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1 Introduction configurable interconnects. In order to increase their

performance, advanced non-configurable hard cores (such

The idea of evolutionary hardware design was introduced at
the beginning of 1990s in papers Higuchi et al. (1993) and
de Garis (1993). Evolvable hardware is usually defined as
an approach in which the Evolutionary Algorithm (EA)
is utilised to search for a suitable configuration of a
reconfigurable device in order to achieve such the circuit
behaviour which satisfies a given specification. Various
reconfigurable devices have been utilised so far; however,
Field Programmable Gate Arrays (FPGAs) remain the most
popular digital reconfigurable devices in the evolvable
hardware community.

With the development of a deep submicron semiconductor
technology, FPGAs are becoming more complex, that is,
containing more configurable elements and more
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as Block RAMs (BRAMs) and multipliers) have also been
integrated on a chip. The most advanced FPGAs integrate
a reconfigurable logic, non-configurable hard cores as well
as general-purpose processors on a single chip. Xilinx has
introduced PowerPC processors in its Virtex II Pro family, see
Xilinx Inc. (2005). Atmel has offered a Field-Programmable
System Level Integrated Circuit (FPSLIC) chip which
combines an AT40K FPGA with AVR microcontroller, see
Atmel Corp. (2002).

In order to exploit these embedded processors for
purposes of evolvable hardware, Glette and Torresen
(2005) have utilised Xilinx Virtex II Pro FPGA chip
to evolve small combinational circuits, such as 2-bit
multiplying benchmark circuits. The contribution of their
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work is that they implemented the EA in the PowerPC
processor while candidate circuits were evaluated in the
array of programmable elements of the same chip. As the
PowerPC processor can directly be connected via a fast
local bus to programmable elements of the FPGA, the
approach simultaneously benefits from a fast evaluation of
candidate circuits directly in the FPGA and from a software
implementation of EA which can be more sophisticated
than a potential circuit implementation of the EA. Although
only initial experimental results were reported, their work
indicates that by using a better search algorithm in the
PowerPC processor, it should be possible to improve the
search process and so to reduce the evolution time.

Evolvable hardware is well suited for adaptive image
processing systems, mainly because some intelligent
preprocessing is usually required in these systems as the input
data streams come from complex real-world situations via
non-ideal cameras. Among these applications, image/video
preprocessing (filtering), segmentation, recognition and
compression can be included.

A number of papers have dealt with the evolutionary
image filter design at the hardware level (see e.g. Burian
and Takala, 2004; Dumoulin et al., 2000; Erba et al.,
2001; Hollingworth et al., 1999; Porter, 2001; Sekanina,
2004; Sekanina and Ruzicka, 2003; Smith et al., 2005;
Zhang et al., 2004a,b). In most cases, candidate circuits were
evaluated in a reconfigurable device while EA was executed
on a personal computer or a cluster of workstations. In our
recent work, we have introduced a concept of the complete
hardware implementation of the image filter evolution for
FPGAs (see Martinek and Sekanina, 2005). By complete
hardware implementation we mean that the evolving filter
as well as the EA are implemented on a single chip as
application-specific digital circuits. The primary advantages
of this approach are high speed, low cost and potentially
low power consumption in comparison with a solution which
utilises a common PC.

This paper explores the idea of Glette and Torresen for a
real-world application — image filter evolution. The objective
of this work is to design, implement and evaluate a system for
image filter evolution on a single Virtex II Pro FPGA chip.
The solution is based on a software implementation of EA
carried out in the PowerPC processor and on the utilisation
of the reconfigurable array of the same FPGA for purposes of
candidate filters evaluation. It is expected that the proposed
implementation will be more efficient than a processor-less
FPGA implementation of this task reported by Martinek
and Sekanina (2005). These FPGA implementations will be
compared on two design tasks:

1 the design of a shot noise removal filter and

2 the design of an edge detection operator.

2 Modern FPGAs

Figure 1 shows a typical architecture of a Xilinx FPGA,
which is a two-dimensional array of reconfigurable resources
that include the Configurable Logic Blocks (CLBs),
Programmable Interconnect Blocks (PIB) and reconfigurable
I/0 Blocks (IOB). A CLB consists of four slices; each of

them contains two function generators, two flip-flops and
some additional logic. The FPGAs operate according to a
configuration bitstream that is stored in the configuration
SRAM memory. By writing to the configuration
memory, the user can physically create new (digital)
electronic circuits. The advantage of FPGAs is that a
new hardware functionality is obtained through a simple
reprogramming of the chip.

Figure 1 FPGA Virtex II Pro architecture which contains two
PowerPC processors
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Figure 1 also demonstrates that FPGAs can contain
embedded processor cores. Currently, two such families are
available on the market: FPSLIC by Atmel and Virtex II
Pro (resp. Virtex 4) by Xilinx. As this work is based on
Xilinx FPGAs, we will describe only the Virtex II Pro family.
The Virtex II Pro FPGAs provide up to two PowerPC405
processors, 32-bit RISC processor cores in a single device.
These industry-standard processors offer high performance
and a broad range of third-party support. The IBM PowerPC
405 core is integrated into the Virtex-II Pro device using
the IP-Immersion architecture which allows hard IP cores
to be diffused at any location deep inside the FPGA fabric.
The processor core operates at a maximum frequency of
400 MHz. As shown in Figure 2, the PowerPC 405 processor
contains the following elements:

e afive-stage pipeline consisting of fetch, decode,
execute, write-back, and load writeback stages

e a virtual-memory-management unit that supports
multiple page sizes and a variety of storage-protection
attributes and access-control options

e separate 16 kB instruction-cache and data-cache units
e three programmable timers
e  On-Chip Memory (OCM) controller and

e variety of interfaces, including: Processor Local Bus
(PLB) interface, Device Control Register (DCR)
interface, clock and power management interface and
JTAG port interface.

Table 1 summarises basic parameters of the PowerPC
405 interfaces. Although the PLB controller is more
complicated than OCM controller, it provides a higher
throughput. Further details of the PowerPC 405-processor
architecture are available in Xilinx Inc. (2005).
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Table1 A comparison of basic interface parameters of PowerPC 405

Interface DCR IS-OCM DS-OCM IS-PLB DS-PLB C405
Throughput [MB/s] 300 1200 600 1200 1200 1200
Data bus [b] 32 64 32 64 64 32
Addr. space [B] 1k 16 M 16 M 4G 4G 4G
Variable latency Yes No No Yes Yes -

Note: 1S: Instruction Side; DS: Data Side. The C405 column summarises the performance of the whole PowerPC core.

Figure 2  Architecture and interface of the PowerPC 405
processor
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Source: see Xilinx Inc. (2005).

3 Evolvable hardware and FPGAs

3.1 Elementary principles of evolvable hardware

Evolvable hardware is an approach in which a physical
hardware is created and adapted using the EA (Higuchi et al.,
1993). Figure 3 shows that digital circuits are encoded as
chromosomes of the EA. In order to evaluate a candidate
circuit, a new configuration is created on the basis of
the chromosome content. This configuration is uploaded
into the FPGA and evaluated for a chosen set of input
stimuli. For a particular task, the circuit quality is expressed
by a fitness value — simply by a real or integer number.
The fitness function (which calculates the fitness value) can
include behavioural as well as non-behavioural requirements
(e.g. reflecting thus functionality versus circuit size). After
evaluation of all candidate circuits of a population, a
new population of candidate circuits can be produced.
That is typically ensured by applying genetic operators
(such as mutation and crossover) on existing circuit
configurations. High-scored candidate circuits have got a
higher probability that their genetic material (configuration
bitstreams) will be selected to next generations. The process
of evolution is terminated when a perfect solution is obtained
or when a certain number of generations are evaluated.

As the EA is a stochastic algorithm, the quality of
resulting circuits is not guaranteed. However, the method has
some advantages: Firstly, artificial evolution can sometimes
produce intrinsic designs for electronic circuits which lie
outside the scope of conventional methods (see Thompson
et al., 1999). Secondly, the challenge of conventional design
is replaced by that of designing an evolutionary process that
automatically performs the design in our place. This may be
harder than doing the design directly, but makes autonomy
possible (see Stoica, 2004).

Figure 3 Evolvable hardware: candidate configurations are
generated by the EA, uploaded to a reconfigurable
device and evaluated using the fitness function
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An efficient and fast reconfiguration subsystem is a
desired feature for building evolvable hardware applications.
Most FPGA families can be configured only externally.
The internal reconfiguration means that a circuit placed
inside the FPGA can configure the programmable elements
of the same FPGA. Although the Internal Configuration
Access Port (ICAP) has been integrated into the Xilinx
Virtex II family (Blodget et al., 2003), it is still too slow
for evolvable hardware applications. In order to overcome
the problem of slow reconfiguration, Sekanina (2004) has
developed Virtual Reconfigurable Circuits (VRCs). The
use of VRCs has allowed us to introduce a novel approach
to the design of complete evolvable systems in a single
FPGA - Sekanina (2004), Sekanina and Friedl (2004) and
Martinek and Sekanina (2005).

3.2 The concept of VRC

The VRC is, in fact, a second reconfiguration layer developed
on the top of an FPGA in order to obtain a fast reconfiguration
and application-specific programmable elements. Figure 4
shows that the VRC consists of an array of programmable
elements E;. Each of them can be connected to some
programmable elements located in a previous column or to
some of primary inputs. The routing circuits are created
using multiplexers. Any programmable element can be
configured to perform one of k functions. The configuration
memory of the VRC is typically implemented as a register
array. All bits of the configuration memory are connected
to multiplexers that control the routing and selection of
functions in programmable elements. The computation of
VRC is pipelined since a single column of programmable
elements acts as a single stage of the pipeline. The values
coming from primary inputs are synchronised with the
computation of programmable elements via a set of registers.
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Because the array of programmable elements, routing
circuits, configuration memory, style of reconfiguration and
granularity of a VRC can be designed exactly according
to the requirements of a given application, designers
can create an optimised application-specific reconfigurable
device. Furthermore, the VRC is described in a Hardware
Description Language (HDL), that is, independently of a
target platform. It is crucial from our perspective that the
VRC can directly be connected to an EA implemented on
the same chip. The EA can be implemented either as an
application-specific circuit or as a program for an embedded
processor. If the structure of the chromosome corresponds
to the configuration interface of the VRC then a very fast
reconfiguration can be achieved (e.g. consuming a few clock
cycles only) — which is impossible by means of any other
technique.

Figure 4 Virtual reconfigurable circuit: A second configuration
layer on the top of an FPGA
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3.3 FPGA implementations of evolvable systems

The FPGA-based implementations of evolvable hardware
systems can be divided into two groups:

e The FPGA serves in the fitness calculation only. The
EA (which is usually executed on a personal computer)
sends configuration bitstreams representing candidate
circuits to the FPGA in order to obtain their fitness
values. The FPGA is configured via an external
configuration port (i.e. via SelectMAP, JITAG or
XHWIF interface which is provided with JBits in Xilinx
FPGAs). Thompson, who has evolved an innovative
implementation of a tone discriminator, pioneered this
approach. He has employed Xilinx XC6216 FPGA and
directly utilised configuration bitstreams of the FPGA
as chromosomes. Note that it is practically impossible
to perform the evolutionary design directly at the level
of Virtex configuration bitstreams because the Virtex
device can easily be damaged by uploading a randomly
generated bitstream.

e The entire evolvable system is implemented in an
FPGA. The idea of the complete hardware evolution for
FPGAs was initially demonstrated by Tufte and
Haddow (2000); however, they provided only a simple
example of the optimisation of a few FIR filter
coefficients stored in a register.

Table 2 surveys examples of FPGA implementations of
digital evolvable systems. In each of these implementations,
we can identify the following components: an array of

reconfigurable elements, an EA, a fitness calculation unit
and a controller. The problem domain determines the type
of reconfigurable elements. In some cases the evolution is
performed directly with reconfigurable cells of an FPGA;
in other cases a kind VRC is utilised. An evolutionary
optimisation of coefficients stored in registers represents the
simplest example. The EA and fitness calculation unit can
be implemented either as an application specific circuit or
as a program. The program is running either in a personal
computer or in an embedded processor which is integrated
into the FPGA. The embedded processor is typically available
as a hard core (e.g. PowerPC in Virtex II Pro FPGA) or as
a soft core (a specialised configuration of an FPGA (e.g. the
MicroBlaze core by Xilinx Inc. (2006)).

4 A new architecture for image filter evolution

The goal of this work is to find a structure and coefficients
of a 3x3 image filter for a given type of noise. We will
follow the approach introduced by Sekanina (2002). Later
Zhang et al. (2004b) proposed a solution in which a
reconfigurable filter is implemented as a VRC in the FPGA
and EA is running on a personal computer. Martinek and
Sekanina (2005) implemented a very similar architecture;
however, their EA was created as an application specific
digital circuit on the same FPGA as the VRC. The proposed
solution utilises the PowerPC processor available in the Virtex
IT Pro FPGA to implement the EA.

4.1 Image filters

Every image operator will be considered as a digital circuit
of nine 8-bit inputs and a single 8-bit output, which processes
gray-scaled (8-bit/pixel) images. Conventional solutions
typically utilise a convolution operator or some non-linear
operators (see Sonka et al., 1999). In case of convolution
filters, we are interested in the spatial domain where the input
image convolves with the filter function f (see Figure 5).
Then the task is to find the values of the so-called convolution
kernel. In case of non-linear filters, a non-linear operator has
to be developed. The median operator is the most known
example of a non-linear filter. As there is not any suitable
theory for the design of non-linear operators, evolutionary
design techniques have been utilised to accomplish this task
in the recent years.

Figure 5 A new pixel value calculation using a convolution
kernel 3 x 3, h[i, j]1 = f(pl,..., p9)
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Table 2  Examples of FPGA implementations of evolvable digital systems

Reference Application Platform EA Fitness
External reconfiguration
Thompson et al. (1999) Tone discriminator XC6216 PC PC
Huelsbergen et al. (1999) Oscillators XC6216 PC PC
Zhang et al. (2004b) Image filters VRC PC PC
Gordon (2005) Arithmetic circuits Virtex CLB PC PC
Gwaltney and Dutton (2005) IIR filters VRC DSP DSP
Internal reconfiguration
Tufte and Haddow (2000) FIR filters Register values HW HW
Glette and Torresen (2005) 2-bit multipliers VRC PowerPC HW
Martinek and Sekanina (2005) Image filters VRC HW HW
Sekanina and Friedl (2004) Arithmetic circuits VRC HW HW
Salomon et al. (2006) Hash functions VRC HW HW
Glette et al. (2006) Face recognition VRC MicroBlaze HW
Upegui and Sanchez (2006) Cellular automaton Virtex CLB MicroBlaze HW
Sekanina et al. (2006) Polymorphic circuits VRC HW HW

Figure 5 also shows that every pixel value of the filtered
image is calculated using a corresponding pixel and its eight
neighbours in the processed image.

4.2 Reconfigurable processing array

Similarly to Martinek and Sekanina (2005), the
reconfigurable image filter will be implemented as a VRC
(see Figure 4). As a new pixel value is calculated using
nine pixels, the VRC has got nine 8-bit inputs and a single
8-bit output. The VRC consists of two-input CFBs placed
in a grid of 8 columns and 4 rows. Any input of each CFB
may be connected either to a primary circuit input or to the
output of a CFB, which is placed anywhere in the preceding
column. Any CFB can be programed to implement one of
the functions given in Table 3; all these functions operate
with 8-bit operands and produce 8-bit results. These functions
were recognised as useful for this task in Sekanina (2004).
The reconfiguration is performed column by column. The
computation is pipelined; a column of CFBs represents a
stage of the pipeline. Registers are inserted between the
columns in order to synchronise the input pixels with CFB
outputs. The configuration bitstream of VRC consists of
384 bits. A single CFB is configured by 12 bits, 4 bits
are used to select the connection of an input, 4 bits are
used to select one of the 16 functions. EA directly operates
with configurations of the VRC; simply, a configuration is
considered as a chromosome.

4.3 Fitness calculation

The fitness calculation is carried out by the Fitness Unit (FU).
The pixels of corrupted image u are loaded from external
SRAMI1 memory and forwarded to inputs of VRC. Pixels
of filtered image v are sent back to the Fitness Unit, where
they are compared to the pixels of original image w which is
stored in another external memory, SRAM?2. Filtered image
is simultaneously stored into the third external memory,
SRAM3. Note that all image data are stored in external
SRAM memories due to the limited capacity of internal
RAMs available in the FPGA chip.

Table 3  List of functions implemented in a CFB

Code Function Description

0 255 Constant

1 X Identity

2 255 —x Inversion

3 xXVy Bitwise OR

4 XVy Bitwise x OR y
5 XAy Bitwise AND

6 not (x A y) Bitwise NAND
7 x®y Bitwise XOR

8 x> 1 Right shift by 1
9 x> 2 Right shift by 2
A xxKKdHVv >4 Swap

B x+y + (addition)

C x+5y + with saturation
D (x+y)>1 Average

E max(x, y) Maximum

F min(x, y) Minimum

The design objective is to minimise the difference between
the filtered image and the original image. The image size is
m x n pixels but only the area of (m — 2) x (n — 2) pixels is
considered because the pixel values at the borders are ignored
and thus remain unfiltered. The fitness value of a candidate
filter is obtained as follows:

1 the VRC is configured using a candidate chromosome

2 the circuit created is used to produce pixel values in
the image v and
3 the fitness value is calculated as

m—2n—-2

ﬁtness:ZZlv(i,j)—w(l',jN ey

i=1 j=I

In order to feed the VRC with 3 x 3 pixels in every clock
cycle, the hardware implementation of the FU utilises three
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first-in-first-out raw buffers, special addressing circuits and
comparators (to detect the end of row and the end of picture).
This slightly complicated approach is implied by the fact that
the 3 x 3 pixels of the kernel are not stored at neighbouring
addresses of SRAMs.

The second part of FU implements the formula given
above. As the maximum pixel difference is 255, the biggest
number we have to be able to store is 255. For images of
256 x 256 pixels, the fitness value can be stored using 24
bits.

The FU can be considered as an extension of the VRC
pipeline. Hence, in each clock cycle, a temporary fitness
value is updated by a new pixel difference.

4.4 Overall architecture

As Figure 6 shows the proposed evolvable system (except
the SRAM memories) is completely implemented in a single
FPGA. All components (except the VRC) are connected to
the LocalBus. Since the previous sections have dealt with the
VRC and FU, it remains to describe the Control Unit (CU),
Processor and Memory Interface (PMI) and the PowerPC
integration into the system.

Figure 6 Overall architecture of the image filter evolution.
SRAMs are utilised to store input and output images
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The CU is a hardwired controller which plays the role
of master and controls the entire system. In particular,
it starts/stops the evolution, determines the number of
generations and other parameters of EA and generates the
control signals for the remaining components. Considering
the throughputs of buses and interfaces, this design alternative
represents the most flexible and powerful solution.

PowerPC is considered as a component that is able to
generate a new candidate individual when it is requested.
In other words, it is idle in its main loop. Program memory
of the PowerPC is implemented using on-chip BRAM
memories and connected to the LocalBus in order
to send/read programs to/from an external PC which
is connected with FPGA via a PCI bus. Since our
program is short, it can completely be stored in an
instruction cache.

The population of candidate configurations is stored in
on-chip BRAM memories. The population memory is
divided into banks; each of them contains a single
configuration bitstream of VRC. An additional bit (associated
with every bank) determines data validity; only valid
configurations can be evaluated. In order to overlap the
evaluating of a candidate configuration with generating a new

filter kerel

candidate configuration, at least two memory banks have to
be utilised. While a circuit is evaluated, a new candidate
configuration is generated. A new configuration is utilised
immediately after completing the evaluation of the previous
circuit. If b banks are utilised, the PowerPC processor
has b-times more time to generate a new candidate circuit
(i.e. EA can be more complicated). The proposed
implementation utilises eight banks.

The PMI component consists of two subcomponents
working concurrently. The first subcomponent, controlled by
the CU, reconfigures the VRC using configurations stored
in the population memory. The second subcomponent is
responsible for sending the fitness value to the PowerPC
processor. This process is controlled by the FU. The PMI
component also provides an interface to the population
memory (BRAMs) via LocalBus.

The evaluation of candidate configurations works as
follows:

1 When a valid configuration is available, the CU initiates
the reconfiguration of VRC. This process is controlled
by PMI.

2 As soon as the first column of CFBs has been
reconfigured, CU initiates the fitness calculation
process performed by the FU.

3 When the last column of CFBs has been reconfigured,
a corresponding memory bank is invalidated and the
bank counter is incremented.

4 Three clock cycles before the end of evaluation the
FU indicates the forthcoming end of evaluation.

5 The CU initiates a new configuration of VRC and
repeats the sequence 1-4 again.

6 As soon as the fitness value is valid, it is sent
(together with a corresponding bank number) to the
PowerPC. An interrupt (IRQ) is generated to activate a
service routine of the PowerPC. In this routine, a new
candidate configuration is generated for the given bank.
The PowerPC processor acknowledges the interrupt
(IRQACK) and sets up the validity bit.

These steps are pipelined in such manner as there are no
idle clock cycles. Therefore, the time of a candidate circuit
evaluation can be expressed as

1 1
teval = (m —2)(n —2)— = (m — 2)(n — 2)—us
1= ( )( ) 7 ( )( )50”
where n x m is the number of pixels and f is the operation
frequency. Table 4 gives the evaluation time for different sizes

of images and f = 50 MHz.

Table 4 The evaluation time and the number of evaluations
that can be performed within 1 sec (f = 50 MHz)

Image size Evaluation time Evaluations per second
32 x 32 18 us 55,555
64 x 64 77 us 13,007
128 x 128 318 us 3149
256 x 256 1291 ps 775
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4.5 Results of synthesis

In order to implement the proposed system, we used a
COMBO6X card developed in Liberouter project (2005).
The evolvable system was described in VHDL, simulated
using ModelSim and synthesised using Mentor Graphics
Precision RTL and Xilinx ISE tools to Virtex II Pro
2VP50ff1517 FPGA. Results of synthesis are summarised
in Table 5. The whole design occupies approximately
20% of the FPGA. The VRC represents approximately
75% of the design. While the PowerPC works at 300 MHz,
the logic supporting the PowerPC works at 150 MHz.
The remaining FPGA logic (including VRC and FU) works
at 50 MHz.

Table 5  Results of synthesis for the Virtex II Pro
2VP50£f1517 FPGA
VRC 10 blocks BRAM CLB DFF
Available 852 232 23,616 49,788
4 x 8 CFBs 602 12 4591 3638
used 70% 5% 20% 7%
No VRC 602 12 1240 2479
used 70% 5% 5% 5%

5 Experimental results

5.1 Parameters of experiments

This section reports results of experiments arranged with
the aim of comparing the proposed implementation with
previous implementations of Martinek and Sekanina (2005).
In all experiments, we utilised training images of 128 x 128
pixels and allowed to perform up to 49,512 evaluations
(which corresponds with approximately 15 sec of evolution).
The population contains eight individuals. In all experiments,
the mutation operator inverts seven randomly selected
bits. These parameter values were experimentally found to
be suitable for the proposed comparisons.

5.2 Test problems
The platform is tested on two problems:

e The design of a shot noise removal filter. Here, pixels
are corrupted with the shot noise (a pixel value set at
maximum) with the probability of 5%. In conventional
implementations, this noise is suppressed by the median
filter.

e The design of an edge detection operator. Various edge
detectors exist, see Sonka et al. (1999). Our results will
be compared with the Sobel operator.

5.3 Search algorithms

As the search algorithm is stored in the program memory
of the PowerPC processor, the proposed platform allows
the designer to easily modify the search algorithm. Three
search algorithms are evaluated: a Random Search (RS), a
Hill Climbing (HC) algorithm and a Genetic Algorithm (GA).

RS: by analysing the search algorithm implemented as a
special digital circuit in Martinek and Sekanina (2005), we
recognised that a parallel RS was actually implemented. This
algorithm operates with eight individuals that are generated
randomly at the beginning of the evolution. Then an offspring
is created using a bit-mutation operator from each parent and
evaluated. If the offspring is equal or better than its parent
then the offspring replaces the parent in the new population.

HC algorithm: this algorithm operates with eight
individuals that are generated randomly at the beginning
of the evolution. After their evaluation, eight offspring
configurations are generated for each parent using a
bit-mutation operator. The best offspring of the eight
offspring configurations replaces the corresponding parent;
however, only in case that its fitness value is equal or better
than the parent’s fitness value.

GA: the initial population of p individuals is generated
randomly. Then, k offspring are generated from each parent
using a bit-mutation operator. A new population consisting of
p individuals is formed from p parents and their pk offspring.
We utilised a deterministic selection in which p-best scored
individuals are selected as new parents. In our experiments,
p = 8 and k = 8. No crossover operator is utilised because
it is currently unknown how to design it to be more efficient
than the mutation operator.

5.4 Comparison of results

Table 6 summarises results obtained for the three search
algorithms and the two test problems. 100 independent
runs were performed for each problem and 49,512 fitness
evaluations were allowed in a run.

The results are given for a training image. While shot
noise filters were evolved using an alloy image (taken from
a microscope), a Lena image was utilised for edge detectors.
As the fitness value expresses the difference between filtered
and reference images, the lower value the better result. The
GA performs significantly better on the both problems. The
average fitness values suggest that the shot noise filter design
task is easier than the edge detector design task.

Figure 7 shows a three-dimensional normalised histogram
of resulting fitness values calculated from 100 independent
runs. For GA, it can be seen that the resulting fitness values
are concentrated close to lower values.

In order to illustrate differences between the three
algorithms and between the average filters and the
best-evolved filters, Figure 8 shows a corrupted image and
images filtered by some evolved filters. The image filtered by
a filter with the average fitness value gives an example of the
result which we can obtain with the highest probability at the
end of a 15-sec run.

Figure 9 shows results for edge detection. The image
obtained by applying the average evolved operator is not
sufficient. In order to get a sufficient operator, we had to
increase the number of generations to 50,000.

The best-evolved filters were applied to remove the shot
noise from images never seen during the learning process.
Figure 10 demonstrates that the evolved filters are operating
correctly for a certain class of images. Note that we also tested
those filters on 256 x 256-pixel images although they were
trained on 128 x 128-pixel images. Similarly to observations



70 Z. Vasicek and L. Sekanina

Table 6  Fitness values for three search algorithms. Averages were calculated from 100 runs

Algorithm/fitness Value Minimum Maximum

Average SD
Genetic Algorithm (GA) 8312 150,415 18,625 16,196
Hill Climbing (HC) 10,138 202,176 50,357 42,691
Random Search (RS) 10,683 152,775 33,226 24,776
Genetic Algorithm (GA) 118,001 453,609 298,995 70,494
Hill Climbing (HC) 136,780 544,112 346,682 82,137
Random Search (RS) 138,952 632,796 331,599 81,793

Figure 7 Normalised histograms of resulting fitness values for 100 runs (a) shot noise and (b) Sobel operator

algorithm algorithm

() (b)

Figure 8 A corrupted image containing the shot noise (a), a reference image (e) and images filtered using some of evolved filters:

(a) input; (b) average RS; (c) average HC; (d) average GA; (e) required output; (f) the best RS; (g) the best HC and
(h) the best GA

() (b) (© ()

(e) ® (® ()

Figure 9 Examples of images filtered using edge detectors: (a) input; (b) required output; (c) average GA and (d) the best GA

() (b) (© (d)
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Figure 10 Responses of some of evolved filters on the images from a test set: (a) input; (b) required output; (c) filtered image;

o . — g

(a)

(b)

(&

reported in Martinek and Sekanina (2005), we can confirm
that images filtered by evolved filters exhibit more details
(and thus a higher visual quality) than images filtered by
conventional filters (e.g. median filters).

The following C program represents an implementation of
the best-evolved edge detector created according to Figure 11.
Note that kernel represents the nine inputs of the image filter.

uint8 filter (uint8 kernel[9]) {
uint i14,i17,119,122,127,129;

114 = min((kernel[l] + kernell[7])

>> 1, kernel[7]);

117 = 114 ~ kernell7];

119 = min(il4+ (255 - kernel[l]), 255);
i22 = 255 - 1i19;

127 = min(i22, (117 + 119) >> 1);

129 = min(i22 + 127, 255);

return (127 + 1i29) & Oxff;

}

In contrast, the following C code represents a conventional
implementation of the Sobel edge detector which was used
to construct a target image for the fitness function.

uint8 filter (uint8 kernel[9]) {
int 1i;

i kernel [0]+ 2*kernel[l]+ kernel[2];

i =1 - (kernel[6] + 2*kernel[7]

+ kernel[8]);

i

i

= max(i, 0);
= min(i, 255);
return 1i;

The goal of the final set of experiments is to search for
as good filter as possible in case that many populations
can be generated. Filters are evolved for a 128 x 128

()

(d) input; (e) required output; (f) filtered image; (g) input; (h) required output and (i) filtered image

(@

(e) ®

®

Lena image corrupted by shot noise. One hundred
independent runs are performed with the maximum number
of 50,000 generations. Other parameters remain unchanged.
Table 7 shows that average fitness values are considerably
lower than those reported in Table 6. The best evolved filter
exhibits the mean difference per pixel mdpp = 0.26 (between
filtered and reference images). The best mdpp known for
this type of noise and Lena image is 0.38 (see Sekanina and
Ruzicka, 2003).

Table 7  Fitness values for RS and GA obtained after

50,000 generations
Fitness Value ~ Minimum  Maximum  Average SD
GA 4153 50,332 9937.9  10640.5
RS 5325 24,548 10233.3 3851.5

6 Discussion

The solution based on the PowerPC processor benefits
from a software implementation of the search algorithm
allowing the user to easily modify and tune the search
process for a particular problem. Firstly, we evaluated the
RS algorithm which is a software version of the complete
circuit implementation reported in Martinek and Sekanina
(2005). For image filter design, this complete circuit
implementation exhibits the speedup of 50 in comparison
with a software simulator running at common PC. As the
proposed implementation as well as the complete circuit
implementation utilises the identical VRC, operates at the
same frequency (50 MHz) and there are no idle clock cycles,
we can consider them as equivalent. We verified that the both
implementations perform the same number of evaluations for
a given time limit and that the visual quality of filtered images
is indifferentiable. While the RS algorithm requires 117,552
evaluations in average, GA requires only 49,512 evaluations
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Figure 11 The best edge detector evolved in reported experimental results. Note that functions in CFBs are numbered according

to Table 3

in average to obtain filters generating output images of the
same visual quality (see e.g. in Figure 10(f)). Corresponding
mean differences per pixel are 1.2 for GA and 1.1 for
RS (for Lena image and shot noise). This means that the
design process is 2.37 times faster in average in case of GA.
Therefore, by using a more sophisticated search algorithm,
we are able to improve the performance of the system.

Note that HC is the worst one of the compared algorithms.
That is probably because the corresponding search spaces are
very rugged and HC traps in a local optimum quickly.

In order to compare the implementation cost, we have
to look at results of synthesis. Table 8 compares resources
utilised for the implementation with the PowerPC processor
and the complete circuit implementation without the
PowerPC processor. Although different FPGAs are utilised,
the comparison is quite fair because the building blocks are
identical. We can observe that both implementations require
similar resources (if the PowerPC core is not taken into
account). Roughly speaking, the resources utilised for the EA
in the original implementation were used to build supporting
logic (PMI controller, caches, etc.) for the PowerPC.

Table 8 Comparison of resources utilised for the
implementations with and without the PowerPC
processor (for 4 x 8 CFBs in the VRC and an
eight-member population)

Solution Virtex Il FPGA  BRAMs Func. geners. DFF

With PowerPC Pro 2VP501£f1517 12 9181 3638

No PowerPC ~ XC2V3000bf957 2 10,331 3104

Providing a corrupted image and a corresponding original
image, the proposed system is able to generate an image
filter which is highly competitive with filters designed
conventionally and utilised in practice. The resulting filter
can be generated in 10 sec. In this paper, the approach was
verified for two types of noise; however, Sekanina (2004),
Sekanina and Ruzicka (2003) and Martinek and Sekanina
(2005) have shown its effectiveness on a relatively broad class
of noise types.

The design time is very reasonable if the proposed system
should operate ‘instead’ of a human designer and the resulting
filter should be offered as a product on a market independent
of the fact that the filter was mechanically created. Further
speedup is possible by introducing a higher degree of parallel
processing, for example, if more than one VRC were
implemented. For some applications, our solution could also
operate as a real-time evolving and adaptive filter. As the

proposed solution is designed as a system on a chip, it is also
suitable for various (small) embedded systems.

7 Conclusion

In this paper, a new architecture for image filter evolution
was proposed and evaluated. The evolvable system is based
on a software implementation of the search algorithm in
the PowerPC processor which is available in Xilinx
Virtex II and 4 FPGAs. Candidate filters are evaluated in a
domain-specific virtual reconfigurable circuit implemented
using a reconfigurable logic of the same FPGA.
As the PowerPC processor enables implementing more
sophisticated search algorithms than an original circuit
solution, a higher performance can be obtained. The proposed
evolvable image filter is one of many applications that can be
developed using a modular architecture that we created in
a commercial off-the-shelf FPGA. By modifying the VRC
and the search algorithm running in the PowerPC processor,
the FPGA can be utilised to effectively evolve other digital
circuits, such as predictors, controllers, classifiers, hash
functions and unconventional operators, whose design is
difficult for a human designer.
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