
proof_platform
Scalable Web Scrapping

User guide

Libor Polčák, Tomáš Kocman

TARZAN project VI20172020062 document
Faculty of Information Technology, Brno University of Technology

Last change: June 26, 2020





proof_platform — User guide

Libor Polčák, Tomáš Kocman

Faculty of Information Technology, Brno University of Technology, e-mail:
polcak@fit.vutbr.cz

This tool allows web page content scrapping and exporting the content as
a compressed archive. The web crawl is performed using user-supplied regular
expressions that may represent for example Torrent file names, Bitcoin wallets or
keywords. Collected data may be used for law enforcement and other entitites,
such as searching for information about a specific product or personal archive of
web pages. The tool is designed with scalability in mind. The crawling jobs can
be distributed.

The aim of this document is to introduce the tool proof_platform1 devel-
oped by Integrated platform for analysis of digital data from security incidents
project.

1 Comparison of proof_platform and Winit

As the Integrated platform for analysis of digital data from security incidents
project developed a similar tool — Winit, let us compare the two project.

Whereas Winit aims on Windows users that do want to let their computer
all the work, proof_platform aims to be a fully scalable server-side option for
web scrapping.

proof_platform goals are following:

– scalability,
– distributed environment,
– integrity.

2 Tool use case — What does a web page contains and
what does it look like?

There are a lot of use cases during which an investigator is interested in a archive
content of a web page. proof_platform aims to archive the exact look even if a
part of the page is created by JavaScript.

Besides investigators, the tool can be handy to archive web pages for any
purpose (provided that the archiver has legal grounds). Also, the tool is useful
for researchers investigating trends in web development.

See the diploma thesis of Tomáš Kocman2 for more use cases.
1 https://gitlab.com/tomaskocman/proof_platform/
2 https://www.fit.vut.cz/study/thesis/21459/

1

https://gitlab.com/tomaskocman/proof_platform/
https://www.fit.vut.cz/study/thesis/21459/


3 User Manual

3.1 Architecture overview

Currently, the application is managed through the REST API. See the EXPOSE
port directive, by default 5000. By creating jobs through the API, the platform
initiates Scrapy to crawl the web. Scrapy searches HTML for regex pattern. For
each matched page, Scrapy saves related resources to the Redis database.

Lemmiwinks processes further process data obtained by Scrapy. Specifically,
it creates MAFF archives. The archive contains index.htm and index_files
directory containing resources for used by the index.htm file. The MAFF archive
can be treated as a zip file which means one can easily unzip the archive and
open the archived web page.

Information about the processed jobs is stored into the Postgre database, see
Figure 2 for more details about the schema.

For example, you can use pgAdmin for this task. The structure of the database
depicts Figure 1.

Fig. 1. Database schema used for information about the performed jobs.

The whole architecture is depicted in Figure 2.

3.2 Creating jobs

There are two endpoints in the REST API: /jobs (operations with all jobs) and
/jobs/<id> (operations with a specific job).

Operations with a specific job Endpoint /jobs/<id> supports HTTP meth-
ods GET and DELETE.

GET method retrieves information about job with ID <id>. The return value
contains three possible answers: job not found, job is in progress and the job fin-
ished. The return value is
{"message": "description"}, and HTTP_STATUS_CODE 404 (job not found)
or 200 (OK).

2



Fig. 2. The architecture of the platform.

DELETE method stops a process. The return HTTP STATUS CODE signals
either that the process does not exist (404) or success (204).

Operations with all jobs Endpoint /jobs supports HTTP methods GET,
POST, and DELETE.

GETmethod displays IDs of all known jobs. The return value is {"jobNames":
"array"} with status code 200.

POST method creates a new job. The JSON has to contain all data structures
necessary to configure the selected Scrapy spider. The user assigns the ID.

An examle of the input JSON: {"robotstxtObey": "boolean", "dynamicJavaScript":
"boo- lean", "job": "string", "spider": "string", "regexPattern": "string",
"logLevel": "string", "logFile": "string", "loginUrl": "string", "formName":
"string", "for- mLogin": "string", "formPassword": "string", "username":
"string", "password": "string", "allowedDomains": "array", "startUrls":
"array"}

The return status code and body is one of the following:

409: {"message": "process <job> is already running"}
400: {"message": "some field is missing"}
400: {"message": "process <job> unknown spider"}
200: {}

For the whole list of parameters, go to the Scrapy settings manual page3.
The platform currently supports spider basic and login. The basic spider does

not requrire JSON attributes loginUrl, formName, formLogin, formPassword,
username a password. These attributes are used for authentication performed
by the login spider.

DELETE method allows removal of all jobs and is always successfull —
HTTP status code 200.
3 https://docs.scrapy.org/en/latest/topics/settings.html

3

https://docs.scrapy.org/en/latest/topics/settings.html


3.3 Results

The resulting MAFF archives are created in the specified directory (see docker-compose.yml,
services, lemmit, volumes).

4


	proof_platform — User guide
	Libor Polčák, Tomáš Kocman

