
Evaluation of a New Platform For Image Filter Evolution

Zdenek Vasicek
Faculty of Information Technology

Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

E-mail: vasicek@fit.vutbr.cz

Lukas Sekanina
Faculty of Information Technology

Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

E-mail: sekanina@fit.vutbr.cz

Abstract

This paper describes a new FPGA implementation of a
system for evolutionary image filter design. Three paral-
lel search algorithms are compared. An optimal mutation
rate and the quality of three pseudo-random number gen-
erators are investigated. The efficiency of proposed system
is demonstrated on the problem of removing the salt-and-
pepper noise with intensity of 5%, 10% and 20% and de-
signing an edge detector which works with input images
corrupted by the salt-and-pepper noise.

1 Introduction

The image filter design problem is often approached
by means of evolutionary design techniques. In addition
to an optimization of filter coefficients (see, for example,
[1]), evolutionary approaches are applied to find a complete
structure of image filters. Sekanina evolved Gaussian noise
filters using a variant of Cartesian Genetic Programming in
which target filters were composed of simple digital com-
ponents such as logic gates, adders and comparators [9].
Later, image filters for other types of noise and edge detec-
tors were evolved using the same technique [10].

In order to speed up the evolutionary design process, an
FPGA-based accelerator was proposed [6]. The accelerator
uses the so-calledvirtual reconfigurable circuitto quickly
evaluate candidate circuits. The accelerator implements a
complete evolvable system in a single FPGA, i.e. the search
engine, virtual reconfigurable circuit and fitness calcula-
tion unit are implemented as digital circuits using user logic
available in the FPGA. This approach has been further de-
veloped by many authors [16, 4, 3].

For applications in the area of embedded systems, Xil-
inx has introduced PowerPC processors into the families
Virtex 2, Virtex 4 and Virtex 5. As illustrated by Glette
and Torresen for a two-bit multiplier design problem [2],
the PowerPC processor can be used to implement a flexible

search algorithm which, then, might be more sophisticated
and efficient than a hardwired search algorithm. Recent pa-
per [14] described a new FPGA implementation of a system
for evolutionary image filter design in which genetic oper-
ations are carried out in the PowerPC processor. The main
benefit of this architecture is that it allows the user to easily
tune the search algorithm for a given problem while keep-
ing the process of evolution on a single chip, i.e. very fast
in comparison with a common PC.

This paper deals with an analysis of suitable parame-
ters of various parallel search algorithms (random search,
hill climbing and genetic algorithm), an optimal mutation
rate and the quality of pseudo-random number generators
for this new platform. The problem of interest is (1) re-
moving the salt-and-pepper noise with intensity of 5%, 10%
and 20% and (2) designing an edge detector which is able
to deal with input images corrupted by the salt-and-pepper
noise. Except the 5%-salt-and-pepper noise, other problems
were not approached so far by means of evolutionary design
techniques in literature.

2 Xilinx Virtex II Pro FPGA

We will use the Virtex II Pro FPGA which contains
23,616 slices, 49,788 flip flops, 852 IO blocks and 232
Block RAM modules [15]. Moreover, it contains the IBM
PowerPC 405 core which is able to operate at 400 MHz.
This core is equipped with a 5-stage pipeline, a virtual-
memory-management unit, separate instruction-cache and
data-cache units, 3 programmable timers, on-chip mem-
ory controller (OCM) and variety of interfaces, including
processor local bus (PLB) interface, device control register
(DCR) interface and JTAG port interface.

The chip can be configured either externally or inter-
nally, using the so-called Internal Configuration Access Port
(ICAP). Although the port can operate at 66 MHz, it is not
used for evolutionary filter design because of its difficult
control and throughput insufficient for evolvable hardware
[2, 6].

3 Evolvable systems in FPGAs

In order to produce an evolvable system, three main com-
ponents have to be implemented: a genetic unit, an array of
reconfigurable elements and a fitness calculation unit.

The FPGA-based implementations of evolvable hard-
ware systems can be divided into two groups: (1) The
FPGA serves for the fitness calculation only. The evolu-
tionary algorithm (which is usually executed on a personal
computer) sends configuration bitstreams representing can-
didate circuits to the FPGA in order to obtain their fitness
values. (2) The entire evolvable system is implemented in
an FPGA. Instead of using ICAP, virtual reconfigurable cir-
cuits (VRC) have been used for evolvable hardware in the
recent years [3, 2, 6, 8]. The VRC is a second configurable
layer developed on the top of an FPGA in order to obtain
a fast reconfiguration scheme and application-specific pro-
grammable elements. While its implementation cost is rela-
tively high, it directly enables to connect the chromosome of
evolutionary algorithm (EA) with the configuration memory
of reconfigurable array.

The problem domain determines the type and number
of reconfigurable elements. In some cases the evolutionary
design is performed directly with reconfigurable cells of an
FPGA [11, 13]; in other cases a kind VRC is applied [3, 16,
2, 6, 8]. An evolutionary optimization of coefficients stored
in registers represents the simplest example [12]. The EA
and fitness calculation unit can be implemented either as
an application specific circuit [12, 6, 8] or as a program.
This program is running either in a personal computer [11]
or in an embedded processor which is integrated into the
FPGA. The embedded processor is typically available as a
hard core (e.g., PowerPC in Virtex II Pro FPGA [2]) or as a
soft core (e.g., the MicroBlaze core [13]).

4 Proposed architecture

4.1 Image filters in VRC

The proposed architecture was described in [14]. Every
image operator is considered as a digital circuit of nine 8-
bit inputs and a single 8-bit output, which processes gray-
scaled (8-bits/pixel) images (see Fig. 1).

Fig. 2 shows a corresponding VRC which consists of 2-
input Configurable Logic Blocks (CFBs), denoted asEi,
placed in a grid of 8 columns and 4 rows. Any input of
each CFB may be connected either to a primary circuit in-
put or to the output of a CFB, which is placed anywhere
in the preceding column. Any CFB can be programmed to
implement one of functions given in Table 1. All these func-
tions operate with 8-bit operands and produce 8-bit results.
These functions were recognized as useful for this task in
[10]. The reconfiguration is performed column by column.

Image
filter

Input image Filtered image
I0

I1

I2

I3

I5

I4

I8

I7

I6

1

I0

I1

I2

I3

I4

I5

I6

I7

I8

5

7

2

3

4

8

1

2

5

Figure 1. A candidate image filter

conf_reg 0

E0

col 0

conf_reg 1 conf_reg 2 conf_reg 7

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

.

..

.

..

D

E1

E2

E3

D

E0

col 1

E1

E2

E3

D

E0

col 7

E1

E2

E3

E0

col 6

E1

E2

E3

D

.

..

F0

F1

Fk

.

..

A

B

Y

MUXY

conf

Figure 2. VRC for image filter evolution

The computation is pipelined; a column of CFBs represents
a stage of the pipeline. Registers (denoted D) are inserted
between the columns in order to synchronize the input pix-
els with CFB outputs. The configuration bitstream of VRC
which is stored in a register arrayconf reg consists of 384
bits. A single CFB is configured by 12 bits, 4 bits are used
to select the connection of a single input, 4 bits are used to
select one of the 16 functions. Evolutionary algorithm di-
rectly operates with configurations of the VRC; simply, a
configuration is considered as a chromosome.

Table 1. Functions implemented in each CFB
code function description code function description

0 255 constant 8 x � 1 right shift by 1
1 x identity 9 x � 2 right shift by 2
2 255− x inversion A swap(x, y) swap nibbles
3 x ∨ y bitwise OR B x + y + (addition)
4 x̄ ∨ y bitwisex̄ OR y C x +S y + with saturation
5 x ∧ y bitwise AND D (x + y) � 1 average
6 x ∧ y bitwise NAND E max(x, y) maximum
7 x⊕ y bitwise XOR F min(x, y) minimum

4.2 Search Algorithm

The proposed system allows the use of various parallel
search algorithms. The algorithms, that we tested, will be
described in Section 5. These algorithms utilize a popula-
tion of candidate solutions and a single genetic operator —
mutation, which invertsk bits of the chromosome (i.e. of
the configuration). No crossover operator is employed be-
cause it is currently unknown how to design it to be more
efficient than the mutation operator. The PowerPC proces-
sor implements the genetic operations.

4.3 Fitness Calculation

The fitness calculation is carried out by the Fitness Unit
(FU). The pixels of corrupted imageu are loaded from ex-
ternal SRAM1 memory and forwarded to inputs of VRC.
Pixels of filtered imagev are sent back to the Fitness Unit,
where they are compared with the pixels of original image
w which is stored in another external memory, SRAM2. Fil-
tered image is simultaneously stored into the third external
memory, SRAM3. The design objective is to minimize the
difference between the filtered image and the original im-
age, i.e. the fitness value is calculated forM × N -pixel
image (note that border pixels are ignored) as

fitness =
M−2∑
i=1

N−2∑
j=1

|v(i, j)− w(i, j)|. (1)

As the3×3 pixels of the image window are not stored at
neighboring addresses of SRAM, the hardware implemen-
tation of the fitness unit utilizes three first-in-first-out raw
buffers, special addressing circuits and comparators to ex-
tract the filtering window from memory. The FU can be
considered as an extension of the VRC pipeline. Hence, in
each clock cycle, a temporary fitness value is updated by a
new pixel difference.

4.4 Top level entity

As Fig. 3 shows, the proposed architecture (except the
SRAM memories) is completely implemented in a single
FPGA. All components (except the VRC) are connected to
the LocalBus which is attached to the FPGA via a PCI bus.
Now it remains to describe the Control Unit (CU), Processor
and Memory Interface (PMI) and the PowerPC integration
into the system.

In order to maximize the overall performance, the CU
plays the role of master and controls the entire system. In
particular, it starts/stops the evolution, determines the num-
ber of generations and other parameters of search algorithm
and generates control signals for the remaining components.

PPC

VRC

PMI
FU

CU

Fitness
Computation

Part

Virtual Reconfigurable Circuit

Control
Unit

Processor
and

Memory
Interface

PowerPC
Processor

filter
kernel

filtered
 pixel

VRC_CONFBRAM_DOUT

PPC_IRQ

FIT_VALUE

FIT_VALUE

SRAM1SRAM2

Pixel
Buffer
Part

BRAM

Population
Memory

FIT_VLD

Input
image

Required
image

Figure 3. The image filter evolver in FPGA

Upon the request, the PowerPC generates a new candi-
date individual, i.e. it is idle in its main loop. The instruc-
tion memory of the PowerPC is implemented using on-chip
Block RAM (BRAM) memories and connected to the Lo-
calBus in order to send/read programs to/from an external
PC. However, since our program is short, it can completely
be stored in an instruction cache.

The population of candidate configurations is stored in
on-chip BRAM memories. The population memory is di-
vided into banks; each of them contains a single configu-
ration bitstream of VRC. An additional bit (associated with
every bank) determines data validity; only valid configura-
tions can be evaluated. In order to overlap the evaluation
of a candidate configuration with generating a new candi-
date configuration, at least two memory banks have to be
utilized. While a circuit is evaluated, a new candidate con-
figuration is generated. A new configuration is used im-
mediately after completing the evaluation of the previous
circuit. If b banks are utilized, the PowerPC processor has
b-times more time to generate a new candidate circuit (i.e.
EA can be more complicated). The proposed implementa-
tion utilizes eight banks.

The PMI component consists of two subcomponents
working concurrently. The first subcomponent, controlled
by the CU, reconfigures the VRC using configurations
stored in the population memory. The second subcompo-
nent is responsible for sending the fitness value to the Pow-
erPC processor. This process is controlled by the FU. The
PMI component also provides an interface to the population
memory via LocalBus. The evaluation works as follows:

1. When a valid configuration is available, the CU initi-
ates the reconfiguration of VRC. This process is con-
trolled by PMI.

2. As soon as the first column of CFBs has been reconfig-
ured, CU initiates the fitness calculation process per-
formed by the FU.

3. When the last column of CFBs has been reconfigured,
a corresponding memory bank is invalidated and the
bank counter is incremented.

4. Three clock cycles before the end of evaluation the FU
indicates the forthcoming end of evaluation.

5. The CU initiates a new configuration of VRC and re-
peats the sequence 1-4 again.

6. As soon as the fitness value is valid, it is sent (together
with a corresponding bank number) to the PowerPC.
An interrupt (IRQ) is generated to activate a service
routine of the PowerPC. In this routine, a new can-
didate configuration is generated for the given bank.
The PowerPC processor acknowledges the interrupt
(IRQACK) and sets up the validity bit.

These steps are pipelined in such manner as there are
no idle clock cycles. Therefore, time of evolution can be
expressed as

tevol = Q(M − 2)(N − 2)
1
f

whereQ is the number of evaluations,N×M is the number
of pixels andf is the operation frequency.

4.5 Results of synthesis

In order to implement the proposed system, we used a
COMBO6X card equipped with Virtex II Pro 2VP50ff1517
FPGA [5]. Results of synthesis are summarized in Table 2.
While the PowerPC works at 300 MHz, the logic support-
ing the PowerPC works at 150 MHz. The remaining FPGA
logic (including VRC and FU) works at 50 MHz. Experi-
mental results show that approximately 3,000 candidate fil-
ters can be evaluated per second (N = M = 128).

Table 2. Results of synthesis
VRC IO blocks BRAM Slices DFF
Available 852 232 23 616 49 788
4× 8 CFBs 602 12 4 591 3 638
used 70% 5% 20% 7%
No VRC 602 12 1 240 2 479
used 70% 5% 5% 5%

5 Description of search algorithms

Three parallel search algorithms are evaluated: a random
search, a hill-climbing algorithm and a genetic algorithm.
Random search (RS):This algorithm operates withp indi-
viduals that are generated randomly at the beginning of the
evolution. Then an offspring is created using a bit-mutation
operator from each parent and evaluated. If the offspring
is equal or better than its parent then the offspring replaces
the parent in the new population. In fact,p standard ran-
dom search algorithms run in parallel. This algorithm was

implemented in [6] as a special circuit. Fig. 4 shows con-
current operations of several processes running in hardware
and the PowerPC processor (including the configuration of
the VRC, evaluation of candidate filters and generation of
candidate configurations). These processes are synchro-
nized in such a way that no clock cycle is lost because of
waiting on some resources. Note that only two banks are
considered in this example.

Hill Climbing search (HC): This algorithm operates
with p individuals that are generated randomly at the be-
ginning of the evolution. After their evaluation,r offspring
configurations are generated for each parent using a bit-
mutation operator. The best offspring of ther offspring
configurations replaces the corresponding parent; however,
only in case that its fitness value is equal or better than the
parent’s fitness value. Again, in fact,p standard hill climb-
ing algorithms run in parallel.

Genetic algorithm (GA): The initial population ofp in-
dividuals is generated randomly. Then,r offspring are gen-
erated from each parent using a bit-mutation operator. A
new population consisting ofp individuals is formed from
p parents and theirp.r offspring. We used a deterministic
selection in whichp-best scored individuals are selected as
new parents.

6 Experimental results

Experiments were arranged to find a suitable mutation
rate and an efficient pseudo-random number generator. We
also compared the three search algorithms. The objective
was to (1) remove the salt-and-pepper noise with intensity
of 5%, 10% and 20% from real-world images and (2) design
an edge detector which is able to deal with input images
corrupted by the salt-and-pepper noise. A visual quality of
filtered images is expressed inmdpp which stands for the
mean difference per pixel between the filtered image and
original image.

6.1 The mutation rate

Our strategy is to estimate the suitable mutation rate us-
ing not so many evaluations (less than 100,000 evaluations
allowed) and then to utilize the discovered mutation rate
in long-time experiments. Figure 5 shows averagemdpp
calculated from the bestmdppvalues at the end of 32 in-
dependent runs of the RS algorithm (p = 8) for each of
k = 1 − 127 inverted bits in the chromosome. Two meth-
ods are used: exactlyk bits are always inverted (denoted as
“fix” in Fig. 5) and a randomly chosen number of bits is in-
verted; however, limited byk (denoted as “rnd” in Fig. 5).

We can observe in Figure 5 that the mutation rate which
allows minimizing themdppis usually 20 bits per chromo-

Hardware

bank1

Fitness unit

VRC config bank2

fitness calculation of bank1

PPC

IRQ

Action

bank1 bank2

Clock signal

fitness
value

fitness calculation of bank2 fitness calculation of bank1 fitness calculation of bank2

fitness
value

fitness
value

evaluation mut. evaluation mut. evaluation mut.

bank1 bank2 bank1

Figure 4. Example of timing for 2 banks: the reconfiguration of VRC costs 4 clock cycles, the evalu-
ation costs 12 clock cycles and the interrupt routine requires 8 clock cycles.

some, i.e. 5.2%. It is also more efficient to invert exactly
20 bits than to randomly generate a number from interval
1− 20.

6.2 Pseudorandom number generators

As the outputs of pseudorandom number generators
(PRNG) only approximate some of the properties of ran-
dom numbers, we have to determine a suitable one for the
proposed architecture. The following three PRNGs were
evaluated:

Linear congruential generators represent the oldest
and best-known pseudorandom number generator algo-
rithms. It is, however, well known that the properties of this
class of generators are far from ideal. The applied linear
congruential generator operates according to formula

Vj+1 = (1103515245× Vj + 12345) mod 232.

Linear Feedback Shift Register (LFSR)is a shift reg-
ister whose input bit is driven by the exclusive-or (xor) of
some bits of the overall shift register value. As for this
PRNG is also known that output bits do not pose a good
distribution we used a parallel LFSR consisting of 32 inde-
pendent and different LFSRs seeded identically.

Mersenne Twister algorithm is a twisted generalized
feedback shift register that avoids many of the problems
with earlier generators. It has the colossal period of219937−
1 iterations, is proven to be equidistributed in (up to) 623 di-
mensions (for 32-bit values). A standard implementation of
Mersenne Twister was utilized [7].

Figure 6 shows averagemdppand corresponding stan-
dard deviations obtained from 40 independent runs (after
12,288 evaluations in each run) using the RS algorithm (p =
8, “fix” mutation applied on 20 bits). The three generators
are compared on two problems: removing 10% salt-and-
pepper noise from Lena image (the first image showsmdpp,
the second image shows a standard deviation) and edge de-
tector design (the third image showsmdpp, the fourth image

shows a standard deviation). Surprisingly, there are not any
significant differences in the quality of obtained results.

6.3 Comparison of search algorithms

Table 3 provides parameters of experiments arranged in
order to compare the three algorithms — RS (p = 8), HC
(p = 8, r = 2) and GA (p = 8, r = 2). As a training
image we used a128 × 128-pixel version of Lena image
(XLena) which contains a given type of noise in some re-
gions. Table 4 summarizes obtained results. We can ob-
serve that while the bestaveragemdppis always obtained
by means of the RS algorithm, the GA always produces a
filter with the smallestmdppat all. Recall that the number
of evaluations isidentical; however, RS always produces
more generations than the GA. Figures 7 and 8 give exam-
ples of images filtered using the best-evolved filters. Table 5
comparesmdppof the best-evolved filters and conventional
filters (median and Sobel operator) on a set of256 × 256-
pixel test images.

Table 3. Parameters of experiments
corrupted target bits runs evaluations
image image mutated per run
5%-noise XLena XLena 18 64 160,000
10%-noise XLena XLena 24 349 320,000
20%-noise XLena XLena 20 139 320,000
5%-noise XLena Edges in XLena 18 389 160,000

7 Discussion

The proposed FPGA implementation of image filter evo-
lution can generate a solution approx. 22 times faster than
a PC with Celeron 2.4GHz (i.e. 3000 evaluations/s). This
allows us to perform a detailed evaluation of various aspects
of used algorithms in a reasonable time. Experimental re-
sults show that the use of a parallel RS algorithm is a good

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5
RS.fix

RS.rnd

0 20 40 60 80 100 120
4

5

6

7

8

9

10
RS.fix

RS.rnd

0 20 40 60 80 100 120
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
RS.fix

RS.rnd

Figure 5. The average mdpp (y-axis) calcu-
lated from 32 independent runs for a given
number of mutated bits (x-axis). Top: for
Lena with 5%-salt-and-pepper noise. Middle:
for Lena with 10%-salt-and-pepper noise.
Down: for Lena with 5%-salt-and-pepper
noise with the goal to obtain an edge detector

choice in this case; the RS produces the best results in aver-
age. However, we compared the number of evaluations. If
the number of generations were compared, the GA is able
to find a suitable solution much faster than the RS. There-
fore, there is a tradeoff between the number of generations
and the number of evaluations. If an average solution is re-
quired, it is better to run the RS which provides an average
filter quickly. However, if a perfect filter is a must and more
generations can be produced, the GA should be utilized.

In comparison with [6] the proposed implementation re-
quires almost identical amount of logic on the chip. In ad-
dition, the PowerPC processor is employed. However, the
proposed solution offers the possibility to easily change the
search algorithm which is impossible in the former one.

The images filtered by evolved filters are not as smudged
as the images filtered by median filters. Moreover, evolved
filters occupy only approx. 70% of the area needed to im-
plement the median filter on the same FPGA.

Table 4. Comparison on four test problems
noise search mean difference per pixel
type algorithm min max mean std.dev.

5% salt-and-pepper RSplf 0.410 3.190 0.967 0.581
noise HC2plf 0.432 3.320 1.060 0.615

GA2plf 0.333 3.450 2.010 1.240

10% salt-and-pepper RSplf 0.982 3.280 1.720 0.337
noise HC2plf 0.913 48.01 4.370 3.730

GA2plf 0.828 7.390 2.650 2.190

20% salt-and-pepper RSplf 1.870 4.350 2.850 0.510
noise HC2plf 1.650 4.190 2.880 0.587

GA2plf 0.870 12.10 2.680 1.330

5% noise, RSplf 1.100 2.660 1.910 0.419
edge detection HC2plf 1.380 2.960 2.310 0.421

GA2plf 1.070 2.660 2.400 0.453

Table 5. Results for tests images
test 5% noise 10% noise edge detection

image evolved median evolved median evolved Sobel
Airplane 0.338 3.536 0.874 3.843 0.988 2.902

Bird 0.147 1.514 0.389 1.648 0.467 2.827
Bridge 0.657 7.830 1.386 8.165 1.688 2.856
Camera 0.627 4.413 0.850 4.746 1.108 2.786
Goldhill 0.451 5.870 0.962 6.134 1.161 2.812

Lena 0.367 3.577 0.863 3.893 1.022 2.832

The use of various pseudo-random generators has no ef-
fect on the quality of evolved filters and speed of evolution.
This result is also surprising. Is there any relation to the
fact that the parallel random search exhibits the best perfor-
mance? This is an open question for future research.

8 Conclusions

We evolved image filters for three types of noise which
were not approached by means of evolutionary design so
far: the salt-and-pepper noise with intensity of 10% and
20% and 5%-salt-and-pepper noise existing in the image in
which edges should be detected. Evolved filters are at least
comparable with a conventional solution which is based on
the median filter. As Fig. 8bf shows, in contrast to evolved
filters, images filtered by the median filter are smudged. The
proposed platform can be considered as an efficient “de-
signer” of image filters which can be utilized in sophisti-
cated filtering schemes for real-world applications.

Acknowledgements

This research was partially supported by the Grant
Agency of the Czech Republic under No. 102/07/0850
Design and hardware implementation of a patent-invention
machineand the Research Plan No. MSM 0021630528 –
Security-Oriented Research in Information Technology.

References

[1] J. Dumoulin, J. Foster, J. Frenzel, and S. McGrew. Special
Purpose Image Convolution with Evolvable Hardware. In
Real-World Applications of Evolutionary Computing, volume
1803 ofLNCS, pages 1–11. Springer Verlag, 2000.

[2] K. Glette and J. Torresen. A flexible on-chip evolution system
implemented on a xilinx virtex-ii pro device. InEvolvable
Systems: From Biology to Hardware, volume 3637 ofLNCS,
pages 66–75. Springer, 2005.

[3] D. Gwaltney and K. Dutton. A VHDL Core for Intrinsic Evo-
lution of Discrete Time Filters with Signal Feedback. InProc.
of the 2005 NASA/DoD Conf. on Evolvable Hardware, pages
43–50, Washington D.C., USA, 2005. IEEE CS.

[4] P. N. Kumar, S. Suresh, and J. R. P. Perinbam. Digital im-
age filter design using evolvable hardware. InProc. of the
Fourth Annual ACIS Int. Conf. on Computer and Information
Science ICIS05, pages 483–488. IEEE CS, 2005.

[5] Liberouter project, 2005. URL: http://www.liberouter.org.
[6] T. Martinek and L. Sekanina. An evolvable image filter: Ex-

perimental evaluation of a complete hardware implementa-
tion in fpga. InEvolvable Systems: From Biology to Hard-
ware, volume 3637 ofLNCS, pages 76–85. Springer, 2005.

[7] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator.ACM Trans. Model. Comput. Simul., 8(1):3–
30, 1998.

[8] R. Salomon, H. Widiger, and A. Tockhorn. Rapid Evolu-
tion of Time-Efficient Packet Classifiers. InIEEE Congress
on Evolutionary Computation, pages 2793–2799, Vancouver,
Canada, 2006. IEEE CIS.

[9] L. Sekanina. Image Filter Design with Evolvable Hardware.
In Applications of Evolutionary Computing – Proc. of the 4th
Workshop on Evolutionary Computation in Image Analysis
and Signal Processing EvoIASP’02, volume 2279 ofLNCS,
pages 255–266. Springer, 2002.

[10] L. Sekanina.Evolvable components: From Theory to Hard-
ware Implementations. Springer Verlag, 2004.

[11] A. Thompson, P. Layzell, and S. Zebulum. Explorations in
Design Space: Unconventional Electronics Design Through
Artificial Evolution. IEEE Transactions on Evolutionary
Computation, 3(3):167–196, 1999.

[12] G. Tufte and P. Haddow. Evolving an adaptive digital filter.
In The Second NASA/DoD workshop on Evolvable Hardware,
pages 143–150. IEEE Computer Society, 2000.

[13] A. Upegui and E. Sanchez. Evolving hardware with
self-reconfigurable connectivity in Xilinx FPGAs. In
The 1st NASA/ESA Conference on Adaptive Hardware and
Systems(AHS-2006), pages 153–160, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[14] Z. Vasicek and L. Sekanina. An evolvable hardware system
in Xilinx Virtex II Pro FPGA. Int. J. Innovative Computing
and Applications, 1(1):63–73, 2007.

[15] Xilinx Virtex-II Pro Platform FPGAs, 2005.
[16] Y. Zhang, S. Smith, and A. Tyrrell. Digital Circuit De-

sign using Intrinsic Evolvable Hardware. InProc. of the
2004 NASA/DoD Conf. on Evolvable Hardware, pages 55–
62. IEEE Computer Society, 2004.

0 10 20 30 40 50 60
4

6

8

10

12

14

0 10 20 30 40 50 60
1

1.5

2

2.5

3

congruent
twister
lsfr

0 10 20 30 40 50 60

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

congruent
twister
lsfr

Figure 6. Comparison of linear congruential
generator (congruent), LFSR and Mersenne
Twister on two problems. In the first and
third plot, the mdpp values (y-axis) are plot-
ted against the number of mutated bits (x-
axis). In the second and fourth plot, the cor-
responding standard deviations (y-axis) are
plotted against the number of mutated bits (x-
axis).

(a) Corrupted image (b) Conventional filtering (c) Evolved filtering (d) Desired output

(e) Corrupted image (f) Conventional filtering (g) Evolved filtering (h) Desired output

Figure 7. The Airplane and Lena images from test set. Edge detection in images corrupted by the 5%
salt-and-pepper noise.

(a) Corrupted image (b) Conventional filtering (c) Evolved filtering (d) Desired output

(e) Corrupted image (f) Conventional filtering (g) Evolved filtering (h) Desired output

Figure 8. The Bird and Goldhill images from test set. The 10% salt-and-pepper noise removal task

