
2D Classification and Real-Time
Object Detection

AMIDA Technology Package Description

Roman Juránek, Pavel Svoboda

Graph@FIT

Brno University of Technology

Faculty of Information Technology

Božetěchova 2
612 66 Brno, Czech Republic

Developers:

Roman Juránek, Michal Hradǐs, Pavel Zemčı́k, Adam Herout, Jǐŕı Havel,

Radovan Jošth, Lukáš Polok, Martin Žádnı́k, Vı́tězslav Beran

Zemčı́k Pavel, zemcik@fit.vutbr.cz, responsible for AMIDA project

Herout Adam, herout@fit.vutbr.cz, responsible for Graph@FIT group

Last modified: December 25, 2009

Contents

1 Purpose of the Technology 3
1.1 Contents of the Package . 3

2 Technical Description 4
2.1 General Object Detection with Boosting 4
2.2 Features for Object Detection 5
2.3 Training Framework . 6
2.4 Object Detection Runtime Framework 7
2.5 Technical Data . 8

3 Limitations and Possible Extensions 8

2

1 Purpose of the Technology

This package contains a system that provides real time object detection. By
the objects, in this case, we mean anything with stable pattern (e.g. face,
car rear, etc.). The detection is based on a classifier trained by AdaBoost
(or its modification) algorithm. Example of an output of face detection is
shown in the Figure 1.

Figure 1: Detection of faces in a photography (source: Internet).

This package could be used in various applications. Most prominent of
them are detection of faces and facial features. Other applications include
detection of persons, licence plates, cars (sides and rears) and even low level
detection tasks like interesting point detection. The advantage of this system
is that all the applications share the same framework and only classifier
determines what object is detected. Another advantage is low computational
cost of the detection. The object detection is typically a part of larger systems
like driving assistants, security systems or industrial quality control systems
where it serves as a start for high level processing – e.g. object recognition,
tracking etc.

1.1 Contents of the Package

The package contains:

3

• Runtime framework – The detection system and its source codes. The
system includes SSE, GPU and CUDA detection engines.

• Classifiers – Example data files with classifier descriptions. Examples
are: face detection and traafic sign detection.

• Videos – Face detection in news video and video of a system working
in real-time.

2 Technical Description

This section describes technological background of the object detection im-
plemented in this package. The section 2.1 deals with AdaBoost machine
learning algorithm and its extensions, the section 2.2 describes feature ex-
traction algorithms which are used to construct classifiers. The main parts of
the package – training and runtime framework – are described in the sections
2.3 and 2.4.

2.1 General Object Detection with Boosting

The AdaBoost [1, 2, 3] is an algorithm that incrementally builds a strong
classifier from simple weak hypotheses. The hypothesis can be for exam-
ple convolution response extracted form an input image. The input for the
training is a labeled training set. The output is a classifier, i.e. selected
descriptive features. The classifier response is based on a linear combination
of responses of the selected features. Although the elementary weak classi-
fiers are very simple, the strong classifier exhibit very good performance on
variety of detection and classification tasks.

The evaluation of the AdaBoost classifier can be computationaly demand-
ing because for every sample all features need to be evaluated before the
decision is reached. The Cascade [3] is a method that builds a chain of pro-
gressively more complex classifiers that can very quickly reject background
samples. This decreases computational cost to the acceptable level for real
time object detection. Another method similar to the Cascade is WaldBoost
[4] which, based on Walds’s Sequential Probability Ratio Test [5], builds
classifier with optimal decision strategy (time to decision).

The object detection is performed by evaluating the classifier on all po-
sitions and scales. The positions with positive responses of classifiers can

4

be clustered to remove possible multiple detections of objects. The detected
areas can be subjected to further processing like for example tracking, object
recognition etc.

2.2 Features for Object Detection

The pattern recognition by statistical classifiers is based on low level features
which extract information from image. As the rapid object detection often
uses exhaustive search over image, large number of features have to be eval-
uated fast, that‘s why simple features are often used. Typical example of
features are Haar wavelets [3, 6] or Local Binary Patterns [7].

This section describes image feature extractors used in the training frame-
work and real-time object detection runtime framework.

Local Binary Patterns. The LBPs are widely used in texture processing.
They were introduced by [8, 9]. LBPs in their basic form capture information
about local textural structures by thresholding samples from a local neigh-
borhood by its central value and forming the pattern code where each sample
represents a single bit.

Typically, the circular neighborhood with 8 samples is used (8 bit pat-
tern), but other variants are also possible. LBP are most frequently used in
combination with local histograms to describe a local image area and seg-
ment the image. The LBP is not rotationally invariant, it is dependent on
which sample is considered first when forming the code. Rotational invari-
ance can be achieved by normalization of the pattern by shifting the bits –
the lowest value is selected as the LBP result. The LBPs exhibit very good
performance when used as features in object detection [7].

Local Rank Functions. The LRFs [10] are based on the idea that the
intensity information in the image can be well represented by the order of
the values (intensities) of the pixels or small pixel regions (e.g. summed 2×2
pixel rectangular areas). The feature input is a set of samples from image.
The output is calculated from ranks of two (or more in general case) selected
items from the set. The ranks are subtracted (Local Rank Difference – LRD)
or treated as a vector (Local Rank Pattern – LRP).

The features have been designed so that they have equal descriptive and
generalization power as their state-of-the-art alternatives, but at the same

5

time to be efficiently implementable in hardware. These features prove to be
efficient, not only in the hardware implementations (tested in FPGA chips),
but also when implemented using the SSE instruction set of the contemporary
CPU’s and implemented in the graphics processors (GPU’s).

2.3 Training Framework

The base component of the package is training framework [11] which pro-
duces classifiers. Based on training set of images and configuration settings,
the software generates a classifier with desired properties. The framework
implements variety of training algorithms (AdaBoost, WaldBoost, Gentle
AdaBoost) and supports a number of weak hypotheses types and low level
features.

The framework is written in C/C++ language in a modular fashion and
thus it is easy to extend with new features. It uses some freeware components
like libxml2 for xml processing, OpenCV for image processing, OpenMP for
paralellization of training and Gnuplot for visual output of training statistics.

Training Data. Basic input is a set of image files. The images can be read
in two ways: a) each subarea is taken as a sample (suitable for background
class) or b) using image annotation, the framework can automatically extract
anotated areas (optinally with some random transformation) and use the
images as training samples (suitable for object class). The training data and
their division to classes is described in simple dataset XML file which defines
data subsets.

Configuration. The training process is set up by a configuration file. It is
simple XML file which defines several parameters: algorithm settings (num-
ber of features, error rates, etc.), data input settings (dataset, number of
samples, etc.) and weak hypotheses settings (type of hypotheses and fea-
tures used in training). Finally it defines testing parameters, i.e. what data
to use and what tests to perform.

Outputs. Once the training is finished, the framework produces a classifier
file which is a XML structure with selected hypotheses and their parameters.
Further it provides log file with transcription of training process and finally

6

files with training and testing statistics – ROC and PRC curves,speed statis-
tic and sample rejection statistic.

2.4 Object Detection Runtime Framework

The classifiers produced by the training framework presented in previous
section can be used in the detection framework. Either directly loaded from
XML file, or they can be transformed to form of header file .h and statically
compiled to a program. The framework supports LRD and LRP (subsets of
Local Rank Functions – Section 2.2) and LBP features.

The detection engine searches for objects in image performing exhaustive
search over all positions and scales (and even rotations if desired). Detected
hypotheses are optionally processed by a Non-maxima suppression algorithm
which removes possible multiple detections of objects. The coordinates, sizes
and orientations of detected objects are then passed to user to perform high
level processing (tracking, recognition, etc.).

There are different versions of optimized engines. The SSE engine ex-
ploits the SIMD instruction set on contemporary CPUs, and particulary
SSE2 which supports simultaneous processing of sixteen 8 bit integers in
single register. The GPU and GP-GPU implementations uses properties of
contemporary graphic cards – shaders and multiprocessor CUDA architec-
ture. The last engine version is implemented on programmable hardware.

SSE [10, 12, 13] The imahe in this implementation is represented as a
pyramid created by downscaling. The scaling is done by highly optimized
SSE 8-to-7 bilinear scaler and 2-to-1 averaging scaler. For each pyramid
level, convolution images are created and rearranged in the memory to layout
suitable for SSE evaluation. The features are then evaluated using paralel
processing by SSE instructions. This implementation is roughly six times
faster than the one with no optimizations. It also uses OpenMP for further
performance improvement.

GPU [10, 14]. The classification in the GPU is realized as a sequence of
fragment shaders that is executed on a texture loaded from system memory
to GPU memory. The output (texture with responses of the classifier) is
loaded back to the system memory. Classifier parameters are supplied to the

7

GPU as textures. The classifier parameters are represented as RGB texture,
the response table as grayscale texture.

CUDA [10, 15]. This implementation uses the parallel processing by
CUDA architecture implemented on modern graphic cards. The detection
is based on a processing kernel that is executed on each position of image
performing classification task. The architecture contains hundreds of cores,
so hundreds of image subwindows can be processed in parallel.

Both, the GPU and CUDA implementations are roughly two times faster
than the SSE implementation which makes them suitable for HD video pro-
cessing with minimal usage of CPU. The CPU can thus be used for complex
high level processing of the detection results.

FPGA [16, 10] The LRD image features and WaldBoost based classifica-
tion was implemented in programmable hadrware. Designed architecture is
similar to specialized processor. The classifier and its parameters are sup-
plied as a sequence of instructions which are avaluated on input image. A
processing module with FPGA can work on 21 fps with 640 × 480px image
or 6 fps with 320 × 240px image.

2.5 Technical Data

The input is grayscale image either static of from camera, the output is a set
of coordinates in image where an objects are detected.

The system can operate on standard PC with Intel CPU. Parts of the
system requires CPU with SSE2 instruction set (which is standard on todays
PCs) or CUDA capable graphic card. The detection typically works on 5 – 50
fps (depending on size of input image, detection settings, classifier and CPU).
There is no upper speed limit so in some cases (small input, constrained
conditions), the detection can process even hundreds or frames per second.
On the other hand, when large input image is supplied it can take even
seconds to process it.

3 Limitations and Possible Extensions

Although the training framework support different algorithms and feature
types, the detection framework supports only WaldBoost classifiers that are

8

homogenous (i.e. only one feature type is used). Length of the classifiers is
not limited for PC but the FPGA implementation supports classifiers with
lenght up to 256 weak hypotheses (which is caused by limited amount of
memory on the chip). This limitation is not very serious as the 256 hypothe-
ses is enough for most applications. Features used in classifiers are restricted
to be LRD (SSE, GPU, CUDA, FPGA), LRP (SSE, CUDA) or LBP (SSE,
CUDA) and size of feature block is restricted to maximum 2 × 2px. As our
experiments proved, this limitation does not influence classification precision
by any measurable amount.

Future work on the runtime framework will focus on implementing LRP
and LBP features on GPU and update of CUDA engine to OpenCL. Also
we are currently experimenting with new type of image feature which will be
implemented on both PC (CPU and GPU) and FPGA.

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In EuroCOLT
’95: Proceedings of the Second European Conference on Computational
Learning Theory, pages 23–37, London, UK, 1995. Springer-Verlag.

[2] Robert E. Schapire and Yoram Singer. Machine learning, 37(3):297-336,
1999. improved boosting algorithms using confidence-rated predictions,
1999.

[3] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. pages 511–518, 2001.

[4] Jan Sochman and Jiri Matas. Waldboost – learning for time constrained
sequential detection. In CVPR ’05: Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 2, pages 150–156, Washington, DC, USA, 2005.
IEEE Computer Society.

[5] A. Wald. Sequential Analysis. John Wiley and Sons, Inc., 1947.

[6] Constantine P. Papageorgiou, Michael Oren, and Tomaso Poggio. A
general framework for object detection. Computer Vision, IEEE Inter-
national Conference on, 0:555, 1998.

9

[7] Lun Zhang, Rufeng Chu, Shiming Xiang, ShengCai Liao, and Stan Z.
Li. Face detection based on multi-block lbp representation. In ICB,
pages 11–18, 2007.

[8] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative
study of texture measures with classification based on featured distri-
butions. Pattern Recognition, 29(1):51 – 59, 1996.

[9] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution
gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):971–987, 2002.

[10] Adam Herout, Pavel Zemč́ık, Michal Hradǐs, Roman Juránek, Jǐŕı Havel,
Radovan Jošth, and Martin Žádńık. Low-Level Image Features for Real-
Time Object Detection, page 25. IN-TECH Education and Publishing,
2009.

[11] Michal Hradǐs. Framework for research on detection classifiers. In Pro-
ceedings of Spring Conference on Computer Graphics, pages 171–177.
Comenius University in Bratislava, 2008.

[12] Adam Herout, Michal Hradǐs, Roman Juránek, and Pavel Zemč́ık. Im-
plementation of the ”local rank differences” image feature using simd
instructions of cpu. In Proceedings of Sixth Indian Conference on Com-
puter Vision, Graphics and Image Processing, page 9, 2008.

[13] Roman Juránek, Adam Herout, and Pavel Zemč́ık. Impelementing local
binary patterns with simd instructions of cpu. In Proceedings of Winter
Seminar on Computer Graphics, page 5. West Bohemian University,
2010, (submited).

[14] Lukáš Polok, Adam Herout, Pavel Zemč́ık, Michal Hradǐs, Roman
Juránek, and Radovan Jošth. ”local rank differences” image feature im-
plemented on gpu. In Proceedings of the 10th International Conference
on Advanced Concepts for Intelligent Vision Systems, Lecture Notes In
Computer Science; Vol. 5259, pages 170–181. Springer Verlag, 2008.

[15] Adam Herout, Radovan Jošth, Pavel Zemč́ık, and Michal Hradǐs. Gp-
gpu implementation of the ”local rank differences” image feature. In Pro-
ceedings of International Conference on Computer Vision and Graphics

10

2008, Lecture Notes in Computer Science, pages 1–11. Springer Verlag,
2008.

[16] Pavel Zemč́ık and Martin Žádńık. Adaboost engine. In Proceedings of
FPL 2007, page 5. IEEE Computer Society, 2007.

11

	Purpose of the Technology
	Contents of the Package

	Technical Description
	General Object Detection with Boosting
	Features for Object Detection
	Training Framework
	Object Detection Runtime Framework
	Technical Data

	Limitations and Possible Extensions

