ ′ ′ ′ ′=  

To compute the angle of such a line, there is a need to transform it back to the original 
coordinate system: 

[ ] 1 1
, ,

2 2
m m

m m

a b
a b w h

′ ′− − = ⋅ ⋅ 
 

 

where w  and  h  are dimensions of the evaluated image. Then, the overall angle θ  of image can 
be computed as: 

( )arctan maθ =  
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The more sophisticated solution is to determine the angle from a horizontal projection of the 
Hough transform h′ . This approach is much better because it covers all parallel lines together, 
not only the longest one: 

ˆ 1ˆ arctan
2

ma
wθ

′ − = ⋅ 
 

   ;   ( ){ }
1 1

ˆ arg maxm a
a

a p a′′− ≤ ≤
′ ′=  

where ( )ap a′ ′  is a horizontal projection of the Hough space, such as: 

( ) ( )
1

1

,ap a f a b db′
−

′ ′ ′ ′ ′= ∫  

2.5.2 Correction of skew 

The second step of a deskewing mechanism is a geometric operation over an image ( ),f x y . As 

the skew detection based on Hough transform does not distinguish between the shear and 
rotation, it is important to choose the proper deskewing operation. In praxis, plates are sheared 
in more cases than rotated. To correct the plate sheared by the angle θ , we use the affine 
transformation to shear it by the negative angle θ− .  
 

For this transformation, we define a transformation matrix A : 

( )1 0 1 tan 0

1 0 0 1 0

0 0 1 0 0 1

y

x

S

S

θ − 
  = =   
     

A  

where xS  and yS  are shear factors. The xS  is always zero, because we shear the plate only in a 

direction of the Y-axis.  
Let P  be a vector representing the certain point, such as [ ], ,1x y=P  where x  and y  are 

coordinates of that point. The new coordinates [ ], ,1s s sx y=P  of that point after the shearing can 

be computed as: 

s = ⋅P P A  

where A  is a corresponding transformation matrix. 
Let the deskewed number plate be defined by a function sf . The function sf  can be 

computed in the following way: 

( ) [ ] [ ] [ ] [ ]( ), , ,1 1,0,0 , , ,1 0,1,0
T T

sf x y f x y x y= ⋅ ⋅ ⋅ ⋅A A  

After the substitution of the transformation matrix A : 

( ) [ ]
( )

[ ]
( )1 tan 0 1 1 tan 0 0

, , ,1 0 1 0 0 , , ,1 0 1 0 1

0 0 1 0 0 0 1 0
sf x y f x y x y

θ θ    − −   
       = ⋅ ⋅ ⋅ ⋅       
              
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 Figure 2.13: (a) Original number plate. (b) Number plate after deskewing. 
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Chapter 3 

Principles of plate 
segmentation 
The next step after the detection of the number plate area is a segmentation of the plate. The 
segmentation is one of the most important processes in the automatic number plate recognition, 
because all further steps rely on it. If the segmentation fails, a character can be improperly 
divided into two pieces, or two characters can be improperly merged together. 

We can use a horizontal projection of a number plate for the segmentation, or one of the 
more sophisticated methods, such as segmentation using the neural networks.  If we assume 
only one-row plates, the segmentation is a process of finding horizontal boundaries between 
characters. Section 3.2 deals with this problematic.  

The second phase of the segmentation is an enhancement of segments. The segment of a 
plate contains besides the character also undesirable elements such as dots and stretches as well 
as redundant space on the sides of character. There is a need to eliminate these elements and 
extract only the character. Section 3.3 deals with these problems. 

3.1 Segmentation of plate using a horizontal projection 

Since the segmented plate is deskewed, we can segment it by detecting spaces in its horizontal 
projection. We often apply the adaptive thresholding filter to enhance an area of the plate before 
segmentation. The adaptive thresholding is used to separate dark foreground from light 
background with non-uniform illumination. You can see the number plate area after the 
thresholding in figure 3.1.a. 

After the thresholding, we compute a horizontal projection ( )xp x  of the plate ( ),f x y . We 

use this projection to determine horizontal boundaries between segmented characters. These 
boundaries correspond to peaks in the graph of the horizontal projection (figure 3.1.b). 

( )xp x

av

mv

bv

x

y

x

 

 

Figure 3.1: (a) Number plate after application of the adaptive thresholding (b) Horizontal 
projection of plate with detected peaks. Detected peaks are denoted by dotted vertical lines. 
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The goal of the segmentation algorithm is to find peaks, which correspond to the spaces 
between characters. At first, there is a need to define several important values in a graph of the 
horizontal projection ( )xp x : 

 
• mv  - The maximum value contained in the horizontal projection ( )xp x , such as 

( ){ }
0
maxm x

x w
v p x

≤ <
= , where w  is a width of the plate in pixels. 

• av   - The average value of horizontal projection ( )xp x , such as ( )
1

0

1 w

a x
x

v p x
w

−

=

= ∑  

• bv  - This value is used as a base for evaluation of peak height.  The base value is 

always calculated as 2b a mv v v= ⋅ − . The av  must lie on vertical axis between the values 

bv  and mv . 
 
The algorithm of segmentation iteratively finds the maximum peak in the graph of vertical 
projection. The peak is treated as a space between characters, if it meets some additional 
conditions, such as height of peak. The algorithm then zeroizes the peak and iteratively repeats 
this process until no further space is found. This principle can be illustrated by the following 
steps: 

 
1. Determine the index of the maximum value of horizontal projection: 

( ){ }
0

arg maxm x
x w

x p x
≤ <

=  

2. Detect the left and right foot of the peak as: 

( ) ( ){ }
0
max

m
l x x x m

x x
x x p x c p x

≤ ≤
= ≤ ⋅  

( ) ( ){ }min
m

r x x x m
x x w

x x p x c p x
≤ <

= ≤ ⋅  

3. Zeroize the horizontal projection ( )xp x  on interval ,l rx x  

4. If  ( )x m w mp x c v< ⋅ , go to step 7. 

5. Divide the plate horizontally in the point mx .  

6. Go to step 1. 
7. End. 
 

Two different constants have been used in the algorithm above. The constant xc  is used to 

determine foots of peak mx . The optimal value of xc  is 0.7. 

The constant wc  determines the minimum height of the peak related to the maximum value 

of the projection (mv ). If the height of the peak is below this minimum, the peak will not be 

considered as a space between characters. It is important to choose a value of constant wc  
carefully. An inadequate small value causes that too many peaks will be treated as spaces, and 
characters will be improperly divided. A big value of wc  causes that not all regular peaks will 
be treated as spaces, and characters will be improperly merged together. The optimal value of 

wc  is 0.86. To ensure a proper behavior of the algorithm, constants xc  and wc  should meet the 
following condition:  

( ) ( ) ( ), , :l m r w m x l x rx x x P c v p x p x∀ ∈ ⋅ > ∧  

where P  is a set of all detected peaks mx  with corresponding foots lx  and rx . 
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 3.2 Extraction of characters from horizontal segments 

The segment of plate contains besides the character also redundant space and other undesirable 
elements. We understand under the term “segment” the part of a number plate determined by a 
horizontal segmentation algorithm. Since the segment has been processed by an adaptive 
thresholding filter, it contains only black and white pixels. The neighboring pixels are grouped 
together into larger pieces, and one of them is a character. Our goal is to divide the segment into 
the several pieces, and keep only one piece representing the regular character. This concept is 
illustrated in figure 3.2. 

Piece 1

Piece 2

Piece 3

Piece 4

Horizontal 

segment

 
Figure 3.2: Horizontal segment of the number plate contains several groups (pieces) of neighboring 

pixels. 

3.2.1 Piece extraction 

Let the segment be defined by a discrete function ( ),f x y  in the relative coordinate system, 

such as [ ]0,0  is an upper left corner of the segment, and [ 1, 1]w h− −  is a bottom right corner, 

where w  and h  are dimensions of the segment. The value of ( ),f x y  is “1” for the black 

pixels, and “0” for the white space. 
The piece Ρ  is a set of all neighboring pixels [ ],x y , which represents a continuous element. 

The pixel [ ],x y  belongs to the piece Ρ  if there is at least one pixel [ ],x y′ ′  from the Ρ , such as 

[ ],x y  and [ ],x y′ ′  are neighbors: 

[ ] [ ] [ ] [ ]4, , : , N ,x y x y x y x y′ ′ ′ ′∈Ρ ⇔ ∃ ∈Ρ ɺɺ  

The notation 4Na bɺɺ  means a binary relation “a  is a neighbor of b  in a four-pixel 
neighborhood”: 

[ ] [ ]4, N , 1 1x y x y x x y y′ ′ ′ ′⇔ − = ⊕ − =ɺɺ  

Algorithm 

The goal of the piece extraction algorithm is to find and extract pieces from a segment of the 
plate. This algorithm is based on a similar principle as a commonly known “seed-fill” 
algorithm. 

 



 23

• Let piece Ρ  be a set of (neighboring) pixels [ ],x y  

• Let S  be a set of all pieces Ρ  from a processed segment defined by the function 

( ),f x y .   

• Let X  be a set of all black pixels: [ ] ( ){ }, , 1X x y f x y= =  

• Let A  be an auxiliary set of pixels 
 

Principle of the algorithm is illustrated by the following pseudo-code: 
 

let set 0S = /  

let set [ ] ( ) [ ] [ ] [ ]{ }, , 1 0,0 , ,X x y f x y x y w h= = ∧ ≤ <  

while set X  is not empty do 
begin 

let set 0Ρ = /  

let set 0A = /   

pull one pixel from set X  and insert it into set A  

while set A  is not empty do 
begin 

let [ ],x y  be a certain pixel from A  

pull pixel [ ],x y  from a set A  

if ( ) [ ] [ ] [ ] [ ], 1 , 0,0 , ,f x y x y A x y w h= ∧ ∉ ∧ ≤ <  then  

begin 

pull pixel [ ],x y  from set A  and insert it into set Ρ  

insert pixels [ ]1,x y− , [ ]1,x y+ , [ ], 1x y − , [ ], 1x y +  into set A  

end    
end 

add Ρ  to set S  
end 

 
Note 1: The operation “pull one pixel from a set” is non-deterministic, because a set is an 
unordered group of elements. In real implementation, a set will be implemented as an ordered 
list, and the operation “pull one pixel from a set” will be implemented as “pull the first pixel 
from a list” 
 
Note 2: The mathematical conclusion [ ] [ ] [ ]min min max max, , ,x y x y x y< <  means “The pixel [ ],x y  

lies in a rectangle defined by pixels [ ]min min,x y  and [ ]max max,x y ”. More formally: 

[ , ]R[ , ] R Rx y x y x x y y′ ′ ′ ′⇔ ∧  

where R  is a one of the binary relations: ‘< ’, ’ > ’, ’ ≤ ’, ’ ≥ ’ and ’= ’. 

3.2.2 Heuristic analysis of pieces 

The piece is a set of pixels in the local coordinate system of the segment. The segment usually 
contains several pieces. One of them represents the character and others represent redundant 
elements, which should be eliminated. The goal of the heuristic analysis is to find a piece, which 
represents character.   

Let us place the piece Ρ  into an imaginary rectangle ( )0 0 1 1, , ,x y x y , where 0 0[ , ]x y  is an 

upper left corner, and 1 1[ , ]x y  is a bottom right corner of the piece: 
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{ } { }
{ } { }

0 0

1 1

min [ , ] min [ , ]

max [ , ] max [ , ]

x x x y y y x y

x x x y y y x y

= ∈Ρ = ∈Ρ

= ∈Ρ = ∈Ρ
 

The dimensions and area of the imaginary rectangle are defined as 0 1w x x= − , 0 1h y y= −  and 

S w h= ⋅ . Cardinality of the set Ρ  represents the number of black pixels bn . The number of 

white pixels wn  can be then computed asw bn S n w h= − = ⋅ − Ρ . The overall magnitude M  of a 

piece is a ratio between the number of black pixels bn  and the area S  of an imaginary rectangle 

/bM n S= . 

In praxis, we use the number of white pixels wn  as a heuristics. Pieces with a higher value 

of wn  will be preferred.  
 
The piece chosen by the heuristics is then converted to a monochrome bitmap image. Each 

such image corresponds to one horizontal segment. These images are considered as an output of 
the segmentation phase of the ANPR process (see figure 3.3) 

 

 

Figure 3.3: The input (a) and output (b) example of the segmentation phase of the ANPR 
recognition process. 
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Chapter 4 

Feature extraction and 
normalization of characters 
To recognize a character from a bitmap representation, there is a need to extract feature 
descriptors of such bitmap. As an extraction method significantly affects the quality of whole 
OCR process, it is very important to extract features, which will be invariant towards the 
various light conditions, used font type and deformations of characters caused by a skew of the 
image.  

The first step is a normalization of a brightness and contrast of processed image segments. 
The characters contained in the image segments must be then resized to uniform dimensions 
(second step). After that, the feature extraction algorithm extracts appropriate descriptors from 
the normalized characters (third step). This chapter deals with various methods used in the 
process of normalization. 

4.1 Normalization of brightness and contrast 

The brightness and contrast characteristics of segmented characters are varying due to different 
light conditions during the capture. Because of this, it is necessary to normalize them. There are 
many different ways, but this section describes the three most used: histogram normalization, 
global and adaptive thresholding.  

Through the histogram normalization, the intensities of character segments are re-
distributed on the histogram to obtain the normalized statistics. 

Techniques of the global and adaptive thresholding are used to obtain monochrome 
representations of processed character segments. The monochrome (or black & white) 
representation of image is more appropriate for analysis, because it defines clear boundaries of 
contained characters. 

4.1.1 Histogram normalization 

The histogram normalization is a method used to re-distribute intensities on the histogram of the 
character segments. The areas of lower contrast will gain a higher contrast without affecting the 
global characteristic of image.  

Consider a grayscale image defined by a discrete function ( ),f x y . Let I  be a total number 

of gray levels in the image (for example 256I = ). We use a histogram to determine the number 
of occurrences of each gray level i , 0 1i I∈ −… : 

( ) [ ] ( ){ }, 0 0 ,H i x y x w y h f x y i= ≤ < ∧ ≤ < ∧ =  

The minimum, maximum and average value contained in the histogram is defined as: 

( ){ }min
0
0

min ,
x w
y h

H f x y
≤ <
≤ <

=   ;  ( ){ }max
0
0

max ,
x w
y h

H f x y
≤ <
≤ <

=   ;  ( )
1 1

0 0

1
,

w h

avg
x y

H f x y
w h

− −

= =

=
⋅ ∑∑  
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where the values minH , maxH  and avgH  are in the following relation:  

 

min max0 1avgH H H I≤ ≤ ≤ ≤ −  

 
The goal of the histogram normalization is to obtain an image with normalized statistical 

characteristics, such as min 0H = , max 1H I= − , 
2avg

I
H = . To meet this goal, we construct a 

transformation function ( )g i  as a Lagrange polynomial with interpolation points 

[ ] [ ]1 1 min, ,0x y H= , [ ]2 2, ,
2avg

I
x y H

 =  
 

 and [ ] [ ]3 3 max, , 1x y H I= − : 

( )
33

1 1

k
j

j kj k
k j

i x
g i y

x x= =
≠

 
− =  − 

 

∑ ∏  

This transformation function can be explicitly written as: 

( ) 3 32 1 1 2
1 2 3

1 2 1 3 2 1 2 3 3 1 3 2

i x i xi x i x i x i x
g i y y y

x x x x x x x x x x x x

− −− − − −= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
− − − − − −

 

After substitution of concrete points, and concrete number of gray levels 256I = : 

( ) maxmin min

min max max min max

128 255 avg

avg avg avg

i Hi Hi H i H
g i

H H H H H H H H

−−− −= + ⋅ ⋅ + ⋅ ⋅
− − − −

 

minH0 avgH maxH
i

1I −

( )g i

brightness before transformation

2

I

 
Figure 4.1: We use the Lagrange interpolating polynomial as a transformation function to normalize 

the brightness and contrast of characters. 

The Lagrange interpolating polynomial as a transformation function is a costly solution. It is 
like harvesting one potato by a tractor. In praxis, there is more useful to construct the 
transformation using a simple linear function that spreads the interval min max,H H  into the 

unified interval 0, 1I − : 
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( ) ( )min

max min

1
i H

g i I
H H

−= −
−

 

The normalization of image is proceeded by the transformation function in the following way: 

( ) ( )( ), ,nf x y g f x y=  

4.1.2 Global Thresholding  

The global thresholding is an operation, when a continuous gray scale of an image is reduced 
into monochrome black & white colors according to the global threshold value. Let 0,1  be a 

gray scale of such image. If a value of a certain pixel is above the threshold t , the new value of 
the pixel will be zero. Otherwise, the new value will be one for pixels with values above the 
threshold t . 

Let v  be an original value of the pixel, such as 0,1v ∈ . The new value v′  is computed as: 

)0 0,

1 ,1

if v t
v

if v t

 ∈′ = 
∈

 

The threshold value t  can be obtained by using a heuristic approach, based on a visual 
inspection of the histogram. We use the following algorithm to determine the value of t  
automatically: 

 
1. Select an initial estimate for threshold t  (for example 0.5t = ) 

2. The threshold t  divides the pixels into the two different sets: [ ] ( ){ }, ,aS x y f x y t= < , 

and [ ] ( ){ }, ,bS x y f x y t= ≥ . 

3. Compute the average gray level values aµ  and bµ  for the pixels in sets aS  and bS  as: 

( )
[ ],

1
,

a

a
a x y S

f x y
S

µ
∈

= ∑  ; ( )
[ ],

1
,

b

b
b x y S

f x y
S

µ
∈

= ∑  

4. Compute a new threshold value ( )1

2 a bt µ µ= +  

5. Repeat steps 2, 3, 4 until the difference t△  in successive iterations is smaller than 
predefined precision pt  

 
Since the threshold t  is global for a whole image, the global thresholding can sometimes fail. 
Figure 4.2.a shows a partially shadowed number plate. If we compute the threshold t  using the 
algorithm above, all pixels in a shadowed part will be below this threshold and all other pixels 
will be above this threshold. This causes an undesired result illustrated in figure 4.2.b. 
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Figure 4.2:  (a) The partially shadowed number plate. (b) The number plate after 
thresholding. (c) The threshold value t  determined by an analysis of the histogram. 

4.1.3 Adaptive thresholding 

The number plate can be sometimes partially shadowed or nonuniformly illuminated. This is 
most frequent reason why the global thresholding fail. The adaptive thresholding solves several 
disadvantages of the global thresholding, because it computes threshold value for each pixel 
separately using its local neighborhood.  

Chow and Kaneko approach 

There are two approaches to finding the threshold. The first is the Chow and Kaneko approach, 
and the second is a local thresholding. The both methods assumes that smaller rectangular 
regions are more likely to have approximately uniform illumination, more suitable for 
thresholding. The image is divided into uniform rectangular areas with size of m n×  pixels. The 
local histogram is computed for each such area and a local threshold is determined. The 
threshold of concrete point is then computed by interpolating the results of the subimages. 

1

4

2

5

3

6

?

 
Figure 4.3: The number plate (from figure 4.2) processed by the Chow and Kaneko approach of the 
adaptive thresholding. The number plate is divided into the several areas, each with own histogram 

and threshold value. The threshold value of a concrete pixel (denoted by ) is computed by 
interpolating the results of the subimages (represented by pixels 1-6). 

Local thresholding 

The second way of finding the local threshold of pixel is a statistical examination of 
neighboring pixels. Let [ ],x y  be a pixel, for which we compute the local threshold t . For 



 29

simplicity we condider a square neighborhood with width 2 1r⋅ + , where [ ],x r y r− − , 

[ ],x r y r− + , [ ],x r y r+ −  and [ ],x r y r+ +  are corners of such square. There are severals 

approaches of computing the value of threshold: 
 

• Mean of the neighborhood : ( ) ( ){ }, mean ,
x r i x r
y r j y r

t x y f i j
− ≤ ≤ +
− ≤ ≤ +

=  

• Median of the neighborhood : ( ) ( ){ }, median ,
x r i x r
y r j y r

t x y f i j
− ≤ ≤ +
− ≤ ≤ +

=  

• Mean of the minimum and maximum value of the heighborhood: 

( ) ( ){ } ( ){ }1
, min , max ,

2 x r i x r x r i x r
y r j y r y r j y r

t x y f i j f i j
− ≤ ≤ + − ≤ ≤ +
− ≤ ≤ + − ≤ ≤ +

 
 = +
 
 

 

 
The new value ( ),f x y′  of pixel [ ],x y  is then computes as:  

( )
( ) ( ))
( ) ( )

0 , 0, ,
,

1 , 0, ,

if f x y t x y
f x y

if f x y t x y

 ∈′ = 
∈

 

4.2 Normalization of dimensions and resampling 

Before extracting feature descriptors from a bitmap representation of a character, it is necessary 
to normalize it into unified dimensions. We understand under the term “resampling” the process 
of changing dimensions of the character. As original dimensions of unnormalized characters are 
usually higher than the normalized ones, the characters are in most cases downsampled. When 
we downsample, we reduce information contained in the processed image. 

There are several methods of resampling, such as the pixel-resize, bilinear interpolation or 
the weighted-average resampling. We cannot determine which method is the best in general, 
because the successfulness of particular method depends on many factors. For example, usage 
of the weighed-average downsampling in combination with a detection of character edges is not 
a good solution, because this type of downsampling does not preserve sharp edges (discussed 
later). Because of this, the problematic of character resampling is closely associated with the 
problematic of feature extraction. 

We will assume that m n×  are dimensions of the original image, and m n′ ′×  are 
dimensions of the image after resampling. The horizontal and vertical aspect ratio is defined as 

/xr m m′=  and /yr n n′= , respectively. 

4.2.1 Nearest-neighbor downsampling 

The principle of the nearest-neighbor downsamping is a picking the nearest pixel in the original 
image that corresponds to a processed pixel in the image after resampling. Let ( ),f x y  be 

a discrete function defining the original image, such as 0 x m≤ <  and 0 y n≤ < . Then, the 

function ( ),f x y′ ′ ′  of the image after resampling is defined as: 

( ), ,
x y

x y
f x y f

r r

   ′ ′′ ′ ′  =         
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where 0 x m′ ′≤ <  and 0 y n′ ′≤ < . 
 
If the aspect ratio is lower than one, then each pixel in the resampled (destination) image 
corresponds to a group of pixels in the original image, but only one value from the group of 
source pixels affects the value of the pixel in the resampled image. This fact causes a significant 
reduction of information contained in original image (see figure 4.5). 

 
Figure 4.4: One pixel in the resampled image corresponds to a group of pixels in the original image 

Although the nearest neighbor downsamping significantly reduces information contained in the 
original image by ignoring a big amount of pixels, it preserves sharp edges and the strong 
bipolarity of black and white pixels. Because of this, the nearest neighbor downsamping is 
suitable in combination with the “edge detection” feature extraction method described in section 
4.3.2. 

4.2.2 Weighed-average downsampling 

In contrast with the nearest-neighbor method, the weighted-average downsamping considers all 
pixels from a corresponding group of pixels in the original image.  

Let xr  and yr  be a horizontal and vertical aspect ratio of the resampled image. The value of 

the pixel [ ],x y′ ′  in the destination image is computed as a mean of source pixels in the range 

[ ]min min,x y  to [ ]max max,x y : 

( ) ( ) ( ) ( )
max max

min minmax min max min

1
, ,

x y

i x j y

f x y f i j
x x y y = =

′ ′ ′ =
− ⋅ − ∑ ∑  

where: 

min
x

x
x

r

 ′
=  
 

 ; min
y

y
y

r

 ′
=  
  

 ; max

1

x

x
x

r

 ′ +=  
 

 ; max

1

y

y
y

r

 ′ +=  
  
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The weighted-average method of downsampling does not preserve sharp edges of the image (in 
contrast with the previous method). You can see the visual comparison of these two methods in 
Figure 4.5. 

m

n

m′

n′

m

n

m′

n′

 

 
Figure 4.5: (a) Nearest-neighbor resampling significantly reduces information contained in 
the original image, but it preserves sharp edges. (b) Weighted average resampling gives a 

better visual result, but the edges of the result are not sharp. 

4.3 Feature extraction 

Information contained in a bitmap representation of an image is not suitable for processing by 
computers. Because of this, there is need to describe a character in another way. The description 
of the character should be invariant towards the used font type, or deformations caused by a 
skew. In addition, all instances of the same character should have a similar description. A 
description of the character is a vector of numeral values, so-called “descriptors”, or “patterns”: 

( )0 1, , nx x −=x …  

Generally, the description of an image region is based on its internal and external 
representation. The internal representation of an image is based on its regional properties, such 
as color or texture. The external representation is chosen when the primary focus is on shape 
characteristics. The description of normalized characters is based on its external characteristics 
because we deal only with properties such as character shape. Then, the vector of descriptors 
includes characteristics such as number of lines, bays, lakes, the amount of horizontal, vertical 
and diagonal or diagonal edges, and etc. The feature extraction is a process of transformation of 
data from a bitmap representation into a form of descriptors, which are more suitable for 
computers.  

If we associate similar instances of the same character into the classes, then the descriptors 
of characters from the same class should be geometrically closed to each other in the vector 
space. This is a basic assumption for successfulness of the pattern recognition process. 

This section deals with various methods of feature extraction, and explains which method is 
the most suitable for a specific type of character bitmap. For example, the “edge detection” 
method should not be used in combination with a blurred bitmap. 

4.3.1 Pixel matrix 

The simplest way to extract descriptors from a bitmap image is to assign a brightness of each 
pixel with a corresponding value in the vector of descriptors. Then, the length of such vector is 
equal to a square (w h⋅ ) of the transformed bitmap: 
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( ),modi w

i
x f i

w

  =   
  

 

where 0, , 1i w h∈ ⋅ −… . 
 

Bigger bitmaps produce extremely long vector of descriptors, which is not suitable for 
recognition. Because of this, size of such processed bitmap is very limited. In addition, this 
method does not consider geometrical closeness of pixels, as well as its neighboring relations. 
Two slightly biased instances of the same character in many cases produce very different 
description vectors. Even though, this method is suitable if the character bitmaps are too blurry 
or too small for edge detection.  
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Figure 4.6: The “pixel matrix” feature extraction method 

4.3.2 Detection of character edges 

In contrast with the previous method, the detection of character edges does not consider 
absolute positioning of each pixel, but only a number of occurrences of individual edge types in 
a specific region of the character bitmap. Because of this, the resulting vector is invariant 
towards the intra-regional displacement of the edges, and towards small deformations of 
characters. 

Bitmap regions 

Let the bitmap be described by a discrete function ( ),f x y , where w  and h  are dimensions, 

such as 0 x w≤ <  and 0 y h≤ < . We divide it into six equal regions organized to three rows and 
two columns in the following way: 

  

Let ( ) ( )
min min,i ix y 

   and ( ) ( )
max max,i ix y 

   be an upper left and bottom right point of a rectangle, 

which determinates the region ir , such as: 

• Region 0r  : (0)
min 0x = , (0)

min 0y = , (0)
max 1

2
w

x
 = −  

,  (0)
max 1

3
h

y
 = −  

 

• Region 1r  : (1)
min 2

w
x

 =   
 , (1)

min 0y =  , (1)
max 1x w= −  , (1)

max 1
3
h

y
 = −  

 

• Region 2r  : (2)
min 0x =  , (2)

min 3
h

y
 =   

 , (2)
max 1

2
w

x
 = −  

 , (2)
max

2
1

3
h

y
⋅ = −  

 

• Region 3r  : (3)
min 2

w
x

 =   
 , (3)

min 3
h

y
 =   

 , (3)
max 1x w= −  , (3)

max
2

1
3
h

y
⋅ = −  
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• Region 4r  : (4)
min 0x =  , (4)

min
2
3
h

y
⋅ =   

 , (4)
max 2

w
x

 =   
 , (4)

max 1y h= −  

• Region 5r  : (5)
min 2

w
x

 =   
 , (5)

min
2
3
h

y
⋅ =   

 , (5)
max 1x w= −  , (5)

max 1y h= −  

There are several ways how to distribute regions in the character bitmap. The regions can be 
disjunctive as well as they can overlap each other. The figure 4.7 shows the several possible 
layouts of regions. 

 
Figure 4.7: Layouts of regions in the character bitmap. The regions can be disjunctive as well as they 

can overlap each other. 

Edge types in region 

Let us define an edge of the character as a 2x2 white-to-black transition in a bitmap. According 
to this definition, the bitmap image can contain fourteen different edge types illustrated in figure 
4.8. 

 
Figure 4.8: The processed bitmap can contain different types of 2x2 edges.  

The statistics of occurrence of each edge type causes uselessly long vector of descriptors. 
Because of this, the “similar” types of edges are considered as the same. The following lists 
shows how the edges can be grouped together: 
 

1. 0 + 1 (vertical edges) 
2. 2 + 3 (horizontal edges) 
3. 4 + 6 + 9 (“/”-type diagonal edges) 
4. 5 + 7 + 8 (“\”-type diagonal edges) 
5. 10 (bottom right corner) 
6. 11 (bottom left corner) 
7. 12 (top right corner) 
8. 13 (top left corner) 

 
For simplicity, assume that edge types are not grouped together. Let η  be a number of different 

edge types, where ih  is a 2x2 matrix that corresponds to the specific type of edge: 
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Let ρ  be a number of rectangular regions in the character bitmap, where ( )
min
ix , ( )

min
iy , ( )

max
ix  and 

( )
max
iy  are boundaries of the region ir  ( 0 1i ρ∈ −… ). If the statistics consider η  different edge 

types for each of ρ  regions, the length of the resulting vector x   is computed as η ρ⋅ : 

0 1 1( , , , )x x xη ρ⋅ −=x …  

Feature extraction algorithm 

At first, we have to embed the character bitmap ( ),f x y  into a bigger bitmap with white 

padding to ensure a proper behavior of the feature extraction algorithm. Let the padding be one 
pixel wide. Then, dimensions of the embedding bitmap will be 2w +  and 2h + . The 
embedding bitmap ( ),f x y′  is then defined as: 

( ) ( ) ( )
1 0 0 1 1

,
1, 1 0 0 1 1

if x y x w y h
f x y

f x y if x y x w y h

= ∨ = ∨ = + ∨ = +
′ =  − − ¬ = ∨ = ∨ = + ∨ = +

 

where w  and h  are dimensions of character bitmap before embedding. Color of the padding is 
white (value of 1). The coordinates of pixels are shifted one pixel towards the original position. 

 
The structure of vector of output descriptors is illustrated by the pattern below. The notation 

@j irh  means “number occurrences of an edge represented by the matrix jh  in the region ir ”.  

( )
10 1

0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1

region region region 

@ , @ , , @ , @ , @ , , @ , @ , @ , , @

rr r

r r r r r r r r r

ρ

η η ρ ρ η ρ
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We compute the position k  of the @j irh  in the vector x  as k i jη= ⋅ + , where η  is the 

number of different edge types (and also the number of corresponding matrices). 
 

The following algorithm demonstrates the computation of the vector of descriptors x : 
 

zeroize vector x  

for each region ir , where 0, , 1i ρ∈ −…  do 

begin 

for each pixel [ ],x y  in region ir ,where 
( ) ( )
min max
i ix x x≤ ≤  and 

( ) ( )
min max
i iy y y≤ ≤  do 

begin 

for each matrix jh , where 0, , 1j η∈ −…  do 

begin 

if 
( ) ( )

( ) ( )
, 1,

, 1 1, 1j

f x y f x y

f x y f x y

′ ′ +
=  ′ ′+ + + 

h  then  

begin 

let k i jη= ⋅ +  

let 1k k= +x x  

end 
end 

end 
end  
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4.3.3 Skeletonization and structural analysis 

The feature extraction techniques discussed in the previous two chapters are based on the 
statistical image processing. These methods do not consider structural aspects of analyzed 
images. The small difference in bitmaps sometimes means a big difference in the structure of 
contained characters. For example, digits ‘6’ and ‘8’ have very similar bitmaps, but there is a 
substantial difference in their structures.  

The structural analysis is based on higher concepts than the edge detection method. It does 
not deal with terms such as “pixels” or “edges”, but it considers more complex structures (like 
junctions, line ends or loops). To analyze these structures, we must involve the thinning 
algorithm to get a skeleton of the character. This chapter deals with the principle of 
skeletonization as well as with the principle of structural analysis of skeletonized image. 

The concept of skeletonization 

The skeletonization is a reduction of the structural shape into a graph. This reduction is 
accomplished by obtaining a skeleton of the region via the skeletonization algorithm. The 
skeleton of a shape is mathematically defined as a medial axis transformation. To define the 
medial axis transformation and skeletonization algorithm, we must introduce some elementary 
prerequisite terms. 

Let Nɺɺ  be a binary relation between two pixels [ ],x y  and [ ],x y′ ′ , such as Na bɺɺ  means “a  

is a neighbor of b ”. This relation is defined as: 

[ ] [ ]
[ ] [ ]

8

4

, N , 1 1 for eight-pixel neighbourhood

, N , 1 1 for four-pixel neighbourhood

x y x y x x y y

x y x y x x y y

′ ′ ′ ′⇔ − = ∨ − =
′ ′ ′ ′⇔ − = ⊕ − =

ɺɺ

ɺɺ
 

The border B  of character is a set of boundary pixels. The pixel [ ],x y  is a boundary pixel, if it 

is black and if it has at least one white neighbor in the eight-pixel neighborhood: 

[ ] ( ) [ ] ( ) [ ] [ ]8, , 0 , : , 1 , N ,x y B f x y x y f x y x y x y′ ′ ′ ′∈ ⇔ = ∧ ∃ = ∧ ɺɺ  

The inner region I  of character is a set of black pixels, which are not boundary pixels: 

[ ] ( ) [ ], , 0 ,x y I f x y x y B∈ ⇔ = ∧ ∉  

 

 
Figure 4.9: (a) Illustration of the four-pixel and eight-pixel neighborhood. (b) The set of 

boundary and inner pixels of character.  

The piece Ρ  is then a union of all boundary and inner pixels (B IΡ = ∪ ). Since there is only 
one continuous group of black pixels, all black pixels belong to the piece Ρ .  The principle and 
the related terminology of the skeletonization are similar to the piece extraction algorithm 
discussed in section 3.2.1. 
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Medial axis transformation 

The medial axis transformation of the piece Ρ  defined as follows. For each inner pixel p I∈ , 

we find the closest boundary pixel bp B∈ . If a pixel p  has more than one such neighbor, it is 
said to belong to the medial axis (or skeleton) of the Ρ . The concept of the closest boundary 
pixel depends on the definition of the Euclidean distance between two pixels in the orthogonal 
coordinate system. Mathematically, the medial axis (or skeleton) S  is a subset of the Ρ  defined 
as: 

( ) ( ) ( ){ }1 2 1 2 1 2: , , min ,
p B

p S p p p B p B d p p d p p d p p
′∈

′∈ ⇔ ∃ ∃ ∈ ∧ ∈ ∧ = =  

The pixel p  belongs to the medial axis S  if there exists at least two pixels 1p  and 2p , such as 

Euclidean distance between pixels p  and 1p  is equal to the distance between pixels p  and 2p , 
and these pixels are closest boundary pixels to pixel p . 

The Euclidean distance between two pixels [ ]1 1 1,p x y=  and [ ]2 2 2,p x y=  is defined as: 

( ) ( ) ( )2 22
1 2 1 2 1 2,d p p x x x x= − ⋅ −  

Skeletonization algorithm 

Direct implementation of the mathematical definition of the medial axis transformation is 
computationally expensive, because it involves calculating the distance from every inner pixel 
from the set I  to every pixel on the boundary B . 

The medial axis transformation is intuitively defined by a so-called “fire front” concept. 
Consider that a fire is lit along the border. All fire fronts will advance into the inner of character 
at the same speed. The skeleton of a character is then a set of pixels reached by more than one 
fire front at the same time.  

The skeletonization (or thinning) algorithm is based on the “fire front” concept. The 
thinning is a morphological operation, which preserves end-pixels and does not break 
connectivity. Assume that pixels of the piece are black (value of zero), and background pixels 
are white (value of one).  

 
The thinning is an iterative process of two successive steps applied to boundary pixels of a 

piece. With reference to the eight-pixel neighborhood notation in figure 4.9, the first step flags a 
boundary pixel p  for deletion if each of the following conditions is satisfied: 

 
• At least one of the top, right and bottom neighbor of  the pixel p  must be white (the 

pixel p  is white just when it does not belong to the piece Ρ ). 
 

t r bp p p∉Ρ ∨ ∉Ρ ∨ ∉Ρ  
 

• At least one of the left, right and bottom neighbor of  pixel p  must be white. 
 

l r bp p p∉Ρ ∨ ∉Ρ ∨ ∉Ρ  
 

• The pixel p  must have at least two, and at most six black neighbors from the piece Ρ . 
This condition prevents the algorithm from erasing end-points and from breaking the 
connectivity. 
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{ }82 N 6p p p p′ ′ ′≤ ∧ ∉Ρ ≤ɺɺ  

 
• The number of white-to-black transitions in the ordered sequence 

, , , , , , , ,t tr r br b bl l tl tp p p p p p p p p  must be equal to one. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 1

t tr tr r r br br b

b bl bl l l tl tl t

v p p v p p v p p v p p

v p p v p p v p p v p p

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ =
 

 

( ) 0

1

if x
v x

if x


=  ¬

 

 
The first step flags pixel p  for deletion, if its neighborhood meets the conditions above. 
However, the pixel is not deleted until all other pixels have been processed. If at least one of the 
conditions is not satisfied, the value of pixel p  is not changed.  

After step one has been applied to all boundary pixels, the flagged pixels are definitely 
deleted in the second step. Every iteration of these two steps thins the processed character. This 
iterative process is applied until no further pixels are marked for deletion. The result of thinning 
algorithm is a skeleton (or medial axis) of the processed character. 

 
• Let the piece Ρ  be a set of all black pixels contained in skeletonized character. 
• Let B  be a set of all boundary pixels. 
 

The following pseudo-code demonstrates the thinning algorithm more formally. This algorithm 
proceeds the medial axis transformation over a piece Ρ .  

 
do // iterative thinning process 

let continue = false 

let 0B = /  

for each pixel p  in piece Ρ  do // create a set of boundary pixels   

if 8: Np p p p′ ′ ′∃ ∉Ρ ∧ ɺɺ  then // if  the pixel p has at least one white neighbor 

insert pixel p  into set B  // but keep it also in Ρ  

 

for each pixel p  in set B  do // 1.step of the iteration 

begin 
// if at least one condition is violated, skip this pixel 

if ( )t r bp p p¬ ∉Ρ ∨ ∉Ρ ∨ ∉Ρ  then continue  

if ( )l r bp p p¬ ∉Ρ ∨ ∉Ρ ∨ ∉Ρ  then continue 

if { }( )82 N 6p p p p′ ′ ′¬ ≤ ∧ ∉Ρ ≤ɺɺ  then continue 

 if 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 1

t tr tr r r br br b

b bl bl l l tl tl t

v p p v p p v p p v p p

v p p v p p v p p v p p

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ

∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ + ∈Ρ ∧ ∉Ρ ≠
 

then 
begin 

continue 
end 
// all tests passed 
flag point p  for deletion 

let continue = true 
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end 
 

for each pixel p  in set B  do // 2.step of the iteration  

if p  is flagged then 

pull point p  from piece Ρ  

 
while continue = true  

 
Note: The pixel p  belongs to the piece Ρ  when it is black: ( ) 0p f p∈Ρ ⇔ =  

 

 
Figure 4.10: (a) The character bitmap before skeletonization. (b) The thinning algorithm 

iteratively deletes boundary pixels. Pixels deleted in the first iteration are marked by a 
light gray color. Pixels deleted in the second and third iteration are marked by dark gray. 

(c) The result of the thinning algorithm is a skeleton (or a medial axis). 

Structural analysis of skeletonized character 

The structural analysis is a feature extraction method that considers more complex structures 
than pixels.  The basic idea is that the substantial difference between two compared characters 
cannot be evaluated by the statistical analysis. Because of this, the structural analysis extracts 
features, which describe not pixels or edges, but the more complex structures, such as junctions, 
line ends and loops. 

Junction 

The junction is a point, which has at least three black neighbors in the eight-pixel neighborhood. 
We consider only two types of junctions: the junction of three and four lines. The number of 
junctions in the skeletonized piece Ρ  is mathematically defined as: 

{ }{ }
{ }{ }

3 3
8

3 4
8

: , N

: , N

j

j

n p p p p p p

n p p p p p p

′ ′ ′= ∃ ⊆ Ρ ∧

′ ′ ′= ∃ ⊆ Ρ ∧

ɺɺ

ɺɺ
 

Line end 

The line end is a point, which has exactly one neighbor in the eight-pixel neighborhood. The 
number of line-ends in a skeletonized piece Ρ  is defined as: 

{ }{ }1 1 8 1! : , Nen p p p p p p= ∃ ⊆ Ρ ∧ ɺɺ  

The following algorithm can be used to detect the number of junctions and number line-ends in 
a skeletonized piece Ρ : 
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let 0jn =  

let 0en =  

for each pixel p  in piece Ρ  do 

begin 

let neighbors 0=  

for each pixel p′  in neighborhood { }, , , , , , ,t tr r br b bl l tlp p p p p p p p  do 

if p′∈Ρ  then  

let neighbors neighbors+1=  

 

if neighbors 1=  then  

let +1e en n=  

else if neighbors 3≥  then  

let +1j jn n=  

end 

 

 
Figure 4.11: (a, b) The junction is a pixel, which as at least three neighbors in eight-
pixel neighborhood. (c) The line end is a pixel, which has only one neighbor in eight-
pixel neighborhood (d) The loop is a group of pixels, which encloses the continuous 

white space. 

Loops 

It is not easy to determine the number of loops ln  in the skeletonized character. The algorithm 
is based on the following principle. At first, we must negate the bitmap of the skeletonized 
character. Black pixels will be considered as background and white pixels as foreground. The 
number of loops in the image is equal to a number of lakes, which are surrounded by these 
loops.  Since the lake is a continuous group of white pixels in the positive image, we apply the 
piece extraction algorithm on the negative image to determine the number of black pieces. Then, 
the number of loops is equal to the number of black pieces minus one, because one piece 
represents the background of the original image (negated to the foreground). Another way is to 
use a series of morphological erosions.  

 

 
Figure 4.12: (a) We determine the number of lakes in skeleton by applying the 

piece-extraction algorithm on negative image. The negative image (b) contains three 
pieces. Since the piece 3 is a background, only two pieces are considered as lakes. 

(c)(d) The similar skeletons of the same character can differ in the number of 
junctions 
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Since we do not know the number of edges of the skeleton, we cannot use the standard 
cyclomatic equation know from the graph theory. In addition, two similar skeletons of the same 
character can sometimes differ in a number of junctions (see figure 4.12). Because of this, it is 
not recommended to use constraints based on the number of junctions.  

Structural constraints 

To improve the recognition process, we can assume structural constraints in the table 4.1. The 
syntactical analysis can be combined by other methods described in previous chapters, such as 
edge detection method or pixel matrix.  

The simplest way is to use one global neural network that returns several candidates and 
then select the best candidate that meets the structural constraints (figure 4.13.a). More 
sophisticated solution is to use the structural constraints for adaptive selection of local neural 
networks (figure 4.13.b). 

 
 Line ends Loops Junctions 
0 BDO08 CEFGHIJKLMNSTUVWXYZ123457 CDGIJLMNOSUVWZ012357 

1 PQ69 ADOPQR09 EFKPQTXY469 

2 ACGIJLMNRSUVWZ123457 B8 ABHR8 

3 EFTY   

4 HKX   

Table 4.1: Structural constraints of characters. 

 

A

B
C

 

Figure 4.13: (a, b) Structural constraints can be applied before and after the recognition by 
the neural network. (c) Example of the skeletonized alphabet. 

Feature extraction 

In case we know the position of structural elements, we can form a vector of descriptors directly 
from this information. Assume that there are several line-ends, loops, and junctions in the 
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image. The position of loop is defined by its centre. To form the vector, we must convert 
rectangular coordinates of the element into polar coordinates [ ],r θ  (see figure 4.14): 

2 2r x y′ ′= +  ; 
y

atg
x

θ ′ =  ′ 
 ; 

2 x w
x

w

⋅ −′ =  ; 
2 y h

y
h

⋅ −′ =  

where x′  and y′  are normalized rectangular coordinates. 
 
The length and the structure of resulting vector vary according to a number and type of 

structural elements contained in the character. Since the structural constraints divide characters 
into the several classes, there are several possible types of description vector. Each type of 
vector corresponds to one class of character.  

For example, consider character with two line ends and one junction. This constraint 
determines the following class of possible characters: (G, I, J, L, M, N, S, U, V, W, Z, 1, 2, 3, 5, 
7). We define a vector of descriptors to distinguish between these characters as follows: 

(




)

1 1 2 2 3 3

line endline end junction
21

, , , , ,r r rθ θ θ=x  

w

h

[ ],x y [ ],r θ

r θ

1−
1−

1

1

0

0

 

 
Figure 4.14: (a) The skeleton of the character contains several structural elements, such 

as junctions, loops and line ends. (b, c) Each element can be positioned in the 
rectangular or polar coordinate system. 
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Chapter 5 

Recognition of characters 
The previous chapter deals with various methods of feature extraction. The goal of these 
methods is to obtain a vector of descriptors (so-called pattern), which comprehensively 
describes the character contained in a processed bitmap. The goal of this chapter is to introduce 
pattern recognition techniques, such as neural networks, which are able to classify the patterns 
into the appropriate classes.  

5.1 General classification problem 

The general classification problem is formulated using the mapping between elements in two 
sets. Let A  be a set of all possible combinations of descriptors, and B  be a set of all classes. 
The classification means the projection of group of similar element from the set A  into a 
common class represented by one element in the set B . Thus, one element in the set B  
corresponds to one class. Usually the group of distinguishable instances of the same character 
corresponds to the one class, but sometimes one class represents two mutually indistinguishable 
characters, such as “0” and “O”.  

Let F  be a hypothetic function that assign each element from the set A  to an element from 
the set B : 

:

ˆ ( )

F A B

F

→
=x x

 

where A∈x  is a description vector (pattern) which describes the structure of classified 
character and ̂ B∈x  is a classifier, which represents the semantics of such character .  

The function F  is the probably best theoretical classificator, but its construction is 
impossible since we cannot deal with each combination of descriptors. In praxis, we construct 
pattern classifier by using only a limited subset of the A B→  mappings. This subset is known 
as a “training set”, such as tA A⊂  and tB B⊂ . Our goal is to construct an approximation 

( ),F x wɶ  of the hypothetic function F , where w  is a parameter that affects the quality of the 

approximation: 

( )
( )

:

ˆ ,

t tF A B

F

→

=

w

x x w

ɶ

ɶ
 

where tA A∈ ⊂x , ˆ tB B∈ ⊂x . Formally we can say that ( )F̂ w  is a restriction of the projection 

F  over a set tA A⊂ . We assume that for each i tA∈x  we know the desired value ˆ i tB∈x : 

0 0 1 1 2 2 1 1ˆ ˆ ˆ ˆ, , , , n n− −→ → → →x x x x x x x x…  
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A B

F

( )F wɶ

tA tB

x x̂

 
Figure 5.1: The projection between sets A  and B . The F  is a hypothetic function that maps every 

possible combination of input pattern A∈x  to a corresponding class ˆ B∈x . This projection is 

approximated by a function ( )F wɶ , which maps input patterns from training set tA  into the 

corresponding classes from the set tB  

 
The problem is to find an optimal value (or values) of a parameter w . The w  is typically a 
vector (or matrix) of syntactical weights in a neural network. According to this parameter, the 

values of the function ( ),F x wɶ  should be as closest as possible to the values of ( )F x  for input 

patterns x  from the training set tA . We define an error function to evaluate worthiness of the 

parameter w : 

( ) ( )( )
1 2

0

1
ˆ,

2

m

i i
i

E F
−

=

= −∑w x w xɶ  

where m  is a number of patterns 0 1m−x x…  in the training set tA . Let +w  to be an optimal 

value of the parameter w , such as ( ){ }arg min
W

E+ ∈
=

w
w w . Then, the approximation ( ),F +x wɶ  of 

the function ( )F x  is considered as adapted. The adapted approximation ( ),F +x wɶ  simulates 

original function ( )F x  for patterns x  from the training set tA . In addition, this approximation 

is able to predict the output classifier x̂  for unknown pattern x  from the “test” set xA  

( x tA A A= − ). The function with such prediction ability partially substitutes the hypothetic 

classificator ( )F x . Since the function ( ),F x wɶ  is only a model, we use a feed-forward neural 

network for its implementation. 

5.2 Biological neuron and its mathematical models 

For a better understanding of artificial neural network architecture, there is a need to explain the 
structure and functionality of a biological neuron. The human brain is a neural network of about 
ten billions interconnected neurons. Each neuron is a cell that uses a biochemical reaction to 
process and transmit information. The neural cell has a body of size about several micrometers 
and thousands of input connections called “dendrites”. It also has one output connection called 
“axon”, which can be several meters long. The data flow in the biological neural network is 
represented by electrical signal, which propagates along the axon. When the signal reaches a 
synaptic connection between the axon and a consecutive dendrite, it relieves molecules of 
chemical agent (called mediators or neuro-transmitters) into such dendrite. This action causes a 
local change of polarity of a dendrite transmission membrane. The difference in the polarity of 
the transmission membrane activates a dendrite-somatic potential wave, which advances in a 
system of branched dendrites into the body of neuron. 
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Figure 5.2: The biological neuron 

 
The biological neural network contains two types of synaptic connections. The first is an 
excitive connection, which amplifies the passing signal. The second (inhibitive) connection 
suppresses the signal. The behavior of the connection is represented by its “weight”. The neural 
network contains mechanism which is able to alter the weights of connections. Because of this, 
the system of synaptic weights is a realization of human memory. As the weights are 
continually altered, the old information is being forgotten little by little.  

terminal buttons

terminal button of axon

dendrite

neuro-transmitters

Cell body

axon

dendrite

 

 
Figure 5.3: (a) Schematic illustration of the neural cell (b) The synaptic connection 

between a dendrite and terminal button of the axon 

 
Since the problematic of the biological neuron is very difficult, the scientists proposed several 
mathematical models, such as McCulloch-Pitts binary threshold neuron, or the percepton. 

5.2.1 McCulloch-Pitts binary threshold neuron 

The McCulloch-Pitts binary threshold neuron was the first model proposed by McCulloch and 
Pitts in 1943. The neuron has only two possible output values (0 or 1) and only two types of the 
synaptic weights: the fully excitative and the fully inhibitive. The excitative weight (1) does not 
affect the input, but the inhibitive one negates it (-1).  
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The weighted inputs are counted together and processed by a neuron as follows: 

( )

1

,
0

0 0

1 0

J

i j j i
j

y g w x

if
g

if

ϑ

ξ
ξ

ξ

−

=

 
= ⋅ − 

 
 

<
=  ≥

∑
 

This type of neuron can perform logical functions such as AND, OR, or NOT. In addition, 
McCulloch and Pitts proved that synchronous array of such neurons is able to realize arbitrary 
computational function, similarly as a Turing machine. Since the biological neurons have not 
binary response (but continuous), this model of neuron is not suitable for its approximation. 

5.2.2 Percepton 

Another model of neuron is a percepton. It has been proved that McCulloch-Pitts networks with 
modified synaptic connections can be trained for the recognition and classification. The training 
is based on a modification of a neuron weights, according to the reaction of such neuron as 
follows. If the neuron is not active and it should be, we increase the weights. If the neuron is 
active and it should not be, we decrease them. This principle was been used in a first model of 
the neural classifier called ADALINE (adaptive linear neuron).  The major problem of such 
networks is that they are not able to solve linearly nonseparable problems.  

This problem has been solved when the scientists Rumelhart, Hilton and Williams proposed 
the error back-propagation method of learning for multilayered percepton networks. The simple 
McCulloch-Pitts binary threshold neurons have been replaced by neurons with continuous 
saturation input/output function.  

Percepton has multiple analogous inputs and one analogous output. Let 1o jx x −…  be inputs 

with corresponding weights ,0 , 1i i jw w −… . The weighted inputs are counted, thresholded and 

saturated together in the following way: 

( )

1

,
0

1

1

J

i j j i
j

y g w x

g
e ξ

ϑ

ξ

−

=

−

 
= ⋅ − 

 
 

=
+

∑
 

where  ( )g ξ  is a sigmoid saturation function (see figure 5.4.b) and iϑ  is a threshold value. 

Sometimes, the threshold is implemented as a dedicated input with a constant weight of -1 (see 
figure 5.4.a). Then, the function of a neuron can be simplified to ( )y g= ⋅x w , where x  is a 

vector of inputs (including the threshold value), and w  is a vector of weights (including the 
constant weight -1). 
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Figure 5.4: (a) The summation Σ  and gain (saturation) g  function of the percepton with a 

threshold implemented as a dedicated input. (b) The sigmoid saturation function. 

5.3 Feed-forward neural network 

Formally, the neural network is defined as an oriented graph ( ),G N E= , where N  is a non-

empty set of neurons, and E  is a set of oriented connections between neurons. The connection 

( ),e n n E′ ∈  is a binary relation between two neurons n  and n′ . The set of all neurons N  is 

composed of disjunctive sets 0N , 1N , 2N , where iN  is a set of all neurons from the ith layer.  

0 1 2N N N N= ∪ ∪  

The jth weight of a ith neuron in a kth layer is denoted as ( )
,
k

i jw  and the threshold of ith neuron in a 

kth layer is denoted as ( )k
iϑ .  Numbers of neurons for the input (0), hidden (1) and output (2) 

layer are denoted as m , n , o , such as 0m N= , 1n N=  and 2o N= .  

The number of neurons in the input layer (m ) is equal to a length of an input pattern x  in 
order that each value of the pattern is dedicated to one neuron. Neurons in the input layer do not 
perform any computation function, but they only distribute values of an input pattern to neurons 
in the hidden layer. Because of this, the input layer neuron has only one input directly mapped 

into multiple outputs. Because of this, the threshold value (0)
iϑ  of the input layer neuron is equal 

to zero, and the weights of inputs (0)
,0iw   are equal to one. 

The number of neurons in the hidden layer (n ) is scalable, but it affects the recognition 
abilities of a neural network at a whole. Too few neurons in the hidden layer causes that the 
neural network would not be able to learn new patterns. Too many neurons cause network to be 
overlearned, so it will not be able to generalize unknown patterns as well. 

The information in a feed-forward neural network is propagated from lower layers to upper 
layers by one-way connections. There are connections only between adjacent layers, thus feed-
forward neural network does not contain feedback connections, or connections between 
arbitrary two layers. In addition, there exist no connections between neurons from the same 
layer. 



 47

(2)
0ϑ (2)

1ϑ (2)
1oϑ −

0x 1x 1mx −

0y 1y 1oy −

(1)
0ϑ (1)

1ϑ (1)
1nϑ −

(0)
0ϑ (0)

1ϑ (0)
1mϑ −

0z 1z 1nz −

(1)
,i jw

(2)
,i jw

D
at
a 
fl
o
w

 
Figure 5.5: Architecture of the three layer feed-forward neural network.  

5.4 Adaptation mechanism of feed-forward neural network 

There has been proven that a multilayered neural network composed of perceptons with a 
sigmoid saturation function can solve an arbitrary non-linear problem. Mathematically, for each 

function : m oF →ℝ ℝ  there exists a multilayered feed-forward neural network that is able to 
realize this function. The proof is based on the Kolmogorov’s theorem, which tells that every 

continuously growing function  f  defined on interval 0,1
m

 can be written as: 

( ) ( )
2 1

0 1 ,
0 0

m m

m i i j j
i j

f x x xα φ
⋅ −

−
= =

 
=  

 
 

∑ ∑…  

where iα  are properly chosen continuous functions with one parameter. 
 
The problem is how to construct the neural network corresponding to a given non-linear 

function. At first, we choose a proper topology of the network. The number of neurons in the 
input and output layer is given by lengths of the input and output patterns, while the number of 
neurons in the hidden layer is scalable. 

An adaptation of the neural network means finding the optimal parameter +w  of the 

approximation function ( ),F x wɶ  discussed in section 5.1. Let us define two error functions to 

evaluate a worthiness of the parameter w : 

( )( )21
,

2

tA

t i i
i

E F= −∑ x w xɶ ɶ  ; ( )( )21
,

2

xA

x i i
i

E F= −∑ x w xɶ ɶ  

where subscript “t” means “train”, and “x” means “test”. The tE  is an error function defined for 

patterns from the training set, and xE  for patterns from the test set. The response of the neural 

network to an input pattern x  is given as ( ),i iy F= x wɶ . 

The error function tE  goes down as a number of neurons in the hidden layer grows. This 

relation is valid also between the function tE  and a number of iterative steps of the adaptation 
process. These relations can be mathematically described as follows: 
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lim 0t
n

E
→∞

=  ; lim 0t
k

E
→∞

=  

where n  is the number of neurons in the input layer and k  is the number of iteration steps of 
the adaptation process. 

The error function xE  does not have a limit at zero as n  and k  goes to infinity. Because of 
this, there exists an optimal number of neurons and optimal number of iteration steps, in which 
the function xE  has a minimum (see figure 5.6). 

 or n k

xE

tE

E

 

Figure 5.6: Dependency of error functions tE  and xE  on the number of neurons in input layer (n ) 

and the number of iteration steps (k ). 

 
For simplicity, we will assume only a feed-forward neural network with one layer of hidden 
neurons defined in section 5.3. All neurons in adjacent layers are connected by oriented 
connections. There are no feedback connections, or connections between neurons within a 
single layer.  

The activities of hidden and output neurons are defined as: 

1
(1) (1)
,

0
activities of neurons in the hidden layer

m

i i j j i
j

z g w x ϑ
−

=

 
= ⋅ − 

 
 
∑  ; 

1
(2) (2)
,

0
activities of neurons in the output layer

n

i i j j i
j

y g w z ϑ
−

=

 
= ⋅ − 

 
 
∑  

where ( )g ξ  is a sigmoid saturation function (see figure 5.4.b). 

5.4.1 Active phase 

Evaluation of the activities of hidden and output neurons is performed in so-called “active 
phase”. The active phase consists of two steps in three-layer neural networks. The first step is an 
evaluation of activities iz  in the hidden layer, and the second step is an evaluation of activities 

iy . Since the evaluation of activities is performed from bottom layers to top ones, the term 
“feed-forward” refers to this principle. The active phase corresponds to an approximation 

( ),F x wɶ  of function ( )F x , and it is performed every time when there is a need to classify the 

input pattern  x .  
The following pseudo-code demonstrates the active phase of feed-forward neural network. 

The notation is the same as in figure 5.5. 
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procedure activePhase (input:  w , // vector of thresholds and weights 
                               x ; // input pattern to be classified 
                       output: z , // vector of activities of neurons in hidden layer 
                              y   // vector of activities of neurons in output layer (neural 

network response) 
                      ) 
begin 

// first step: evaluate activities of neurons in the hidden layer 
for each neuron in hidden layer with index 0, , 1i n∈ −…  do 
begin 

let 
(1)
iξ ϑ =  w  

for each input with index 0, , 1j m∈ −…  do 

let 
(1)
,i j jw xξ ξ  = + ⋅ w  

let ( )iz g ξ=  

end 
 
// second step: evaluate activities of neurons in the output layer 
for each neuron in output layer with index 0, , 1i o∈ −…  do 
begin 

let 
(2)
iξ ϑ =  w  

for each input with index 0, , 1j n∈ −…  do 

let 
(2)
,i j jw zξ ξ  = + ⋅ w  

let ( )iy g ξ=  

end 
end                         

5.4.2 Partial derivatives and gradient of error function 

The goal of the training phase is to find optimal values of thresholds and weights to minimize 
the error function tE . Adaptation phase is an iterative process in which a response y  to an input 

pattern x  is compared with the desired response x̂ . The difference between the obtained and 
desired response is used for a correction of weights. The weights are iteratively altered until the 
value of the error function tE  is negligible.  

Gradient of error function related to a single pattern 

We compute a gradient g  of an error function related to a single pattern x  with desired and 

obtained responses y  and x̂ . The gradient g  is computed in direction from upper layers to 
lower layers as follows: 
 

At first, we compute components of the gradient related to thresholds (2)
iϑ  in the output 

layer as 

( ) ( )(2)
ˆ 1i i i i

i

E
y x y y

ϑ
∂ = − ⋅ − ⋅

∂
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Then, we compute components of the gradient related to thresholds (1)
iϑ  in the hidden layer. 

These components are computed using the components 
(2)
i

E

ϑ
∂

∂
 from the previous step as 

follows: 

( )
1

(2)
,(1) (2)

0

1
o

i i i j
ji i

E E
z y w

ϑ ϑ

−

=

∂ ∂= ⋅ − ⋅
∂ ∂∑  

Similarly, we compute components of the gradient related to weights (2)
,i jw  and (1)

,i jw  in the 

following way: 

(2) (2)
,

j
i j i

E E
z

w ϑ
∂ ∂= ⋅

∂ ∂
 ; 

(1) (1)
,

j
i j i

E E
x

w ϑ
∂ ∂= ⋅

∂ ∂
 

The gradient g  is a vector of components is given as follows: 

(1) (1) (2) (2) (1) (1) (2) (2)
0 1 0 1 0,0 1, 1 0,0 1, 1

, , , , , , , , , , ,
n o n m o n

E E E E E E E E

w w w wϑ ϑ ϑ ϑ− − − − − −

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=  
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

g ⋯ ⋯ ⋯ ⋯  

Overall gradient 

The overall gradient is defined as a summary of gradients related to individual patterns of the 
training set tA . Let ˆ/x xg  be a gradient related to a training pair ̂/x x . The overall gradient is 

computed as ˆ/
ˆ/

tA

∑ x x
x x

g . 

5.4.3 Adaptation phase 

The adaptation phase is an iterative process of finding optimal values of weight and thresholds, 
for which a value of the error function tE  is in a local minimum. The figure 5.7 schematically 

illustrates a graph of the function tE  - so called “error landscape”. Generally, the error 

landscape is 1+w  dimensional, where w  is a cardinality of the vector of thresholds and 

weights, such as: 

( )(1) (1) (2) (2) (1) (1) (2) (2)
0 1 0 1 0,0 1, 1 0,0 1, 1, , , , , , , , , , ,n o n m o nw w w wϑ ϑ ϑ ϑ− − − − − −=w ⋯ ⋯ ⋯ ⋯  
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Figure 5.7: The numeric approach of finding the global minimum in the error landscape. 

The vector of optimal thresholds and weights +w  is represented by a global minimum in the 
error landscape. Since we cannot compute this minimum analytically, we have to use a numeric 
approach. There are various numeric optimization algorithms, such as Newton’s method, or the 
gradient descent. We use the gradient descent algorithm to find the global minimum in the error 
landscape. The single step of the iterative algorithm can looks like follows: 

( )

( )

1 ( ) ( ) ( ) 1 ( )
( )

1 ( ) ( ) ( ) 1 ( )
, , , ,( )

,

k l k l k l k l
i i i ik l

i

k l k l k l k l
i j i j i j i jk l

i j

E

E
w w w w

w

ϑ ϑ λ µ ϑ ϑ
ϑ

λ µ

+ −

+ −

∂= − + ⋅ −
∂

∂= − + ⋅ −
∂

 

where ( )
,

k l
i jw  is a weight of the connection between the ith neuron in lth layer and jth neuron in l-

1th layer computed in a kth step of iterative process.  
 

The speed of convergence is represented by a parameter λ . Too small value of the 
parameter λ  causes excessively slow convergence. Too big value of the λ  breaks the 
monotony of convergence. The µ  is a momentum value, which prevents the algorithm of 
getting stuck in local minimums. 

 

Note: The notation 
( )l
i

E

ϑ
 ∂
 ∂ 

g  means “the component 
( )l
i

E

ϑ
∂

∂
 of the vector (or gradient). The 

( )l
i

E

ϑ
∂

∂
 is a partial derivative of error function E  by the threshold value ( )l

iϑ . Similarly, the 

( )
,
l

i j

E

w

∂
∂

 is a partial derivative of function E  by the value of weight ( )
,
l

i jw .  

 
The whole adaptation algorithm of feed-forward neural network can be illustrated by the 

following pseudo code. 
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procedure adaptation (input:  tA , // training set of patterns ˆ/x x   

                              λ , // speed of convergence 
                              µ , // momentum value 

                              maxk , // maximum number of iterations 

                              ε , // precision of adaptation process  

                      output: +w , // vector of optimal weights and thresholds 

                     ) 
begin 

initialize weights and thresholds in w  to random values 

let prev =w w  // we haven’t a previous value of w  at the beginning  

let 0k = , E = ∞  

while maxk k E ε≤ ∧ >  do 

begin 
// compute overall gradient 
zeroize overall gradient g  

for each pair ˆ/x x  of tA  do 

begin 

// compute gradient  ˆ/x xg  for training pair ˆ/x x     

zeroize gradient ˆ/x xg  

activePhase( w , x , z , y ) // compute activities  z , y  

for each threshold 
(2)
iϑ  do ( ) ( )ˆ/ (2)

ˆ 1i i i i
i

E
y x y y

ϑ
 ∂ = − ⋅ − ⋅ ∂ 

x xg  

for each threshold 
(1)
iϑ  do 

( )
1

(2)
ˆ ˆ/ / ,(1) (2)

0

1
o

i i i j
ji i

E E
z y w

ϑ ϑ

−

=

   ∂ ∂
 = ⋅ − ⋅ ⋅     ∂ ∂   

∑x x x xg g w  

for each weight 
(2)
,i jw  do ˆ ˆ/ /(2) (2)

,
j

i j i

E E
z

w ϑ
   ∂ ∂= ⋅   ∂ ∂    

x x x xg g  

for each weight 
(1)
,i jw  do ˆ ˆ/ /(1) (1)

,
j

i j i

E E
x

w ϑ
   ∂ ∂= ⋅   ∂ ∂    

x x x xg g  

let ˆ/= + x xg g g  

end 
// alter values of thresholds and weights according to the gradient g  

for each threshold 
( )l
iϑ  in +w  do  

let ( )( ) ( ) ( ) ( )
( )

l l l l
next i i i prev il

i

Eϑ ϑ λ µ ϑ ϑ
ϑ

 ∂
       = − ⋅ + ⋅ −        ∂ 

w w g w w  

for each weight 
( )
,
l

i jw  in +w  do  

let ( )( ) ( ) ( ) ( )
, , , ,( )

,

l l l l
next i j i j i j prev i jl

i j

E
w w w w

w
λ µ

 ∂
       = − ⋅ + ⋅ −        ∂  

w w g w w  

let prev =w w , next=w w  

end 

let + =w w  

end                         
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5.5 Heuristic analysis of characters 

The segmentation algotithm described in chapter three can sometimes detect redundant 
elements, which do not correspond to proper characters. The shape of these elements after 
normalization is often similar to the shape of characters. Because of this, these elements are not 
reliably separable by traditional OCR methods, although they vary in size as well as in contrast, 
brightness or hue. Since the feature extraction methods described in chapter four do not consider 
these properties, there is a need to use additional heuristic analyses to filter non-character 
elements. The analysis expects all elements  to have similar properties. Elements with 
considerably different properties are treated as invalid and excluded from the recognition 
process.  

The analysis consists of two phases. The first phase deals with statistics of brighness and 
contrast of segmented characters. Characters are then normalized and processed by the piece 
extraction algorithm.  

Since the piece extraction and normalization of brightness disturbs statistical properties of 
segmented characters, it is necessary to proceed the first phase of analysis before the application 
of the piece extraction algorithm.  

In addition, the heights of detected segments are same for all characters. Because of this, 
there is a need to proceed the analysis of dimensions after application of the piece extraction 
algorithm. The piece extraction algorithm strips off white padding, which surrounds the 
character. 

 
Respecting the constraints above, the sequence of steps can be assembled as follows: 
 

1. Segment the plate (result is in figure 5.8.a). 
2. Analyse the brightness and contrast of segments and exclude faulty ones. 
3. Apply the piece extraction algorithm on segments (result is in figure 5.8.b). 
4. Analyse the dimensions of segments and exclude faulty ones. 

 

 

Figure 5.8: Character segments before (a) and after (b) application of the piece extraction 
algorithm.  This algorithm disturbs statistical properties of brightness and contrast. 

If we assume that there are not big differences in brightness and contrast of segments, we can 
exclude the segments, which considerably differs from the mean. Let ith segment of plate be 
defined by a discrete function ( ),if x y , where iw  and ih  are dimensions of the element. We 

define the following statistical properties of an element: 
 
The global brightness of such segment is defined as a mean of brightnesses of individual 

pixels: 

( )( )

0 0

,
i iw h

i
b

x y

p f x y
= =

=∑∑  
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The global contrast of the ith segment is defined as a standard deviation of brightnesses of 
individual pixels: 

( )( )2( )

0 0( )

,
i iw h

i
b

x yi
c

i i

p f x y

p
w h

= =

−
=

⋅

∑∑
 

The function ( ),f x y  represents only an intensity of grayscale images, but the additional 

heuristic analysis of colors can be involved to improve the recognition process. This analysis 
separates character and non-character elements on color basis. If the captured snapshot is 
represented by a HSV color model, we can directly compute the global hue and saturation of the 
segments as a mean of hue and saturation of individual pixels: 

( )( )

0 0

,
i iw h

i
h

x y

p h x y
= =

=∑∑  ; ( )( )

0 0

,
i iw h

i
s

x y

p s x y
= =

=∑∑  

where ( ),h x y  and ( ),s x y  is a hue and saturation of the certain pixel in the HSV color model. 

If the captured snapshot is represented by a RGB color model, there is need to transform it to 
the HSV model first. 

To determine the validity of the element, we compute an average value of a chosen property 

over all elements. For example, the average brightness is computed as 
1

( )

0

n
i

b b
i

p p
−

=

=∑ , where n  is 

a number of elements. The element i  is considered as valid, if its global brightness ( )i
bp  does 

not differ more than 16 % from the average brightness bp . The threshold values of individual 
properties have been calibrated as follows:  

brightness (BRI) 
( )

0.16
i

b b

b

p p

p

−
<  Contrast (CON) 

( )

0.1
i

c c

c

p p

p

−
<  

hue (HUE) 
( )

0.145
i

h h

h

p p

p

−
<  Saturation (SAT) 

( )

0.24
i

s s

s

p p

p

−
<  

Height (HEI) 0.2ih h

h

−
<  width/height ratio 

(WHR) 
0.1 0.92i

i

w

h
< <  

If the segment violates at least one of the constraints above, it is considered as invalid and 
excluded from the recognition process. The table 5.1 contains properties of elements from figure 
5.8. According to this table, elements 0 and 10 have been refused due to an uncommon 
width/height ratio, and elements 1 and 4 due to a small height. 
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 i  BRI CON HUE SAT HEI WHR 
Violated 

constraints 

 0 0.247 0.038 0.152 0.236 0.189 0.093 BRI,HUE,WHR 

 1 0.034 0.096 0.181 0.134 -0.554 0.833 HUE,HEI 

 2 0.002 0.018 0.030 0.038 0.040 0.642  

 3 0.084 0.012 0.003 0.061 0.189 0.625  

 4 0.001 0.003 0.021 0.059 -0.777 1.666 HEI,WHR 

 5 0.117 0.016 0.002 0.063 0.189 0.625  

 6 0.063 0.016 0.007 0.056 0.189 0.562  

 7 0.025 0.011 0.025 0.028 0.114 0.533  

 8 0.019 0.025 0.012 0.034 0.114 0.600  

 9 0.019 0.048 0.009 0.045 0.114 0.533  

 10 0.062 0.009 0.041 0.018 0.189 0.095 WHR 

Table 5.1: Properties of segments in figure 5.8. The meaning of abbreviations is as follows: 
BRI=brightness, CON=contrast, HUE=hue, SAT=saturation, HEI=height, WHR=width/height ratio. 
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Chapter 6 

Syntactical analysis of 
recognized plate 

6.1 Principle and algorithms 

In some situations when the recognition mechanism fails, there is a possibility to detect a failure 
by a syntactical analysis of the recognized plate. If we have country-specific rules for the plate, 
we can evaluate the validity of that plate towards these rules. Automatic syntax-based correction 
of plate numbers can increase recognition abilities of the whole ANPR system.  

For example, if the recognition software is confused between characters „8“ and „B“, the 
final decision can be made according to the syntactical pattern. If the pattern allows only digits 
for that position, the character „8“ will be used rather than the character „B“. 

Another good example is a decision between the digit „0“ and the character „O“. The very 
small difference between these characters makes their recognition extremely difficult, in many 
cases impossible.  

6.1.1 Recognized character and its cost 

In most cases, characters are recognized by neural networks. Each neuron in an output layer of a 
neural network typically represents one character. Let ( )0 9, , , , ,A Zy y y y=y … …  be 

a vector of output activities. If there are 36 characters in the alphabet, the vector y  will be also 
36-dimensional.  

Let iy  be an ith component of the vector y . Then, iy  means how much does the input 
character corresponds to the ith character in the alphabet, which is represented by this 
component. The recognized character χ  is represented by the greatest component of the vector 
y : 

{ }( )
0
max i

i z
chr yχ

≤ ≤
=   

where ( )ichr y  is the character, which is represented by the ith component of vector y . 

 
Let ( )Sy  be a vector y  descendingly sorted according to the values of components. Then, 

the recognized character is represented by the first component of so sorted vector: 

( )( )
0
Schr yχ =  

When the recognition process fails, the first component of ( )Sy  can contain invalid 
character, which does not match the syntax pattern. Then, it is necessary to use the next valid 
character with a worse cost.  
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6.1.2 Syntactical patterns 

In praxis, ANPR systems must deal with many different types of plate numbers. Number plates 
are not unified, so each country has own type. Because of this, number plate recognition system 
should be able to recognize a type of the number plate, and automatically assign the correct 
syntactical pattern to it. The assignation of the right syntactical pattern is a fundamental problem 
in syntactical analysis. 

Syntactical pattern is a set of rules defining characters, which can be used on a certain 
position in a plate number. If the plate number P  is a sequence of n  alphanumerical characters 

( )(0) ( 1)np p −=P … , then the syntactical pattern `P  is a n -tuple of sets ( )(0) ( 1)` ` ` np p −=P … , 

and ( )` ip  is a set of all allowed characters for the ith position in a plate. 
For example, czech number plates can contain digit on a first position followed by a 

character denoting the region, where the plate has been registered and five other digits for 
a registration number of a car. Formally, the syntactical pattern ̀P  for czech number plates can 
looks like this:  

{ } { }
{ } { } { }
{ } { } { }

0,1,2,3,4,5,6,7,8,9 , C,B,K,H,L,T,N,E,P,A,S,U,J,Z ,

0,1,2,3,4,5,6,7,8,9 , 0,1,2,3,4,5,6,7,8,9 ,0,1,2,3,4,5,6,7,8,9 ,`

0,1,2,3,4,5,6,7,8,9 , 0,1,2,3,4,5,6,7,8,9 ,0,1,2,3,4,5,6,7,8,9

 
 

=  
  
 

P  

6.1.3 Choosing the right pattern 

If there are n  syntactical patterns (0) ( 1)` ` n−P P… , we have to choose the most suitable one for 
the evaluated plate number P . For this purpose, we define a metrics (or a cost) δ  for a 
computation of a similarity between the evaluated plate number and the corresponding 
syntactical pattern: 

{ } { }
1

( ) ( ) ( ) 2

( )
0

0

1
( ) 10` `

max

n
i i i

i
i j

j z

p p p
y

δ
−

−

=
≤ ≤

 
 = ∉ + ×
  
 

∑P , 

where { }( ) ( ) ( )`i i ip p p∉  is a number of characters, which do not match to corresponding 

positions in the syntactical pattern `P . Let ( )iy  be an output vector for the ith-recognized 

character in a plate. The greatest component of that vector { }( )

0
max i

j
j z

y
≤ ≤

 then indicates how 

successfully the plate has been recognized.  Then, the reciprocal value of { }( )

0
max i

j
j z

y
≤ ≤

 is a cost 

of the character. Another way of the cost evaluation is a usage of the Smith-Waterman 
algorithm to compute the difference between the recognized plate number and the syntactical 
pattern. 

 
For example, assume that plate number ‘0B01234’ has been recognized as ‘0801234’, and 

the recognition pattern does not allow digit at the second position of a plate. If the character “8” 
has been recognized with similarity ratio of 0.90, and other characters with the ratio of 0.95, the 
metrics for this pattern is determined as follows.  

( )
2 2 2 2 2 2 210 10 10 10 10 10 10

( ) 1 1,07426`
0.95 0.90 0.95 0.95 0.95 0.95 0.95

δ
− − − − − − − 

= + + + + + + + = 
 

P  
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If there is a pattern that exactly matches to the evaluated plate number, we can say that number 
has been correctly recognized, and no further corrections are needed. In addition, it is not 
possible to detect a faulty number plate, if it does not break rules of a syntactical pattern. 
Otherwise, it is necessary to correct detected plate using the pattern with lowest cost δ : 

( ){ }( ) ( )

0
arg min` `sel i

i n
δ

≤ <
=P P  

The correction of a plate means the replacement of each invalid character by another one. If the 

character ( )ip  at the ith position of the plate P  does not match the selected pattern ( )` selP , it will 

be replaced by the first valid one from ( )sy . ( )sy is a sorted vector of output activities denoting 

how much the recognized character is similar to an individual character from the alphabet. 
Heuristic analysis of a segmented plate can sometimes incorrectly evaluate non-character 

elements as characters. Acceptance of the non-character elements causes that the recognized 
plate will contain redundant characters. Redundant characters occur usually on sides of the 
plate, but rarely in the middle. 

If the recognized plate number is longer than the longest syntax pattern, we can select the 
nearest pattern, and drop the redundant characters according to it. 
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Chapter 7 

Tests and final 
considerations 

7.1 Choosing the representative set of snapshots 

I have captured many of static snapshots of vehicles for the test purposes. Random moving and 
standing vehicles with Slovak and Czech number plates have been included. At first, my 
objective was to find a representative set of number plates, which are recognizable by humans. 
Of course, the set like this contains extremely wide spectrum of plates, such as clear and easy 
recognizable as well as plates degraded by the significant motion blur or skew.  

Then, a recognition ability of a machine is represented by a ratio between the number of 
plates, which have been recognized by the machine, and the number of plates recognized by a 
human. Practically, it is impossible to build a machine with the same recognition abilities as a 
human has. Because of this, the test like this is extremely difficult and useless.   

In praxis, it is more useful to find a representative set of number plates, which can be 
captured by an ANPR camera. The position of the camera has a significantly affects the quality 
of captured images, and a successfulness of the whole recognition process. The suitable position 
of the camera towards the lane can lead to a better set of all possible snapshots. In some 
situations, we can avoid of getting skewed snapshots by a suitable positioning of the camera. 
Sometimes, this is cleverer than a development of the robust de-skewing mechanisms.  

Let S  be a representative set of all snapshots, which can be captured by a concrete instance 
of the ANPR camera. Some of the snapshots in this set can be blurred, some of them can be too 
small, too big, too skewed or too deformed. Because of this, I have divided the whole set into a 
following subsets: 

lesbc SSSSSS ∪∪∪∪=  

where cS  is a subset of “clear” plates, bS  is a subset of blurred plates, sS  is a subset of skewed 

plates, eS  is a subset of plates, which has a difficult surrounding environment, and lS  is a 

subset of plates with little characters. 
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A B

C D  

Figure 7.1: Typical snapshot from the set of (a) clear plates (b) plates with little, or blurred 
characters (c) skewed plates (d) plates with difficult surrounding environment 

7.2 Evaluation of a plate number correctness 

Plate numbers recognized by a machine can sometimes differ from the correct ones. Because of 
this, there is a need to define formulas and rules, which will be used to evaluate a degree of 
plate correctness. 

Let P  be a plate number, and { }(0) ( -1), , nS = P P…  be a set of all tested plate numbers. 

Then, recognition rate ( )R S  of the ANPR system tested on set S  is calculated as: 

( ) ( )
1

( )

0

1 n
i

i

R S s
n

−

=

= ∑ P , 

where n  is a cardinality of the set S , and ( )s P  is a correctness score of the plate P . The 
correctness score is a value, which express how successfully the plate has been recognized. 

Now the question is how to define the correctness score of individual plates. There are two 
different approaches, how to evaluate it. The first is a binary score, and the second is a weighted 
score.  

7.2.1 Binary score 

Let us say, that plate number P  is a sequence of n  alphanumerical characters 

( )(0) ( 1), , np p −=P … . If ( )rP  is the plate number recognized by a machine, and ( )cP  is the 

correct one, then binary score bs  of plate ( )rP  is evaluated as follows: 
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( )

( ) ( )
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1

r c
r

b r c

if
s

if

 ≠= 
=

P P
P

P P
 

Two plate numbers are equal, if all characters on corresponding positions are equal: 

( ) ( )( ) ( ) ( ) ( ):r c r r
i ji j p p i j= ⇔ ∀ ∀ ≠ ⇒ ≠P P , 

where ( )r
ip is the ith character of plate number ( )rP  

7.2.2 Weighted score 

If ( )rP  is a plate number recognized by a machine, and ( )cP  is the correct one, then weighted 

score ws  of plate ( )rP  is given as: 

( ) { }
{ }

( ) ( ) ( )

( )

( )

r r c
i i i

r
w r

i

p p p m
s

np

=
= =P  

where m  is the number of correctly recognized characters, and n  is the number of all characters 
in plate.   

For example if the plate “KE123AB” has been recognized as “KE128AB”, the weighted 
correctness score for this plate is 0.85, but the binary score is 0. 

7.3 Results 

The table 7.1 shows recognition rates, which has been achieved while testing on various set of 
number plates. According to the results, this system gives good responses only to clear plates, 
because skewed plates and plates with difficult surrounding environment causes significant 
degradation of recognition abilities.  

 Total number 
of plates 

Total number 
of characters 

Weighted score 

Clear plates 68 470 87.2 
Blurred plates 52 352 46.87 
Skewed plates 40 279 51.64 
Average plates 177 1254 73.02 

Table 7.1: Recognition rates of the ANPR system. 
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Summary 

The objective of this thesis was to study and resolve algorithmic and mathematical aspects of 
the automatic number plate recognition systems, such as problematic of machine vision, pattern 
recognition, OCR and neural networks. The problematic has been divided into several chapters, 
according to a logical sequence of the individual recognition steps. Even though there is a 
strong succession of algorithms applied during the recognition process, chapters can be studied 
independently. 

This work also contains demonstration ANPR software, which comparatively demonstrates 
all described algorithms. I had more choices of programming environment to choose from. 
Mathematical principles and algorithms should not be studied and developed in a compiled 
programming language. I have considered usage of the Matlab™ and the Java™. Finally, I 
implemented ANPR in Java rather than in Matlab, because Java™ is a compromise 
programming environment between the Matlab™ and compiled programming language, such as 
C++. Otherwise, I would have to develop algorithms in Matlab, and then rewrite them into a 
compiled language as a final platform for their usage in the real environment. 

ANPR solution has been tested on static snapshots of vehicles, which has been divided into 
several sets according to difficultness. Sets of blurry and skewed snapshots give worse 
recognition rates than a set of snapshots, which has been captured clearly. The objective of the 
tests was not to find a one hundred percent recognizable set of snapshots, but to test the 
invariance of the algorithms on random snapshots systematically classified to the sets according 
to their properties. 
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Appendix A: Case study  

134.jpg width:488 px height:366 px  

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 488 px height: 30 px 

 

 
Detected plate  Skew detection 

  

 

1.44° 

Segmentation Number of detected characters: 10 

 

Recognized plate 

RK959AF 
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149.jpg width:526 px height:350 px  

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 526 px height: 28 px 

 

 
Detected plate  Skew detection 

  

 

0.0° 

Segmentation Number of detected characters: 10 

 

Recognized plate 

RK959AD 
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034.jpg width:547 px height:410 px  

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 547 px height: 42 px 

 

 
Detected plate  Skew detection 

  

 

-2.656° 

Segmentation Number of detected characters: 11 

 

Recognized plate 

LM010BE 
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049.jpg width:410 px height:360 px  

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 410 px height: 27 px 

 

 
Detected plate  Skew detection 

  

 

-5.762° 

Segmentation Number of detected characters: 10 

 

Recognized plate 

RK878AC 
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040.jpg width:576 px height:432 px  

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 576 px height: 21 px 

 

 
Detected plate  Skew detection 

  

 

0.0° 

Segmentation Number of detected characters: 11 

 

Recognized plate 

BA738DE 
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098.jpg width: 425 px height: 330 
px 

 

 
 

The plate has been 
successfully recognized 
- no further comment 

needed. 

Detected band width: 425 px height: 28 px 

 

 
Detected plate  Skew detection 

  

 

0.0° 

Segmentation Number of detected characters: 9 

 

Recognized plate 

1B19839 
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60.jpg width:424  px height:336 px Class: blurred characters 

 
 

A significant blur 
caused improper 
detection of the band in 
a graph of vertical 
projection. In addition, 
further heuristic 
analyses did not detect 
this fault. Because of 
this, the incorrect 
candidate to number 
plate has been 
deskewed and then 
segmented even though 
it does not have any 
semantics.  
 
Point of failure: vertical 
projection and heuristic 
analysis of band. 

Detected band width: 424 px height: 141 px 

 

 
Detected plate  Skew detection 

  

 

0.136° 

Segmentation Number of detected characters: 6 

 

Recognized plate 

N/A 
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023.jpg width:354 px height:308 px Class: difficult environment 

 
 

This is a typical 
snapshot with a 
difficult surrounding 
environment. The table 
in the background 
contains more 
characters in one line 
than a number plate in 
the foreground. This 
fact causes a bigger 
amount of horizontal 
edges in an area of the 
table. The three 
detected peaks in the 
graph of the horizontal 
projection correspond 
to three rows in the 
table. Although the 
number plate candidate 
is wrong, the further 
analysis did not refuse 
it, because the number 
of characters (10) is 
within the allowed 
range.   

Detected band width: 354 px height: 19 px 

 

 

Detected plate  Skew detection 

  

 

-1.169° 

Segmentation Number of detected characters: 10 

 

Recognized plate 

0CNCKEP 
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044.jpg width:530 px height:397 px Class: skewed plates 

 
 

The part of graph 
corresponding to the 
peak “2” (in vertical 
graph) has a wider 
distribution due to the 
improper vertical 
projection caused by a 
skew of the plate. 
Because of this, the 
bottom of the last 
character “E” has been 
cut off improperly.  
 
Point of failure : 
vertical projection – 
band clipping 

Detected band width: 530 px height: 30 px 

 

 
Detected plate  Skew detection 

  

 

5.599° 

Segmentation Number of detected characters: 7 

 

Recognized plate 

RK892AF 
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067.jpg width:402 px height:298 px Class: extremely small characters 

 
 

This snapshot contains 
extremely small 
characters, which are 
not distinguishable by a 
machine. The number 
plate has been properly 
detected and characters 
have been segmented as 
well, but it is very hard 
to distinguish between 
the “B” and “8” on the 
first position and 
between the “6” and 
“8” on the third 
position of plate. 
 
Point of failure : 
character recognition 

Detected band width: 402 px height: 21 px 

 

 
Detected plate  Skew detection 

  

 

4.00° 

Segmentation Number of detected characters: 10 

 

Recognized plate 

8Y849A4 
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Appendix B: Demo recognition software - User’s manual  

JavaANPR is an ANPR recognition software that demonstrates principles described in this 
thesis. It is written in the Java programming language. If you want to run it, you will need the 
Java 1.5.0 SE runtime environment (or higher).  

After downloading the distribution package, please unpack it into a chosen directory. The 
distribution package contains compiled program classes, jar archive, source codes and 
additional program resources such as bitmaps, neural networks etc. 

 
build Compiled classes 
dist Distribution directory, contains JAR file and additional resources 
lib Compile-time libraries 
nbproject Project metadata and build configuration 
resources Resources, configuration file, bitmaps, neural networks 
src Source files 

1. Cleaning, compiling and building the project (optional) 

Normally, you do not have to compile the project, because distribution package already contains 
precompiled binaries. If you want to recompile it again, you can do it using the “Apache Ant” 
utility.  

At first, change a working directory to the “javaanpr”, and type the following command to 
clean the previous build of the JavaANPR. Issuing this command will delete whole content of 
the build  and dist  directories: 

 
javaanpr # ant clean 

 
Then, issue the “ant compile ” and “ant jar ” commands. The “compile ” target will 
compile all source files in the src  directory. The “jar ” target will create the “dist ” directory 
with a jar archive and additional run-time resources. 

 
javaanpr # ant compile 
javaanpr # ant jar 

2. Running the viewer 

You can run the interactive ANPR viewer using the ant by typing the following command: 
 

javaanpr # ant run 

 
If you do not have installed the ANT utility, you can run viewer manually by the following 
commands: 
 

javaanpr # cd ./dist 
dist # java –jar javaanpr.jar  

 
Another way to run the viewer is a double-click to a javaanpr.jar  archive (in the MS 
Explorer) 
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Figure B.1:  Graphical user interface of the JavaANPR viewer 

 
Important: By default, the program expects the configuration file “config.xml” and other 
resources in the working directory. Because of this, please do not run the jar archive from other 
directories. Otherwise, the program will not be able to start. 

3. Using command-line arguments 

Besides the graphical user interface, program also contains additional functions, which are 
accessible using the command-line arguments. For more information about it, please run the jar 
file with a “-help” command:  
 

Automatic number plate recognition system 
Copyright (c) Ondrej Martinsky, 2006-2007 
 
Licensed under the Educational Community License 
 
Usage : java -jar javaanpr.jar [-options] 
 
Where options include: 
 
    -help          Displays this help 
    -gui           Run GUI viewer (default choice) 
    -recognize -i <snapshot> 

Recognize single snapshot 
    -recognize -i <snapshot> -o <dstdir> 

Recognize single snapshot and save report html into   
specified directory 

    -newconfig -o <file> 
Generate default configuration file 

    -newnetwork -o <file> 
Train neural network according to specified feature  
extraction method and learning parameters (in confi g. 
file) and saves it into output file 

    -newalphabet -i <srcdir> -o <dstdir> 
Normalize all images in <srcdir> and save it to <ds tdir>. 

3.1 Command-line recognition 

If you do not want to use the GUI viewer, you can recognize snapshot by issuing the following 
command. The recognized plate will be written to standard output. 
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dist # java –jar javaanpr.jar –recognize –i <name o f image>  

3.2 Recognition report 

Sometimes, it is good to see inside the recognition process of concrete image. Because of this, 
JavaANPR supports a generation of HTML reports. The recognition report contains images and 
verbose debugging information about each step of the recognition process. HTML report can be 
used to determine a point, in which the recognition process failed. 

The following command will recognize the image specified by its name, and save the report 
into a specified destination directory: 
 

dist # java –jar javaanpr.jar –recognize –i <name o f image>  
-o <destination directory>  

3.3 Creating the default configuration file 

Configuration file contains settings and parameters, which are needed during the recognition 
process. If configuration file does not exist, program will not be able to start. Because of this, 
JavaANPR is able to generate a default configuration file with recommended configuration 
settings by the following command: 
 

dist # java –jar javaanpr.jar -newconfig -o <file>  
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