
nes fit

TARZAN 
2017-06-05

Návrh digitální platformy pro zpracování
dat z bezpečnostních incidentů

nes fit

Cíle projektu

• Zpracování různých typů dat z různých zdrojů 

• Potenciálně velké množství dat 

• Spolupráce analytiků  

• Inteligentní analýza 

TARZAN 2017-06

nes fit

Cíle projektu

• Zpracování různých typů dat z různých zdrojů 
Otevřený systém

• Potenciálně velké množství dat 
Škálovatelný systém

• Spolupráce analytiků  
Víceuživatelský systém, interaktivní analýza

• Inteligentní analýza 
Machine Learning

Klient-server aplikace, úložiště a výpočty v klusteru, jednotlivé
funkce implementovatelné v libovolném jazyce či jako wrapper
nad existujícími nástroji, volně integrované.

TARZAN 2017-06

Collection

Preservation

Reduction

Examination

Analysis

Presentation

Triage

Sampling

Selective  
Acquisition

Intelligent  
Acquisition

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7740422

Search

Clustering

Outliers

Correlation

Data  
Mining

Semantic  
Analysis

VisualizationFiltering

Extraction

Compression

Transformation

Investigation Framework

Unstructured  
Data

Structured  
Data

Distributed 
Storage

Indexing

Enrich

Label

Ontology

Drilling

Functional

Temporal

Reporting

nes fit

Zpracování nestrukturovaných dat

TARZAN 2017-06

nes fit

Existující nástroje

• E-Detective, NetDetector, NetIntercept, NetSleuth, Network
Miner, Netfox Detective, …  

• XPLICO 
http://www.xplico.org/

• GRR  
https://github.com/google/grr

• Apache METRON 
http://metron.apache.org/

• APACHE SPOT  
http://spot.incubator.apache.org/

TARZAN 2017-06

http://www.xplico.org/
https://github.com/google/grr
http://metron.apache.org/

nes fit

Apache METRON

TARZAN 2017-06

nes fit

Apache SPOT

TARZAN 2017-06

nes fit

TARZAN

TARZAN 2017-06

+bus : PlatformBus
+storage : PlatformStorage
+computation : PlatformComputation

TarzanPlatform<<component>>
PCAPIngestor

<<component>>
FirewallIngestor

<<component>>
BitcoinTransIngestor

<<component>>
SocialNetworksIngestor

<<component>>
DataBreachIncidentMonitor

<<component>>
MallwareActivityMonitor

<<component>>
BitcoinTransAnalyzer

<<component>>
MalwareRecognition

<<component>>
DataBreachDetection

PublishMessage ReceiveMessage

ExecuteTask DataDistStorage

ManageTasks

Fig. 3. An example of external application components utilizing the
TARZAN Platform (the ingestors on the left side are feed data to the platform,
computation tasks and an application on the top and bottom are processing
the data, and the monitors on right side are passing results to clients).

value [?]), the Platform Computation tasks must be able to
do Big data processing. The applications need to process
both data streams and data batches (e.g., to do a real-time
analysis of firewall logs and to execute on-demand tasks,
respectively). Therefore, Apache Spark [?] has been selected as
the implementation technology for the Platform Computation
component and it tasks, as it supports both the stream and
batch processing of Big data.

For the batch data processing in Spark, computation tasks
can utilize a data abstraction called Resilient Distributed
Dataset (RDD) to executes various parallel operations on a
Spark cluster and to gather resulting data in shared broadcast
variables and accumulators provided by Spark on the cluster’s
nodes. In the case of the stream data processing, Spark
Streaming provides computation tasks with Discretized Stream
(DStream) abstraction where each stream is represented by
a continuous series of RDDs that are divided into micro-
batches and processed by the tasks in the similar way as in the
batch processing above. Because DStreams follow the same
processing model as batch systems, the two can naturally be
combined [?] and the Platform Computation component and it
tasks can implement identical algorithms for both the stream
and batch processing.

V. EVALUATION

The TARZAN Platform has been evaluated by means of
the PCAP Analysis case study described in Section III. A
corresponding TARZAN application has been implemented to
read and analyse data of network traffic monitoring in the
PCAP format. After the PCAP data are read from input PCAP
files or real-time generated by network traffic monitoring tools,
they are transferred (including their related meta-data) via
Platform Bus for a primary analysis by tasks of Platform
Computation. The task also ensure that both the input data
and the output primary analysis results are stored in Platform
Storage. Afterwards, secondary analysis can be executed on
the stored data and the previous results to perform various
security and forensic analyses, e.g., to detect communication
patterns, apply clustering methods for data mining, etc.

The primary analysis is operating on continuously incom-
ing data and the primary analysis tasks implement real-time
stream processing to quickly extract traffic basic features such
as source and destination IP addresses and port numbers,

Fig. 4. Architecture of the PCAP Analysis tool with data-flows (including
processes, data storages, and external data sources and entities).

defragment fragmented packets into network flows, analyse
flow properties, application protocols, etc. These tasks utilize
the Spark Streaming extension of the core Apache Spark
API to process DStreams. In Spark, the tasks are scalable,
high-throughput, fault-tolerant, so the ability to process the
incoming live data in real-time can be improved, if necessary,
by a cluster configuration and the application deployment.
However, the primary analysis must perform only basic an-
alytical tasks.

Contrary to the primary analysis by real-time steam process-
ing, the secondary analysis can implement a batch processing
of the previously stored data and the primary analysis results.
Therefore, the stored inputs can be represented as RDDs and
processed by means of Spark RDD API, Spark SQL, and
also machine learning algorithms provided by Spark’s ma-
chine learning library (MLlib) can be applied. The secondary
analysis is executed on demand as required by the platform’s
client applications, e.g., to provide data for visualisations,
analyse network communications related to security incidents
under investigation, or related to cryptocurrency transactions
or malware activities.

The overall architecture of the PCAP Analysis tool is
depicted in Figure 4. To feed input PCAP data into the system,
several modules were adopted and adapted from the Apache
Metron project [?], namely: metron-sensors, metron-pcap, and
metron-api. In the first module, Apache Metron brings into
TARZAN the integration of Data Plane Development Kit3

(DPDK) probe for high speed packet capture and Yet An-
other Flowmeter4 (YAF) to processes packet data from PCAP
dumpfiles (as generated by tcpdump or libpcap). The next two
Metron modules provides a topology for streaming network
packets into HDFS and low-level analytics/filtering on the
PCAP files in HDFS before they are submitted into a Kafka
message queue acting as a buffer for further processing. Then,
a continuous stream processing in the primary analysis and
am on-demand batch processing in the secondary analysis is
performed by utilizing the TARZAN Platform components as
described above.

3http://dpdk.org/
4https://tools.netsa.cert.org/yaf/

nes fit

Architektura

TARZAN 2017-06

• Data recovery. If communication is not encrypted, the
communication payload is visible. This gives us the possi-
bility to recovery digital objects from the communication
such as web pages, images, e-mail messages.

• Pattern search. The common investigative approach is
to search for occurrences of known patterns, e.g., email
addresses, keywords, etc. Pattern search in network traffic
needs to consider specifics of various protocols, such as
encoding, compressiong, etc.

Data analysis may be represented by a complex set of different
methods. For instance, the following techniques are applied:

• Developing the timeline that consists of significant events.
Different kind of communication can contribute to time-
line by various events, such as e-mail delivery, web
search, file download.

• Temporal analysis to identify patterns or anomalies that
require further and deeper analysis. For instance, the peri-
ods of peak data transfer or occurrence of the uncommon
protocol.

• Relation analysis that provides links among different
entities.

• Classification methods to assign extracted data to dif-
ferent classes according to the predefined criteria, such
as system traffic, web traffic, suspicious traffic, malware
related traffic, etc.

• Clustering techniques that can deal with a lot of entities
by grouping them according to some important charac-
teristics.

• Correlation task that can identify different activities of
a single entity or analyze the activity composed from
different communication traces.

Digital investigation is a time-consuming and labor-intensive
process. Thus, there is a strong emphasis on using tools that
can reduce the examination time and improve the automatiza-
tion of analysis activities. In the next section, we will show,
how the proposed platform can achieve both requirements.
First, examination time can be reduced by allocating more
computation nodes. Second, some analysis can be automated
by applying machine learning algorithms.

The complex PCAP analysis require processing of a huge
amount of data. The processing must be done both in real-
time data, to detect security incidents or to perform security
audits, and later on large stored datasets to answer queries
of an analyst. As the such processing is difficult to do by
conventional centralized approaches in highly scalable, high-
throughput, and fault-tolerant way, the PCAP Analysis tool
will be implemented on the TARZAN platform.

IV. THE TARZAN PLATFORM

To ensure communication of TARZAN application and pro-
vide them with required services and a runtime environment,
the TARZAN platform consists of three core components,
namely, Platform Bus which implements a distributed commu-
nication bus for the applications and the components, Platform
Storage which provides distributed storage service (NoSQL

TarzanPlatform

+bus : PlatformBus

+storage : PlatformStorage

+computation : PlatformComputation

ConfigService configuration

ExecuteTask

ManageTasks

subscriptions_management

ManageSubscriptions

PublishMessage

ReceiveMessage

communication

database

filesystemFileDistStorage

DataDistStorage tasks_management

computation

storage

notifications_and_callbacks

notifications_and_storage

Fig. 1. The TARZAN Platform architecture.

databases, distributed filesystem, resource registries, etc.), and
Platform Computation component to provide the runtime
environment for distributed computation tasks of TARZAN
applications.

In Figure 1, the TARZAN platform architecture is modelled
as an UML composite structure diagram. Each of the three
core components provide its services to TARZAN applications
by the platform’s external interfaces. Moreover, the compo-
nents communicate and cooperate inside the platform. The
individual components are described in the following sections.

A. Platform Bus

The main goal of the Platform Bus core component is
to enable asynchronous communication of other TARZAN
components. More specifically, the Platform Bus implements a
publisher-subscriber communication model based on message
queues. A client is able to publish messages to particular topics
acting as a producer, or to subscribe to receive messages of
particular topics as a consumer (see the corresponding inter-
faces in Figure 1). The Platform Bus can guarantee delivery
of the published messages to their appropriate consumers.

The communication via bus is utilized by both external
TARZAN applications and the core TARZAN component.
In the first case, the applications can connect themselves to
various data sources to ingest sensor data, events, logs, etc.;
interconnect their components into data processing topologies
to perform data parsing, normalizing, validating, marking,
enrichment, etc.; and consume or feed data from/into the
Platform Storage components. In the second case, the Platform
Bus helps the other core components to send/receive their data,
for example, to store the transmitted data into the Platform
Storage and deliver the storage update notifications, or to
deliver input data and pass output data of tasks of the Platform
Computation including callbacks.

To achieve high-throughput message passing in highly scal-
able distributed environments, the Platform Bus is based on
Apache Kafka [?]. In Kafka, messages are communicated
in topics. Each topic, as a general category of particular
messages, consists of multiple partitions (queues). A producer
submits a message to particular topic (or topics) where in
each topic, the message is assigned to a particular single
partition (automatically for load-balancing or as required by
the producer). A consumer can belong to a particular consumer
group and subscribes to one or more topics. In each of

nes fit

TARZAN Technologie

TARZAN 2017-06

Kafka

HDFS

Hive Cassandra

Spark*

UI (Angular)

*https://zdatainc.com/2014/09/apache-storm-apache-spark/

nes fit

Případová studie

Analýza PCAP souborů a extrakce “zajímavých” objektů
(Network Miner):

• Identifikace komunikujících stran

• Extrakce souborů z HTTP, FTP, SMB, SMTP, POP3 a IMAP

• Enhancement (GEO IP)

• Uživatelská jména

• DNS dotazy

• Identifikace OS, webového prohlížeče

• Decapsulation GRE, 802.1Q, PPPoE, VXLAN, OpenFlow,
SOCKS, MPLS and EoMPLS

TARZAN 2017-06

Apache Metron

PCAP_data_file

Kafka_PCAP_buffer
T

PCAP_Ingestor

PCAP_network_tap

TARZAN

Platform_clients

PCAP_Primary_analysis
stream processing

PCAP_Storage
D

Primary_analysis_results
D

Secondary_analysis
batch processing

Secondary_analysis_results
D

Fig. 4. Architecture of the PCAP Analysis tool with data-flows (including
processes, data storages, and external data sources and entities).

API to process DStreams. In Spark, the tasks are scalable,
high-throughput, fault-tolerant, so the ability to process the
incoming live data in real-time can be improved, if necessary,
by a cluster configuration and the application deployment.
However, the primary analysis must perform only basic an-
alytical tasks.

Contrary to the primary analysis by real-time steam process-
ing, the secondary analysis can implement a batch processing
of the previously stored data and the primary analysis results.
Therefore, the stored inputs can be represented as RDDs and
processed by means of Spark RDD API, Spark SQL, and
also machine learning algorithms provided by Spark’s ma-
chine learning library (MLlib) can be applied. The secondary
analysis is executed on demand as required by the platform’s
client applications, e.g., to provide data for visualisations,
analyse network communications related to security incidents
under investigation, or related to cryptocurrency transactions
or malware activities.

The overall architecture of the PCAP Analysis tool is
depicted in Figure 4. To feed input PCAP data into the system,
several modules were adopted and adapted from the Apache
Metron project [?], namely: metron-sensors, metron-pcap, and
metron-api. In the first module, Apache Metron brings into
TARZAN the integration of Data Plane Development Kit3

(DPDK) probe for high speed packet capture and Yet An-
other Flowmeter4 (YAF) to processes packet data from PCAP
dumpfiles (as generated by tcpdump or libpcap). The next two
Metron modules provides a topology for streaming network
packets into HDFS and low-level analytics/filtering on the
PCAP files in HDFS before they are submitted into a Kafka
message queue acting as a buffer for further processing. Then,
a continuous stream processing in the primary analysis and
am on-demand batch processing in the secondary analysis is
performed by utilizing the TARZAN Platform components as
described above.

In comparison with the Apache Metron [?] or Apache Spot
[?] discussed in Section II, the current implementation of the
PCAP Analysis tool in TARZAN provides the same basic
functionality, however, it enables a better integration with the

3http://dpdk.org/
4https://tools.netsa.cert.org/yaf/

other TARZAN applications into a seamless security analysis
framework where results of the PCAP analyses may contribute
to various security investigations, e.g., to trace cryptocurrency
transactions or malware activity.

. . .
Hadoop has attracted attention as a possible platform for big

data forensics. A conceptual model of big data forensics was
suggested by Zawoad and Hasan [?]. They proposed to store
data in Hadoop Distributed File System enabling distributed
data processing. In our work, we presented the design of
such system suitable for network forensics. Mohammed et
al. proposed a framework for the forensic analysis of big
heterogenous data [?]. The framework has three layers that
follow acquisition, examination, and analysis approach. They
suggest extracting metadata from acquired data sources to
build the semantic web-based model for further analysis.
While they do not specify the particular implementation of
such system, the presented concepts can be realized using
TARZAN platform. Irons and Lallie discussed the shortcom-
ings of the current analysis methods and suggested to use more
intelligent techniques [?]. They demonstrated the possible
application of artificial intelligence (AI) to computer forensics.
The TARZAN platform can easily integrate AI investigative
methods because of the underlying components provides rich
libraries of various AI algorithms. The presented work is a
step further in the design and development of open forensic
platform capable of processing big data. We presented the
design and demonstrated it on the PCAP case study.

. . .

VI. CONCLUSION

. . .
TODO
In this paper, we described an . . .
In our ongoing work, we are . . .

nes fit

Závěr

• Provedena analýza problému, vytvořen přehled v současnosti
dostupných řešení.

• Současný stav 2017-06:

• Vytvořen návrh systému dle specifických požadavků.

• Zahájeny práce na proof-of-concept nástroje pro analýzu PCAP
souborů - demonstrace 2017-09.

• TARZAN je fork projektu Apache SPOT (proč ne Metron?)

• Prototyp bude k dispozici 2017-12.

• 2018+ rozšiřování platformy a integrace dalších datových zdrojů a
analytických modulů

TARZAN 2017-06

nes fit

References

• [1] M. Qi, Y. Liu, L. Lu, J. Liu, M. Li, Big data management in digital forensics, in: 17th IEEE Int. Conf.
Comput. Sci. Eng. CSE 2014 - Jointly with 13th IEEE Int. Conf. Ubiquitous Comput. Commun. IUCC
2014, 13th Int. Symp. Pervasive Syst. Algorithms, a, 2015: pp. 238–243. doi:10.1109/CSE.2014.74.

• [2] J. Lee, S. Un, Digital forensics as a service: A case study of forensic indexed search, in: Int.
Conf. ICT Converg., 2012: pp. 499–503. doi:10.1109/ICTC.2012.6387185.

• [3] J. Rrushi, P. a Nelson, Big Data Computing for Digital Forensics on Industrial Control
Systems, Inf. Reuse Integr. (IRI), 2015 IEEE Int. Conf. (2015) 593–608. doi:10.1109/IRI.2015.94.

• [4] M. Qi, Y. Liu, L. Lu, J. Liu, M. Li, Big Data Management in Digital Forensics, 2014 IEEE 17th Int.
Conf. Comput. Sci. Eng. (2014) 238–243. doi:10.1109/CSE.2014.74.

• [5] A. Guarino, Digital forensics as a big data challenge, in: ISSE 2013 Secur. Electron. Bus.
Process., 2013: pp. 197–203. doi:10.1007/978-3-658-03371-2_17.

• [6] S. Zawoad, R. Hasan, Digital Forensics in the Age of Big Data : Challenges , Approaches , and
Opportunities, 2015 IEEE 17th Int. Conf. High Perform. Comput. Commun. (HPCC), 2015 IEEE 7th
Int. Symp. Cybersp. Saf. Secur. (CSS), 2015 IEEE 12th Int. Conf Embed. Softw. Syst. (2015) 1320–
1325. doi:10.1109/HPCC-CSS-ICESS.2015.305.

• [7] A. Guarino, Digital forensics as a big data challenge, in: ISSE 2013 Secur. Electron. Bus.
Process., 2013: pp. 197–203. doi:10.1007/978-3-658-03371-2_17.

TARZAN 2017-06

