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Abstract—In our previous work, we introduced our Bayesian
Hidden Markov Model with eigenvoice priors, which has been
recently recognized as the state-of-the-art model for Speaker Di-
arization. In this article we present a more complete analysis of the
Diarization system. The inference of the model is fully described
and derivations of all update formulas are provided for a complete
understanding of the algorithm. An extensive analysis on the effect,
sensitivity and interactions of all model parameters is provided,
which might be used as a guide for their optimal setting. The newly
introduced speaker regularization coefficient allows us to control
the number of speakers inferred in an utterance. A naive speaker
model merging strategy is also presented, which allows to drive
the variational inference out of local optima. Experiments for the
different diarization scenarios are presented on CALLHOME and
DIHARD datasets.

Index Terms—Speaker diarization, variational Bayes, hidden
Markov models, clustering.

I. INTRODUCTION

S PEAKER Diarization (SD) is the task of determining
speaker turns in an audio recording of a conversation.

In this paper, we present a Bayesian approach to SD, where
the sequence of speech features representing a conversation is
assumed to be generated from a Bayesian Hidden Markov Model
(HMM). HMM states represent speakers and the transitions
between the states correspond to speaker turns. The speaker
(or HMM state) specific distributions are modeled by Gaussian
Mixture Models (GMMs). In order to robustly learn the speaker-
specific distributions, a strong informative prior is imposed on
the GMM parameters, which makes use of eigenvoices just like
i-vectors [1] or Joint Factor Analysis (JFA) [2] – the standard
techniques for speaker recognition. Such prior facilitates dis-
crimination between speaker voices in an input recording. The
proposed Bayesian model offers a very elegant approach to
SD as a straightforward and efficient Variational Bayes (VB)
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inference in a single probabilistic model addresses the complete
SD problem. The system contrasts with most of the conventional
approaches, where different models, techniques and heuristics
are used to address the individual subproblems of SD such as
speaker turn detection, speaker clustering or determining the
number of speakers in the conversation.

We combine previously published ideas in our model. In
particular, we use the eigenvoice prior for the speaker-specific
GMMs as proposed in [3] and Bayesian HMM to model speaker
turns similar to [4]. To point out the advantages (as well as
possible limitations) of the proposed approach, we provide its
comparison with the previous relevant SD approaches in the rest
of this section. For a more complete overview of SD techniques,
we kindly refer the reader to the excellent review papers [5],
[6]. In the following text we assume that the reader has basic
understanding of Variational inference in Bayesian models as
presented for example in [7].

Most of the current practical SD systems address the task in
the following steps: The parts of the input recording that are not
of the interest are first removed (e.g. non-speech and overlapped
speech). The conversation is then segmented into (preferably)
speaker homogeneous segments. These segments are then clus-
tered so that each cluster ideally contains all segments of exactly
one speaker. While the early SD systems performed only these
steps [8]–[11], more recent approaches use this initial clustering
to train speaker-specific GMMs, which are then used to re-assign
speech frames to speakers. For this purpose, an ergodic HMM
is typically constructed with the speakers’ GMMs as the state
distributions and the speech frames are aligned to the states
using the Viterbi alignment. Such re-segmentation was shown to
greatly improve the diarization performance [12], [13]. Finally,
clustering can be applied to the newly obtained speech segments
and the two steps, clustering and re-segmentation, which gener-
ally involve two different models, can be iterated to benefit from
each other’s refinement. Although the models and techniques
for the segmentation and clustering have evolved over time [5],
[6] this general schema can be found in the majority of the
state-of-the-art SD systems.

In contrast, the approach proposed in this paper does not use
any dedicated step (or model) for the speaker clustering. We
use a single HMM conceptually similar to the re-segmentation
model (i.e. states represent speakers), which is, however, directly
trained in an unsupervised way on the input recording. A random
soft assignment of frames to HMM states can be used to initialize
the training. Alternatively, another (possibly less accurate) SD
system can be used for this initialization. Then, each VB training
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iteration refines the HMM state-specific speaker models and re-
calculates the soft (probabilistic) assignment of frames to HMM
states. The informative eigenvoice prior forces HMM states to
have only valid speaker distributions and the complexity control
inherent in the Bayesian learning favors having exactly one
such distribution per speaker. In other words, the model favors
good correspondence between HMM states and speakers in the
input conversation. Note that, for the conventional approaches,
some heuristic needs to be used to stop the clustering process in
order to determine the right number of speakers in the utterance.
Our model allows us to determine the number of speakers in
a principled way relaying again on the complexity control of
the Bayesian learning. In particular, we use the principle of
Automatic Relevance Determination (ARD) [7], which automat-
ically learns to drop the redundant speaker distributions (HMM
states) during the VB training. We only need to make sure that
the training starts with a sufficient number of initial speaker
distributions (i.e. an upper estimate of the number of speakers
in the conversation).

Inspired by the success of i-vectors in speaker recogni-
tion [1], the SD system proposed in [14] used i-vectors as
low-dimensional fixed-sized representations of speech segments
in order to facilitate their clustering into speaker clusters. Since
then, i-vectors have often been used in a similar manner for
the SD task. For example, in [15] the input conversation is
segmented into two-second long overlapping segments. For each
segment, an i-vector is extracted and the i-vectors are clus-
tered using the Agglomerative Hierarchical Clustering (AHC).
For this clustering, Probabilistic Linear Discriminant Analysis
(PLDA) [16] is used to measure the similarity between i-vectors,
which is another standard technique borrowed from the speaker
recognition field [17]. The underlying probabilistic model for i-
vector extraction is essentially the same as the one used for mod-
eling speaker-specific distributions in our SD system (i.e. GMM
with eigenvoice prior, where the speaker-specific distribution is
represented by an i-vector-like low-dimensional latent variable).
However, the SD systems based on i-vector clustering have the
following disadvantage compared to our approach: i-vectors
cannot be extracted reliably as they are estimated on very short
segments, which are not always speaker-homogeneous. Based
on these suboptimal segment representations, hard decisions are
made during the clustering process, which leads to errors that
the AHC cannot recover from. In contrast, with our model, we
have only a limited number of i-vector-like latent variables, each
representing the distribution of one speaker. In each VB iteration,
these latent variables are re-estimated on all the speech frames
aligned with the corresponding speaker (or HMM state). The
VB inference relies on soft probabilistic alignment of frames
to speakers, which avoids making any hard decisions similar to
AHC. To further avoid hard decisions, the VB inference takes
into account the uncertainty of the latent variable estimates
(it uses estimates of the posterior distributions of the latent
variables). This is in contrast with i-vectors, which are Maximum
a-posteriori (MAP) point estimates.

In latest works on SD, driven by the success of the DNN based
techniques for SR [18], x-vector embeddings are being used in
a similar fashion as the i-vectors in AHC systems [19]. These
systems are very competitive but, unlike our approach, require

extensive amounts of training data, which are not available for
all kinds of scenarios. Besides, they have the same disadvantage
described for the i-vector clustering approach. In fact, the best
performing systems for both tracks in the last DIHARD chal-
lenge [20], used x-vector AHC based systems as an initialization
for our VB-HMM based diarization system to achieve optimal
results [21], [22].

A similar VB approach to SD was first proposed in [23],
[24] and further extended by adding the eigenvoice prior in [3].
These works, however, still assume that the conversation is
pre-segmented into many short segments. The Bayesian model
is only used to cluster such segments without making the AHC-
like hard decisions. To obtain good diarization performance,
such clustering still needs to be followed by the HMM-based
re-segmentation step. Note that in our approach, such HMM
is an integral part of the Bayesian model, which allows ad-
dressing both problems – clustering and re-segmentation –
simultaneously.

Sticky Hierarchical Dirichlet Process HMM (HDP-HMM)
was proposed for SD in [4], which is a model similar to our
Bayesian HMM. The authors of [4], however, did not use the
eigenvoice priors. Unlike our Bayesian HMM, HDP-HMM is a
non-parametrical Bayesian model, which does not impose any
upper limit on the number of speakers in the conversation (i.e. it
represents an HMM with a potentially infinite number of states).
On the other hand, the inference in HDP-HMM is more difficult.
In [4], block Gibbs sampling was used for the inference, which
is much less efficient than the VB inference used for our model.
Our Bayesian model with fixed number of HMM states (i.e.
limiting the maximum number of speakers) does not introduce
any practical restrictions if the number of states is set sufficiently
large.

An open source Python implementation of our SD approach
is available [25].1 This paper extends our previous work [26],
in which the Variational Bayes diarization system with HMM
priors was described for the first time. The novel contributions
of this paper are as follows: we provide additional derivations
for the complete overview of the inference in the model. We
also present a more complete analysis of the parameters of the
model to provide potential users with a better insight into how
to tune the system for the optimal performance. We introduce an
extension to the model – a set of factors scaling individual terms
in the VB objective – which allows us to regulate the inference
depending on the expected number of speakers. Also, a simple
initialization method is introduced to remove the dependency
on the external diarization systems which are normally used for
the initialization of the VB inference. We also propose a speaker
merging schema which attempts to avoid convergence to a local
optimum. Finally, we give details on the implementation and
complexity of the algorithm. The novelties of the system are
analyzed on CALLHOME [27] and DIHARD [28] datasets.

II. THE MODEL

Our model assumes that the sequence of observed speech
features (e.g. Mel Frequency Cepstral Coefficients, MFCCs)

1[Online]. Available: http://speech.fit.vutbr.cz/software/vb-diarization-
eigenvoice-and-hmm-priors
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Fig. 1. HMM model for 3 speakers with 1 state per speaker, with a dummy
non-emitting (initial) state.

corresponding to an input conversation is generated from an
HMM with speaker-specific state distributions. The distribution
of each speaker is modeled using a GMM with parameters con-
strained to live in an eigenvoice subspace (see Section II-B for
more details). This allows us to robustly model the distribution
of speaker s using only a low dimensional vector ys. We use
an ergodic HMM with one-to-one correspondence between the
HMM states and the speakers,2 where transitions from any state
to any state are possible. Note that our model does not consider
any overlapped speech as each speech frame is assumed to be
generated from an HMM state corresponding to only one of the
S speakers. The transition probabilities are set in a way that
discourages too frequent transitions between speakers in order
to reflect speaker turn durations of a natural conversation. More
details on setting and learning the transition probabilities can be
found in Section II-A.

Let X = {x1,x2, . . .,xT } be the sequence of observed fea-
ture vectors and Z = {z1, z2, . . ., zT } the corresponding se-
quence of discrete latent variables defining the hard alignment of
speech frames to HMM states. In our notation, zt = s indicates
that the speaker (HMM state) s is responsible for generating
observation xt (note that this notation is not the same as in our
previous work [26], where one-hot encoding was used for the
latent variables zt).

To address the SD task using our model, the speaker distribu-
tions (i.e. the vectors ys) and the latent variables zt are jointly
estimated given an input sequence X. The solution to the SD
task is then given by the most likely sequence Z, which encodes
the alignment of speech frames to speakers.

A. HMM Topology

Given a particular initialization method (see Section V), we
choose the number of states S higher than (or equal to) the
maximum expected number of speakers. The HMM topology
and transition probabilities model the speaker turn durations.
The HMM model is ergodic (transitions between all states are
possible). Fig. 1 shows an example of the HMM topology for

2In our previous work [26], a more general HMM topology with (possibly)
multiple states per speaker was proposed to impose minimum speaker turn
duration constraint. In this work, we only consider the special case of this
topology with only one state per speaker as such configuration was found
sufficient for obtaining the best performance.

only S = 3 speakers. The transition probabilities are set as
follows: we transition back to the same speaker/state with prob-
ability Ploop. This probability is one of the tunable parameters in
the model and will be typically set to a high value to discourage
frequent speaker turns. The remaining probability (1− Ploop)
is the probability of changing speaker, which corresponds to
the transition to the non-emitting node in Fig. 1. From the non-
emitting node, we immediately transition to one of the speaker
states with probability πs.3 Therefore, the probability of leaving
a speaker and entering another speaker s is (1− Ploop)πs. To
summarize, the probability of transitioning from state s′ to state
s is

p(s|s′) = (1− Ploop)πs + δ(s = s′)Ploop (1)

where δ(s = s′) equals one if s = s′ and is 0 otherwise.
The non-emitting node in Fig. 1 is also the initial state of the

model. Therefore, the probabilities πs also control the selection
of the initial HMM state (i.e. the state generating the first
observation). These probabilities πs are inferred (jointly with
the variables ys and zt) from the input conversation. Thanks
to the ARD principle [7] stemming from our Bayesian model,
zero probabilities will be learned for the πs corresponding to
redundant speakers, which effectively drops such speakers from
the HMM model. Typically, we initialize the HMM with a larger
number of speakers and we make use of this behavior to drop
the redundant speakers (i.e. to estimate the number of speakers
in the conversation).

B. Speaker-Specific Distributions

For each speaker, the distribution of speech features is mod-
elled using a GMM. Like similar models for speaker recognition
(e.g. i-vector [1] or JFA [2]), our model assumes that the speaker-
specific GMMs are all related to a single Universal Background
Model (UBM-GMM). The UBM-GMM is an ordinary GMM
typically trained on large amount of speech data from many
speakers. All speaker-specific GMMs have the same number
of Gaussian components C as the UBM-GMM. Furthermore,
there is a one-to-one correspondence between the components
of the UBM-GMM and the components of each speaker model.
All speaker-specific GMMs share the same component weights
wubm

c and covariance matrices Σubm
c with the corresponding

UBM-GMM components c = 1..C. Only the component mean
vectorsμsc take speaker-specific values, which are however still
constrained as follows: Let μs = [μT

s1 μT
s2 . . .μ

T
sC ]

T be the
super-vector of concatenated Gaussian component means for
speaker s and let μubm be the similarly defined super-vector of
concatenated UBM-GMM means. The high-dimensional super-
vectors

μs = μubm +Vys (2)

are constrained to live in a low-dimensional subspace around the
origin given by μubm. The subspace is spanned by the so-called
eigenvoice basis, columns of the low-rank matrixV. This matrix

3For convenience, we allow to re-enter the same speaker as it leads to simpler
update formulas.



358 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

is also shared by all speaker models. The only speaker-specific
parameters are then the low-dimensional vectors ys, which can
be seen as coordinates of μs in the low-dimensional subspace.
All the speaker independent parametersμubm,Σubm

c ,wubm
c and

V are pre-trained and fixed during the inference in our model
when addressing the SD task. Therefore, the speaker-specific
distributions

p(xt|ys) = GMM(xt; {μsc}, {Σubm
c }, {wubm

c }) (3)

can be expressed only in terms of the low-dimensional vectors
ys, which can be robustly estimated from the limited amount of
speech available in the input conversation.

To further improve the robustness of the speaker model es-
timates, we treat ys as a latent variable with standard normal
prior

p(ys) = N (ys;0, I). (4)

Inserting such prior into (2) translates to a Gaussian prior im-
posed on speaker mean super-vectors

p(μs) = N (μs;μ
ubm,VVT ), (5)

which can also be seen as an informative prior on the possible
speaker GMMs. To obtain such prior that correctly models the
variability of the speaker mean super-vectors, the matrix V
needs to be pre-trained on speech data from a large number of
speakers. Note, that the model for representing speaker-specific
distributions described above is essentially the same as the model
for i-vector extraction [1] or JFA [2]. Therefore, we do not
provide a detailed description of the procedure for training V in
this paper and we kindly refer the reader to the original sources.
In our experiments, we trainV using exactly the same procedure
(Expectation Maximization algorithm) and the same code that
we normally use for training the total variability matrix for
i-vector extraction in the speaker recognition task.

C. Bayesian HMM

To summarize, our complete model for SD is a Bayesian
HMM, which is defined in terms of the state-specific distribu-
tions (or so-called output probabilities)

p(xt|zt = s) = p(xt|s) = p(xt|ys) (6)

described in Section II-B and the transition probabilities

p(zt = s|zt−1 = s′) = p(s|s′) (7)

described in Section II-A. By abuse of notation, p(z1|z0) will
correspond to the initial state probability p(z1 = s) = πs in the
following formulas.

The complete model can be also defined in terms of the joint
probability of the observed and latent random variables (and
their factorization) as

p(X,Z,Y) = p(X|Z,Y)p(Z)p(Y)

=
∏

t

p (xt|zt)
∏

t

p (zt|zt−1)
∏

s

p (ys) , (8)

Fig. 2. Bayesian Network corresponding to our diarization model.

whereY = {y1,y2, . . .,yS} is the set of all the speaker-specific
latent variables. The corresponding Bayesian Network is de-
picted in Fig. 2.

The model assumes that each feature sequence corresponding
to an input conversation is obtained using the following gener-
ative process:

for s = 1..S do
ys ∼ N (0, I)
μs = μubm +Vys

for t = 1..T do
zt ∼ p(zt|zt−1)
xt ∼ p(xt|zt)

Here, first a speaker-specific GMM distribution is sampled for
each speaker s. This is achieved by sampling the low dimen-
sional speaker vectors ys from the standard normal prior and
then applying (2) to obtain the corresponding GMM means.
Recall that the other GMM parameters are pre-trained and
shared by all speaker models. Once the speaker models have
been generated for the conversation, the initial HMM state is
selected according to the distribution p(z1) = p(z1|z0). Given
the selected state z1, the first observation x1 is sampled from
the distribution p(x1|z1) (i.e. the speaker-specific GMM corre-
sponding to the state z1). Then, for each frame t, a new HMM
state is selected according to p(zt|zt−1) and a new observation
xt is sampled from p(xt|zt).

We call our model “Bayesian” HMM as we impose a prior
on the parameters of the state distributions (i.e. ys is a latent
variable with standard normal prior). However, unlike other
“Fully Bayesian” HMM implementations [4], [29], we do not
impose any prior on the transition probabilities.

Further note that, although our state distributions are GMMs,
the Bayesian model does not introduce any latent variables
defining the alignments of observations to the Gaussian com-
ponents. We assume that this alignment is exactly the same
for all the speaker-specific GMMs and UBM-GMM. This is
possible thanks to the correspondence between the Gaussian
components in these models. Therefore, we pre-calculate the
alignments using the UBM-GMM and consider them observed
during the inference in our model. More precisely, we calculate
soft alignments (or responsibilities) as the posterior probabilities
of UBM-GMM components given observations pubm(c|xt). See
Appendix A for more details on this approximation. Note that
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such approximation, which considerably simplifies the infer-
ence in the model, is also used in similar models for speaker
recognition [1], [2].

III. DIARIZATION INFERENCE

A. Variational Bayesian Inference

The diarization problem consists in finding the assignment of
frames to speakers, which is represented by the latent sequence
Z. In order to find the most likely sequence Z, we need to infer
the posterior distribution p(Z|X) =

∫
p(Z,Y|X)dY. Unfortu-

nately, the evaluation of this integral is intractable, and therefore,
we will approximate it using Variational Bayes inference [7],
where the distribution p(Z,Y|X) is approximated by q(Z,Y).
We use the mean-field approximation [3], [7] assuming that the
approximate posterior distribution factorizes as

q(Z,Y) = q(Z)q(Y). (9)

The particular form of the approximate distributions q(Z) and
q(Y) directly follows from the optimization described below.

We search for such q(Z,Y) that minimizes the Kullback-
Leibler divergenceDKL(q(Z,Y)‖p(Z,Y|X)), which is equiv-
alent to maximizing the standard VB objective – the Evidence
Lower Bound Objective (ELBO) [7]

L (q(X,Y)) = Eq(Y,Z)

{
ln

(
p(X,Y,Z)

q(Y,Z)

)}
. (10)

Using the factorization (9), the ELBO can be split into three
terms

L̂ (q(X,Y)) = FAEq(Y,Z) [ln p(X|Y,Z)]

+ FBEq(Y)

[
ln

p(Y)

q(Y)

]
+ Eq(Z)

[
ln

p(Z)

q(Z)

]
,

(11)

where the first term is the expected likelihood of the observed
feature sequenceX and the second and third terms are Kullback-
Leibler divergences DKL(q(Y)‖p(Y)) and DKL(q(Z)‖p(Z))
regularizing the approximate posterior distributions q(Y) and
q(Z) towards the priors p(Y) and p(Z). In (11), we modified
the ELBO by scaling the first two terms by constant factors
FA and FB .4 The theoretically correct values for these factors
leading to the original ELBO (11) are FA = FB = 1. However,
as explained in Section IV, choosing different values gives us
finer control over the inference, which can be used to improve
diarization performance.

B. Sufficient Statistics

As pointed out in the last section, our inference assumes
that the alignmet of observations to GMM components is the
same for all the speaker-specific GMMs and is defined in
terms of UBM-GMM responsibilities pubm(c|xt). Given such
assumption, the likelihood of an observed feature vector for a
speaker-specific GMMp(xt|ys) can be efficiently evaluated (see

4Note that similar scaling factor for the third term would be redundant as only
relative scale of the three factors is relevant for the optimization.

Appendix A) using the following per-frame zero, first and second
order sufficient statistic:

ζtc = pubm(c|xt) (12)

ρt =
∑

c

ζtcV
T
c Σ

ubm
c

−1 (
xt − μubm

c

)
(13)

Φt =
∑

c

ζtcV
T
c Σ

ubm
c

−1
Vc, (14)

where Vc is the block of matrix V corresponding to the GMM
component c. Hence, the same statistics also appear in the
following update formulas, which are derived from p(xt|ys).

C. Update Formulas

As described above, we search for the approximate posterior
q(Z,Y) that maximizes the ELBO (11). In the case of the
mean-field factorization (9), we proceed iteratively by finding
the q(Y) that maximizes the ELBO given fixed q(Z) and vice
versa. This section provides all the formulas necessary for im-
plementing these updates or for understanding our open source
Python implementation [25]. In this section, we do not give any
details on deriving the update formulas. These derivations can
be, however, found in Appendix B.

1) Updating q(Y): Given a fixed q(Z), the distribution over
Y that maximizes the ELBO is (see Appendix B for derivation)

q∗(Y) =
∏

s

q∗(ys), (15)

where the speaker-specific approximate posteriors

q∗(ys) = N (
ys|αs,L

−1
s

)
(16)

are Gaussians with the mean vector and precision matrix

αs =
FA

FB
L−1
s

∑

t

γtsρt (17)

Ls = I+
FA

FB

∑

t

γtsΦt. (18)

In this update formula, γts = q(zt = s) is the marginal ap-
proximate posterior derived from the current estimate of the
distribution q(Z) (see below), which can be interpreted as the
responsibility of speaker s for generating observation xt (i.e.
defines a soft alignment of speech frames to speakers). Note that
(17) and (18) correspond to the standard formulas for i-vector
extraction [1], except for the responsibility term γts, which
would be always 1 for i-vectors as the standard speaker verifica-
tion task assumes that all the frames in a recording come from
a single speaker. Furthermore, i-vectors are only MAP point
estimates of the latent variable (i.e. the means αs), whereas our
inference considers the whole posterior distributions (including
the precisions Ls) with the aim of accounting for the uncertainty
in the speaker model estimates.

2) Updating q(Z): We never need to infer the complete
distribution over all the possible alignments of observations
to speaker q(Z). When updating q(Y) using (17) and (18),
we only need the marginals γts = q(zt = s). Therefore, when
updating q(Z), we can directly search for the responsibilities γts
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that correspond to the distribution q∗(Z) maximizing the ELBO
given a fixed q(Y) (see Appendix B for the complete derivation
of q∗(Z)). Similar to the standard HMM training, such respon-
sibilities can be calculated efficiently using a forward-backward
algorithm as

γts =
A(t, s)B(t, s)

p(X)
(19)

where the so-called forward probability

A(t, s) = p̄(xt|s)
∑

s′
A(t− 1, s′)p(s|s′) (20)

is recursively evaluated by progressing forward in time for
t=1..T starting with A(0, s) = πs. Similarly,

B(t, s) =
∑

s′
B(t+ 1, s′)p̄(xt+1|s′)p(s′|s) (21)

is the backward probability evaluated using backward recursion
for times t = T..1 starting with B(T, s) = 1.

p(X) =
∑

s

A(T, s) (22)

is the total forward probability and the term

p(xt|s)

= exp

{
FA

[
αT

s ρt −
1

2
tr
(
Φt

[
L−1
s +αsα

T
s

])

− D

2
ln 2π −

∑

c

ζtc
2

ln |Σubm
c |+

∑

c

ζtc ln
wubm

c

ζtc

−1

2

∑

c

ζtc
(
xt − μubm

c

)T
Σubm

c

−1 (
xt − μubm

c

)
]}

(23)

is derived in (31) as the expected likelihood of observation xt

given a speaker s taking into account its uncertainty q(ys).
3) Updating πs: Finally, the speaker priors πs are updated as

Maximum Likelihood type II estimates [7]: Given fixed q(Y)
and q(Z), we search for the values ofπs that maximize the ELBO
(11), which gives the following update formula

πs ∝ γ1s +
(1−Ploop)πs

p(X)

T∑

t=2

∑

s′
A(t−1, s′)p(xt|s)B(t, s)

(24)
with the constraint

∑
s πs = 1. As described in Section II-A,

this update tends to drive the πs corresponding to “redundant
speakers” to zero values, which effectively drops them from
the model and selects the right number of speakers in the input
conversation.

4) Evaluating the ELBO: The convergence of the iterative
VB inference can be monitored by evaluating the ELBO ob-
jective. For the Bayesian HMM, the ELBO can be efficiently
evaluated (see page 95 of [29]) as

L̂ = ln p(X) +
∑

s

FB

2

(
R+ ln |L−1

s | − tr(L−1
s )−αT

s αs

)

(25)

where R is the rank of the eigenvoice matrix V. This way
of evaluating the ELBO is very practical as the term p(X)
from (22) is obtained as a byproduct of “updating q(Z)” using
the forward-backward algorithm. On the other hand, (25) allows
to evaluate the ELBO only right after the q(Z) update. It does
not allow to monitor the improvement in ELBO obtained form
q(Y) or πs updates, which might be useful for debugging
purposes. Therefore, we also provide the derivation formulas
for the explicit evaluation of all three ELBO terms from (11) in
Appendix C.

The complete VB inference consisting of iterative updates of
q(Y), q(Z) and parameters πs is sumarized in the following
algorithm:

Initialize all γts as described Section V.
repeat

Update q(ys) for s = 1..S using(16)
for t = 1..T do

Calculate A(t, s) for s = 1..S using (20)
for t = T..1 do

Calculate B(t, s) for s = 1..S using (21)
Update γts for t = 1..T, s = 1..S using(19)
Update πs for s = 1..S using (24)

Evaluate ELBO L̂ using (25)

until convergence of L̂

IV. PARAMETERS OF THE DIARIZATION ALGORITHM

In this section we provide a summary of all the parameters
used to control the inference in our model, namely: Ploop,
downsamplingFactor, FA and FB .

1) Ploop was introduced in Section II-A describing transition
probabilities in our HMM. It is defined as the probability of
looping in the same speaker state. It is typically set to high values
(close to one) to discourage frequent speaker changes.

2) The downsamplingFactor was introduced to speed up the
diarization algorithm. Formally, we assume a modified HMM
generative process where downsamplingFactor observations are
generated at once from the current HMM state in each step
(i.e. after each transition). To reflect this model modification
in the VB inference, we simply accumulate the per-frame statis-
tics (12)–(14) for each downsamplingFactor consecutive frames,
which effectively reduces the frame rate of the statistics by
this factor. This modification can significantly speed up the
VB inference for the price of reduced frame resolution leading
to a coarser granularity of the output labeling. However, the
reduced frame rate does not necessarily have to be seen as a
disadvantage. In fact, it can help to improve modeling of speaker
turn durations. With a single HMM state per speaker, the HMM
assumes geometrically distributed speaker turn durations. In
the case of 10 ms frame rate, as used for our MFCC features,
such duration model does not reflect the reality very well. As
pointed out in [4], however, for reduced frame rates (e.g. 250 ms
corresponding to downsamplingFactor = 25), the geometric
distribution becomes quite a good match for the speaker turn
duration modeling.
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3) The Acoustic scaling factor FA is introduced to counteract
the assumption of statistical independence between observa-
tions. This incorrect assumption made by the HMM results in
overconfident posterior distributions of the latent variables. To
counteract this problem in our previous work [26], we introduced
a factor called statScale, which was used to scale the sufficient
statistics from (12)–(14). This factor was typically set to a value
between 0 and 1 in order to effectively reduce the number of
observations, which makes the model believe that there is less
evidence in the data for estimating the posterior distributions.
In this work, we have introduced the factor FA to weight the
first term of the ELBO in (11) (i.e. the expected likelihood of
the data), which has the same effect in the update formulas as
the stateScale factor from our previous work. Presenting FA

as a scaling factor in the ELBO allows us to introduce this factor
directly into the update formulas in a proper formal way.

4) The speaker regularization coefficient FB weights the sec-
ond term of the ELBO in (11), the Kullback-Leibler divergence
between the approximate speaker posterior and the speaker prior
DKL(q(Y)‖p(Y)). This term can be seen as a regularization
term penalizing the complexity of the speaker models (i.e. the
posteriors of speaker latent variables should not be too far from
the standard normal priors). Note that, when dropping speaker
s from the model (by setting πs = 0 and forbidding to enter the
speaker’s state), the speaker s has zero contribution to this DKL

term (with no observations aligned to speaker s, q(ys) = p(ys)).
As a consequence, setting high value of FB results in the VB
inference dropping more speakers.

These parameters cannot be optimized individually, as they
are interdependent in terms of the influence on the diarization
error rate e.g. bothPloop and downsamplingFactor have an effect
on speaker turn duration modeling. Therefore, these parameters
have to be jointly optimized. This will be studied in Section VIII.

V. SYSTEM INITIALIZATIONS

In our experiments, we start the VB inference by initializing
the responsibilitiesγts. This can be done either randomly, heuris-
tically, or from the output labeling of an external diarization
system. The initialization is provided in the form of a matrix of
frame-wise speaker responsibilities γts. If the input labeling is
not probabilistic (as in any of the methods described below), it is
transformed into this matrix by giving the selected speaker only
a slightly higher probability than to the rest of the speakers.

The VB inference benefits from a good initialization, which
seems to drive the inference into better solutions and help
avoiding local optima. In previous works, we have used several
techniques for the initialization. Namely, random initializations,
i-vector PLDA AHC [26], [30] and x-vector PLDA AHC [22].
For the random initialization, a (maximum) number of speakers
is chosen for the input conversation and a random assignment of
frames to speakers is made. As shown in [26], this initialization
method does not provide optimal results. However, comparable
results to (or better than) those attained using external system-
based initialization methods can be obtained if this random
initialization is repeated several times (5 times was found to be
sufficient) and the solution with the best ELBO value is selected.

This strategy works for the following reason: each random
initialization can lead to a different result, which corresponds to
a different local optima. Re-starting the algorithm multiple times
with the random initialization and selecting the solution with the
best ELBO gives us the chance to select a good solution possibly
close to the global optima. The effectiveness of this strategy
indicates that the ELBO is a good indicator of the diarization
performance.

In this paper, we use an alternative initialization that also
does not require external diarization systems. We consider a
simple method, which segments the input utterance into 5 second
segments and assigns a different speaker label to each segment.
We will refer to this initialization as chunking. Note that this
initialization can result in slower VB inference, as the com-
putational complexity of the inference scales linearly with the
number of modeled speakers. We explore this method because
of its simplicity, as it does not require extra logic to check the
quality of the convergence of the algorithm.

VI. SPEAKER MODEL MERGING

Although the VB inference has the ability of dropping redun-
dant speakers, the algorithm might end up in a local optimum
where speech of a single speaker is attributed to multiple HMM
states (speaker models). In order to escape from such local
optimum, we may try to merge a pair of speaker models and
observe whether the ELBO improves. More precisely, we first let
the VB inference converge, and then we iteratively consider all
possible pairs of remaining speakers. For each pair, we merge the
speaker models by summing the corresponding responsibilities
γts, we update the speaker model using (16) and re-estimate
the speaker responsibilities for all speakers using (19). Then
the Lower Bound objective (25) is re-evaluated. If the ELBO
increases, we keep the merged diarization output (otherwise we
revert to the previous solution). The process is repeated until
no speaker model merging improves the ELBO. It is fast to
merge a given pair of speakers and re-evaluating the model for
such case (much faster than re-running the algorithm for another
initialization). However, for each step of the above algorithm,
we need to consider merging every possible pair of speakers,
which may be very costly depending on the number of speakers
that the VB diarization system converges to. Still, the approach
provides a simple way of escaping from local optima, which
improves results as will be shown in our experiments.

VII. EXPERIMENTAL SETUP

A. CALLHOME Dataset and System Description

Our initial experiments are evaluated on the NIST SRE 2000
CALLHOME dataset [31], consisting of 500 recordings of
conversational telephone speech. The number of speakers per
recording ranges between 2 and 7, although 87% of the files
contain only 2 or 3 speakers. It amounts to around 15 hours of
speech (after Voice Activity Detection).

The features used in our experiments are the standard 19
MFCCs plus energy, with no deltas, extracted from 8 kHz
speech. Neither mean nor variance normalization are applied in
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TABLE I
DATA SOURCES IN DIHARD DATASET, DESCRIPTION AND AVERAGE NUMBER

OF SPEAKERS PER RECORDING IN EACH DOMAIN

the feature extraction. The system employs gender-independent
UBM-GMM with 1024 diagonal-covariance Gaussian compo-
nents. The dimensionality of the speaker latent variable ys is
400. To train the UBM-GMMs and i-vector extractors (and
PLDA model used for initialization), we use the NIST SRE
2004–2008 datasets as in [15].

The CALLHOME dataset will be used to compare several VB
inference initialization methods described in Section V. In case
of initialization from the external i-vector/PLDA-AHC system,
we followed the configuration employed in [26]: 64 dimensional
i-vectors are projected by PCA (estimated on per-recording
basis) to 3 dimensions and clustered using AHC with calibrated
PLDA similarity score [17], [32] as the metric.

B. DIHARD Dataset and System Description

Further experiments are evaluated on the DIHARD I corpus
developed for the first DIHARD challenge [20], designed to
foster research on diarization in hard conditions including data
from several sources (radio, YouTube, child language acquisi-
tion, etc.) [28]. The corpus consists of 164 development and
172 evaluation recordings, containing around 14 h and 17 h of
speech, respectively. For a better understanding of the results,
Table I introduces a summary and a brief description of the
different sources present in the dataset.

In order to have comparable results, we keep the experimental
setup similar to the one found optimal for the dataset in our
previous work [22]. In this section, we give a brief summary of
the setup. For more details, we refer the reader to the full system
description in [22].

The Weighted Prediction Error (WPE) [33] method was used
to remove late reverberation from the audio signal. The features
used in our experiments are standard 19 MFCCs plus energy,
plus delta, extracted from 16 kHz speech. Neither mean nor
variance normalization are applied in the feature extraction. We
use a gender-independent UBM-GMM, with 1024 diagonal-
covariance Gaussian components. The dimensionality of the
speaker latent variable ys is 400.

We consider two sets for training the UBM-GMMs and the
i-vector extractor: 1) As in the case of our submission to the DI-
HARD challenge [22], we use a reduced DIHARD development
set (14 h of speech) excluding audios coming from YouTube
(VAST) plus the evaluation set (17 h of speech) to train the

UBM, and only the reduced development set to train the i-vector
extractor [22], [28]. 2) Inspired by [21], we alternatively train
on the VoxCeleb2 dataset (2025 h of speech) [34].

For DIHARD experiments, we use the chunking initialization
introduced in Section V.

C. Evaluation Metric

Diarization Error Rate (DER) as defined by NIST [35] is used
to evaluate the systems. As is the standard practice (for both
datasets), we use the oracle speech activity labels – we drop the
silence parts from the signal – so that only speaker errors are
accounted for in the DER, (there are no missed speech and false
alarm speech errors).

To be able to compare results with other works presented
for the CALLHOME dataset, we evaluate the systems applying
the standard 250 ms forgiveness collar around speaker change
points and we do not evaluate any overlapped speech (forgiving
evaluation).

For DIHARD, we evaluate the system with no collar and
account for the overlap speech (strict evaluation), as it was done
in the DIHARD challenge [20]. Given that our system does
not model overlapped speech, for the DIHARD dataset, it is
all accounted as missed speech error. For all the DERs reported
for the DIHARD dataset, an absolute 8.18% and 9.52% of the
error is due to the missed overlapped speech on the development
and evaluation sets, respectively.

VIII. ANALYSIS AND OPTIMIZATION OF THE DIARIZATION

ALGORITHM PARAMETERS

A. Interaction of the Parameters

As pointed out in Section IV, there is a set of parameters
which can control the performance of our diarization algorithm.
More specifically, these parameters define the configuration and
topology of our Bayesian HMM and control the VB inference
in the model.

This section provides the reader with an analysis on the effect
of these parameters, their interaction and the sensitivity of the
diarization performance to the parameters.

We carry out this analysis on the CALLHOME dataset that
provides a more straightforward interpretation as compared to
the DIHARD dataset. A similar analysis on DIHARD would be
more intricate as audios come from different sources, where the
optimal setting of the parameters may be different for each such
source.

Figs. 3 and 4, show contours of the DER as a function of
the parameters Ploop vs downsamplingFactor, and acoustic
scaling factor FA vs speaker regularization coefficient FB ,
respectively.5 While the other parameters stay fixed at their de-
fault values Ploop = 0.9, downsamplingFactor = 25, FA =
0.2 and FB = 1. As can be seen in the figures, these default
values are close to the optimal setting of the parameters (for the
CALLHOME dataset). For all the plots, the VB inference was

5Figures showing the DER as a function of all possible pairs of
parameters are available in [Online]. Available: http://www.fit.vutbr.cz/∼
mireia/DER_plots.pdf
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Fig. 3. Ploop versus downsamplingFactor.

Fig. 4. FB versus FA.

initialized with an i-vector PLDA AHC system and no speaker
merging was applied.

In the figures, linear scales are used for all the parameters.
Although it may seem that a different scale may be more
appropriate for some of them (e.g. logit scale for Ploop), we
decided to keep the linear ones as we believe that they provide
a better insight into the non-linear sensitivity of the parameters.

As can be seen in Fig. 3, the Ploop and the downsampling-
Factor highly depend on each other. This is to be expected
as both parameters participate in modeling the speaker turn
duration (higher value of any of these parameters imposes longer
speaker turns). In Fig. 4, we see that FA and FB are also quite
interdependent, which is related to their interaction in the update
formula (16). The remaining interactions of the parameters do
not seem to be very significant when making only small changes
around the optimal values.

In Section III-A the parameters FA and FB were introduced
as factors scaling the first two terms in the modified ELBO (11).
Therefore, their theoretically correct value leading to standard
Variational Bayes inference is FA = FB = 1. Nevertheless, we
see that the optimal value for the FA is 0.2, which is necessary
to compensate for the wrong assumption of statistical indepen-
dence between observations as was explained in Section IV. On
the other hand, in this CALLHOME based analysis, the optimal
value of the FB parameter is the theoretically correct FB = 1.
However, as we will see in Section VIII-C, other values may be
better when training and evaluating on mismatched data.

TABLE II
RESULTS ON CALLHOME DATASET WITH AND WITHOUT SPEAKER

MERGING CONSIDERING DIFFERENT INITIALIZATION METHODS

B. Initializations and Speaker Model Merging

Table II compares the different initialization methods intro-
duced in Section V and the speaker merging from Section VI. All
results are again presented on the CALLHOME dataset and for
the default parameters: Ploop = 0.9, downsamplingFactor =
25, FA = 0.2 and FB = 1.

The first column in Table II shows the results for different
initializations (without speaker merging). We can see that both,
the random initialization and the newly introduced chunking,
achieve similar performance. The system initialized with the
i-vector PLDA AHC achieves a significantly better result (9.89
%DER). Still, running the simple random initialization 5 times
and selecting the result with the best ELBO provides the best per-
formance (8.89 %DER). The second column of Table II shows
the results for the same initializations but this time with speaker
merging applied. The speaker merging approach provides a con-
sistent gain in all cases. This improvement is more pronounced
for the chunking initialization where the VB inference starts
with very high number of speaker models. In this case, it is more
likely to end up in a local optimum where speech of one speaker
is attributed to multiple speakers (states) in the model and the
speaker merging is designed to compensate for this problem.
Results of the systems initialized with the i-vector PLDA AHC
and chunking are now comparable after the merging of speakers
(9.82 vs 9.67 %DER). Still, the best performance is obtained
with the random x5 initialization achieving 8.66 %DER with
the speaker merging. To our knowledge this is the best result
published on CALLHOME with a system trained on publicly
available data.

C. Effect of the Parameters for a Source-Diverse Dataset

The CALLHOME dataset used for the previous experiments
contains quite clean speech, the number of speakers is the same
in most of the recordings (2–3, see Section VII-A), and the
system is trained with in-domain data. We therefore extend the
analysis to the DIHARD dataset, to see the effect of the diariza-
tion algorithm parameters under more challenging conditions.

The DIHARD dataset contains audios coming from a variety
of domains (see Table I), which differ in several aspects: they
are recorded in noisy environments (e.g. VAST, CIR), are studio
recordings (e.g. DCIEM, YP), contain child speech (e.g. ADOS,
SEEDLINGS), etc. Also, the average number of speakers varies
per domain, ranging from a single speaker (LIBRIVOX) to
an average of 7 speakers (SCOTUS). DIHARD poses a nice
scenario for testing the effects of the parameters.

In the following analysis, we will make use of the chunking
initialization. On the CALLHOME dataset, we have shown
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TABLE III
RESULTS ON DIHARD DATASET WITH PARAMETERS

GLOBALLY TUNED ON THE DEV SET

that better performance can be attained with other initialization
methods. However, the purpose of this analysis is not to achieve
the best number on the DIHARD dataset; rather, we would like
to provide a good insight into the behavior of the algorithm and
interpretation of its parameters. The use of a more elaborate
initialization can influence the behavior of the algorithm [21],
and we aim to show the capabilities of the VB inference on
its own. Also, unlike the external or random initializations, the
chunking makes the results reproducible for anyone download-
ing our software [25].

Table III shows the optimal results that can be obtained on
the DIHARD dataset after tuning all the parameters to their
optimal values globally for all conditions. We show the results
for systems trained on either DIHARD development set or
VoxCeleb2 data (grey color indicates cheating results, where
the system is trained and tested on the same data). We can see
that training on VoxCeleb2 (2025 h) provides better results on
the evaluation set, although the system trained on DIHARD data
only (31 h for UBM, 14 h for matrixV) is still competitive. As in
previous experiments, the speaker merging provides consistent
improvement in all cases. The optimal settings are different
depending on the training set: Ploop = 0.85 and FA = 0.2 for
DIHARD training set,Ploop = 0.6 andFA = 0.1 for VoxCeleb2
training set. The other two parameters are the default values:
downsamplingFactor = 25, FB = 1 in both cases.

Table IV shows the results obtained with the system trained
on DIHARD data, when the parameters are optimized either
globally or individually for each of the DIHARD domains.6

Speaker merging is applied in all cases. The cheating results
on the development set are again in grey. Of course, a practical
system using per-domain optimized parameters would require
source identification, as performed in [36]. The results are sig-
nificantly improved with such per-domain optimization: DER
goes from 30.02% to 27.10% on the eval set. The improvement
is more significant for some of the domains e.g. DER in DCIEM
evaluation set improves from 14.96% to 7.1%. Overall, domains
with similar characteristics have the same optimal parameters,
but the optimal parameters used per-domain can differ signifi-
cantly: optimalPloop values range from 0.3 (YP) to 0.85 (VAST).
FB = 2 is now the optimal value for SEEDLINGS. Note that
LIBRIVOX can be excluded from the diarization task as an
optimal setting will always result in finding a single speaker
per file.

We also analyze the number of speakers found per recording.
Fig. 5 shows histograms of the estimated number of speakers

6For CIR, which is only present in the evaluation set, we used the same
parameter configuration as for RT04S, as we considered it the closest domain
in the development set.

Fig. 5. Histogram of the real number of speakers per recording on the YP
subset, and the histograms for the number of speakers found with different FB

values.

for the YP subset, when using different values of the speaker
regularization coefficient FB . It illustrates how higher values of
FB result in converging to fewer speakers per recording. Note
that, besides seeking for the best DER (which is not always
attained with the correct number of speakers), this parameter
can be useful if, for any reason, we would like the system to
over-cluster or under-cluster.

To complement the analysis of systems trained on in-domain
DIHARD development set, Table V shows results for systems
trained on the out-of-domain VoxCeleb2 dataset. Again, com-
pared to using global parameter setting, the per domain param-
eter optimization carried out using the DIHARD development
set provides an improvement on the DIHARD evaluation set
(the overall DER improves from 28.85% to 27.37%). Looking
at the optimal per-domain parameters, we again obtain a wide
range of values for Ploop (from 0.5 to 0.9). On the other hand,
the acoustic scaling FA = 0.1 was consistently the best setting,
which is lower than a typical value observed for in-domain
training. Note that a smaller acoustic scaling FA makes the
model assume that the same amount of observations provide
the inference with less evidence, which seems appropriate in
the case of the mismatched model trained on the out-of-domain
VoxCeleb2 data. A stronger regularization of speaker models
seems to be also important in the case of out-of-domain training
as the coefficient FB larger than one was found optimal for
more than half of the domains, with highest values FB = 3 for
SCOTUS and SEEDLINGS domains.

Even though the DIHARD dataset with its diversity of do-
mains presents a good scenario for testing the utility of the
diarization algorithm parameters, the dataset is quite small when
considered the amounts of data per domain (up to only 12
files). Therefore, we reported only general trends observed in
the experiments with the per-domain optimization. In order to
make a more detailed and robust per-domain parameter analysis,
we need to wait for a larger dataset collection.

IX. DEPENDENCY ON THE AMOUNT OF TRAINING DATA

In this section, we analyze the amount of data needed to train
reliable models for diarization. The UBM and theV matrix used
in the model have to be pre-trained. In the previous section,
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TABLE IV
RESULTS WHEN OPTIMIZING PARAMETERS ON THE DEVELOPMENT SET FOR THE SYSTEM TRAINED ON DIHARD, USING chunking INITIALIZATION

TABLE V
RESULTS WHEN OPTIMIZING PARAMETERS ON THE DEVELOPMENT SET FOR THE SYSTEM TRAINED ON VOXCELEB2, USING chunking INITIALIZATION

we have shown results for systems trained on either VoxCeleb2
(2025 h of speech) or the DIHARD sets (31 h for UBM and
14 h for i-vector extractor training). In both cases, the systems
perform similarly (see Tables IV and V). In this section, we
analyze the performance of the system depending on the amount
of training data available. For that purpose, we trained a system
on the full VoxCeleb2 dataset (∼2000 h of speech), and systems
on randomly selected subsets of 200 h, 20 h and 2 hours of
speech.

Table VI shows that the system does not require large amounts
of training data to perform competitively. The systems trained
on ∼2000 h and 200 h perform similarly. In fact, 200 h provides
better results than the full set, but we attribute the difference
to noise in the results. The results for the systems trained on
20 h and 2 h show increasing degradation, but the systems still
perform reasonably considering the little amount of data used for
training. This insight is specially helpful for scenarios in which
a diarization system would have to be trained with little (in-
domain) data. Unlike actual state-of-the-art diarization systems
based on x-vector extraction methods, which require loads of
data to train competitive NNs, our model remains reliable when
trained on only small amount of data.

Note also that, not only the parameters of the diarization
algorithms from Section IV, but also the setting used for the
UBM and the i-vector extractor (for the V matrix training) are
the same for all the results presented in this section. The systems
trained on smaller amounts of data could further benefit from
readjusting these settings (e.g. smaller UBM).

X. COMPLEXITY OF THE ALGORITHM AND ITS EFFICIENT

IMPLEMENTATION

This section comments on the time and memory complex-
ity of the complete diarization algorithm. Suggestions for its
efficient implementation are also provided, which should facili-
tate understanding of our publicly available python code [25]. To
gain some intuition about the actual speed of the algorithm, we
report time spent on the individual steps of the algorithm as mea-
sured for our (reasonably optimized) python implementation on
single core of Intel Xeon E5-2680 v4 running at 2.40 GHz.
For this purpose, the algorithm is run using our DIHARD setup

TABLE VI
DER OF SYSTEMS USING TRAINING SETS OF DIFFERENT SIZES FOR THE

UBM AND TMATRIX, FOR THE DIHARD DEV AND EVAL DATASETS

(see Section VII-B), where the parameters mainly affecting the
speed and memory requirements are set as follows: number
of Gaussian components in GMM-UBM C = 1024, rank of
the eigenvoice matrixR = 400, feature dimensionalityD = 40,
downsamplingFactor = 25.

For a time efficient implementation of our diarization
algorithm, it is necessary to pre-calculate and store the matrices

VT
c Σ

ubm
c

−1
Vc from (14). It requires storing CR2 numbers,

which usually dominates the memory requirements of the
algorithm.

For each input recording, the UBM-GMM is first evaluated
and used to collect the sufficient statistics ζtc and ρt using (12)
and (13). This step needs to be performed only once for each
recording. It takes about 20 ms per 1 s of input speech to compete
this step with our implementation and setup (i.e. about 50 times
faster than real-time). We use a sparse matrix to store only
the non-negligible responsibilities ζtc (about 1% of the values),
which not only leads to memory savings, but also greatly speeds
up the collection of the first order statistics ρt and calculation of
other quantities that depend on ζtc. The first order statistics ρt

are stored for all frames as R× T matrix, where T is number of
speech frames. This matrix, which is repeatedly used in the VB
iterations, might dominate the memory requirements for long
conversations (i.e. hours of speech).

The time complexity of the following iterative VB inference
depends linearly on the number of the iterations used and the
number of speakers S considered in the model. On the other
hand, the algorithm can be speed up downsamplingFactor
times using this parameter. With our tipicall setting of
downsamplingFactor = 25, it takes about 1.5 ms per 1
speaker and 1 s of input speech to complete one VB itera-
tion. The inference usually converges in less than 10 itera-
tions. Therefore, running the diarization for 10 iterations with
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model (for example randomly initialized) for 10 speakers takes
20 + 10× 10× 1.5 = 170 ms, which corresponds to about 6
times faster than realtime on single CPU core.

The VB updates (specifically equations (18) and (23)) involve
the second order statistics Φt. Using (14) to explicitly evaluate
and store the statistics for every frame would be very time and
memory consuming. Fortunately, this is not necessary. We can
directly substitute (14) into (18) and rearrange the terms to obtain
the speaker model precision as

Ls = I+
FA

FB

∑

c

VT
c Σ

ubm
c

−1
Vc

∑

t

γtsζtc, (26)

which can be very efficiently evaluated using the pre-calcualted

quatities VT
c Σ

ubm
c

−1
Vc.

In (23), the second order statistics Φt appear term tr(ΦtSs),
where we have defined Ss = L−1

s +αsα
T
s . This term can be

efficiently evaluated as

tr (ΦtSs) =
∑

c

ζtctr
(
VT

c Σ
ubm
c

−1
VcSs

)

=
∑

c

ζtcvec
(
VT

c Σ
ubm
c

−1
)T

vec
(
SsV

T
c

)
, (27)

where operator vec(·) corresponds to vectorization of a matrix.
In fact, evaluation of this term is the most time consuming
operation in the VB iterations (about 90% of time is spent on
performing the calculations from the second row of (27)).

XI. CONCLUSION

In this paper, we have presented a complete analysis of the
Variational Bayes speaker diarization system with HMMs. The
derivation of the formulas for the inference in the model were
provided, and a detailed study was made to understand how to
optimize the parameters that controls the diarization algorithm.

The use of the newly introduced speaker regularization coef-
ficient has proven useful to control the algorithm for converging
to different number of speakers per utterance. An effective
naive initialization method has also been used, which makes
the diarization algorithm competitive without the need of an
external diarization method (nor extra training data), at the

expense of making the diarization process slower. The speaker
merging strategy was introduced as an effective way of avoiding
local optima although, once again, it slows down the algorithm
considerably.

Future work will explore ways of tuning the optimal parameter
settings automatically based on test data. Also, we will seek for
ways of implementing the speaker model merging in a more
efficient way.

APPENDIX A
EVALUATING THE LIKELIHOOD FOR THE SPEAKER MODELS

Given a Gaussian Mixture Model

p(x) =
∑

c

p(c)p(x|c) =
∑

c

wc N (xc|μc,Σc) (28)

and an arbitrary categorical distribution over its components
q(c), we can write

ln p(x) =
∑

c

q(c) ln

(
p(x|c)p(c)q(c)
p(c|x)q(c)

)

=
∑

c

q(c) ln p (x|c)−DKL (q(c)‖p(c))

+DKL (q(c)‖p(c|x)) , (29)

where DKL(q‖p) denotes Kullback-Leibler (KL) divergence
between distributions q and p. Now, in (30) (at the bottom
of this page), we apply the same manipulation to express
the speaker-specific log likelihoods ln p(x|ys) while setting
q(c) := pubm(c|x) = ζc. The last term in the first row of (30)
is −DKL(q(c)‖pubm(c)), which corresponds to the first KL
divergence term from (29). Note, however, that the second KL
divergence term is missing in (30) for the following reason:
To simplify the inference in our model, we assume that the
responsibilities of speaker-specific Gaussian components for
generating frame x are p(c|x,ys) = pubm(c|x). In other words,
we assume that the (probabilistic) alignment of frames to Gaus-
sian components can be calculated using the UBM instead of
the speaker-specific models. This is a reasonable assumption as
we have the correspondence between the Gaussian components
of the UBM and the speaker-specific GMMs. Note that the

ln p(xt|ys) = ln

(
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wubm
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s Φt

)
(30)
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same assumption is also made by similar models for speaker
recognition (e.g. i-vectors extraction [1] or JFA [2]). Under such
assumption, the missing term is the KL divergence between the
same distributions q(c) = pubm(c|x) and therefore it evaluates
to zero. In practice, the distributions p(c|x,ys) and pubm(c|x)
will be similar but not exactly the same. Therefore, strictly
speaking, (30) is only an approximation (lower bound) to the
true log likelihood ln p(x|ys).

Alternatively, we could further alleviate this approximation
by extending our Bayesian model with additional latent vari-
ables cst defining speaker-specific assignment of frames to
Gaussian components. However, this would make the infer-
ence in the model much more computationally expensive. The
statistics (12)–(14) would become speaker-dependent and would
have to be extracted for each speaker and each frame using
speaker-specific responsibilities q(cst).

APPENDIX B
DERIVATION OF THE UPDATE FORMULAS

Using (16) and (30), we can derive expected likelihood of an
observation given a speaker, which will be useful in the following
derivations:

Eq(Y) [FA ln p(xt|s)]
= Eq(ys) [FA ln p(xt|s)]

= FA

[
G(xt) +αT

s ρt −
1

2
tr
([
L−1
s +αsα

T
s

]
Φt

)]

= ln p(xt|s) (31)

In order to derive the update formulas for the approximate
posterior distributions, we maximize the modified ELBO (11)
with respect to the distributions q(Y) or q(Z). This problem
can be seen as a constrained optimization, where q(Y) and
q(Z) are constrained to be valid probability density functions.
To maximize the modified ELBO w.r.t q(Y) (given fixed q(Z)),
we construct the corresponding Lagrangian and set its functional
derivative w.r.t q(Y) equal to zero:

∂

∂q(Y)

[
L̂ (q (Y,Z)) + λ

(∫
q (Y) dY − 1

)]
= 0 (32)

Substituting (11) into (32), applying the functional derivative
and solving for q(Y) gives

ln q(Y) =
FA

FB
Eq(Z) [ln p(X|Y,Z)] + ln p(Y) + const.

(33)
where const. is the constant term independent of Y. Expand-
ing (33) using the corresponding terms from (8), evaluating the
expectation Eq(Z)[.] w.r.t. current q(Z) and using an additional
manipulation and simplifying results in (induced) factorization

ln q(Y) =
∑

s

ln q(ys), (34)

where the speaker-specific approximate log posteriors maximiz-
ing the modified ELBO are

ln q(ys) =
FA

FB
Eq(Z)

[
∑

t

ln p(xt|zt)
]
+ ln p(ys) + const.

=
FA

FB

∑

t

γts ln p(xt|ys) + ln p(ys) + const.

=
FA

FB
yT
s

∑

t

γtsρt

− 1

2
tr

(
ysy

T
s

[
FA

FB

∑

t

γtsΦt + I

])
+ const.,

(35)

where the responsibilities γts = q(zt = s) are the approximate
marginal posteriors of the latent variables zt derived from
the current distribution q(Z) (see below). Since ln q(ys) is a
quadratic function (the log of a Gaussian distribution), complet-
ing the squares gives the final update formulas (16) to (18).

To maximize the modified ELBO w.r.t q(Z) (given fixed
q(Y)), we solve an equation similar to (32), where symbols
Y and Z are exchanged. This time, solving for q(Z) leads to

ln q(Z) = FAEq(Y) [ln p(X|Y,Z)] + ln p(Z) + const.

= FAEq(Y)

[
∑

t

ln p(xt|zt)
]
+ ln p(Z) + const.

=
∑

t

ln p(xt|zt) + ln p(Z) + const., (36)

where (31) was used to obtain the last line. Notice that the last
line of equation (36) has exactly the same form as the posterior
probability of the latent sequence p(Z|X) for the standard (non
Bayesian) HMM except that the standard emission probabili-
ties p(xt|zt) are replaced by p(xt|zt). Therefore, to evaluate
the marginals γts = q(zt = s), we can use the same forward-
backward algorithm as used in the standard HMM training for
evaluating the responsibilities p(zt = s|X), using the quantities
p(xt|zt) instead of p(xt|zt). Equations (19) to (23) correspond
to such modified forward-backward algorithm.

APPENDIX C
DERIVATION OF THE LOWER BOUND

The first term of the modified ELBO (11) can be evaluated
(using (31)) as

FAEq(Y),q(Z) [ln p(X|Y,Z)]

= FAEq(Y),q(Z)

[
∑

t

ln p(xt|zt)
]

= Eq(Z)

[
∑

t

ln p(xt|zt)
]
=

∑

t

∑

s

γts ln p(xt|s)

(37)
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Using the factorization (34), the second term of the ELBO (11)
(excluding the scalar FB) can be evaluated as

Eq(Y)

[
ln

p(Y)

q(Y)

]
= −

∑

s

DKL(q(ys)‖p(ys))

=
∑

s

1

2

(
R+ ln |L−1

s |−tr(L−1
s )−αT

s αs

)
,

(38)

which is negative sum of well-known KL divergences between
pairs of Gaussian distributions. Finally, the third term in (11) is
the negative KL divergence

Eq(Z)

[
ln

p(Z)

q(Z)

]

=

S∑

s=1

γ1s ln
πs

γ1s
+

T∑

t=2

S∑

m=1

S∑

n=1

ξtmn ln
p(n|m)

q(zt= n|zt−1= m)
,

(39)

where the approximate marginal probability of transitioning
from state m to state n at time t

ξtmn = q(zt−1 = m, zt = n)

=
A(t− 1,m)p̄(xt|n)p(n|m)B(t, n)

p(X)
(40)

can be estimated using the forward-backward algorithm (19)
to (23) and where the approximate posterior of transitioning to
state n at time t given previous state m

q(zt = n|zt−1 = m) =
ξtmn∑
s ξtms

. (41)
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