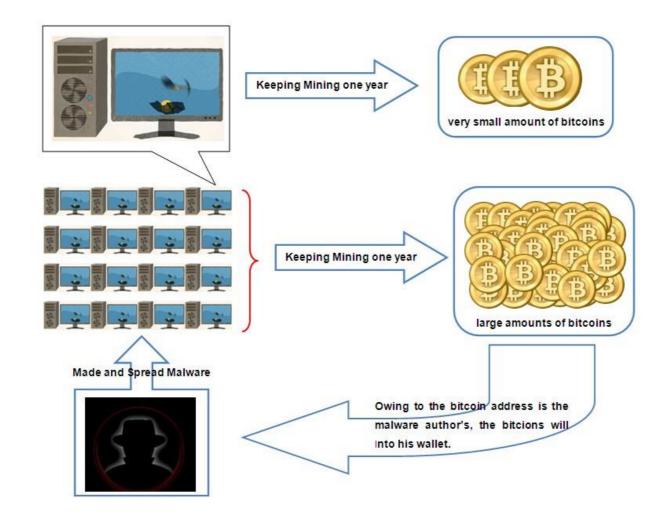
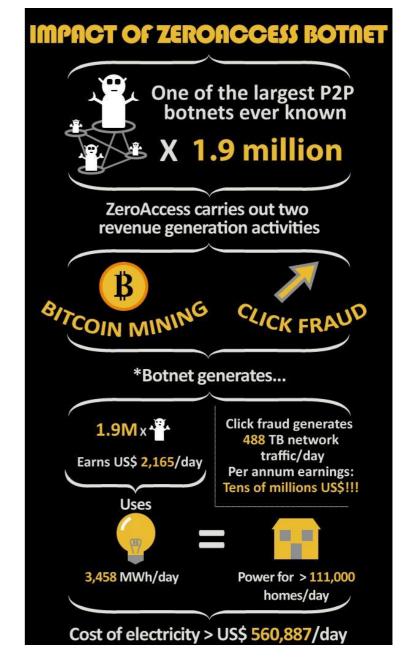


FORENZNÍ ANALÝZA BITCOINŮ (kryptoměny)

Vladimír Veselý 2017-06-05

Agenda


1) Detekce minérů


2) Trasování financí

Problém 1)

Vědomé či nevědomé zneužití prostředků

organizace

Mining Pool

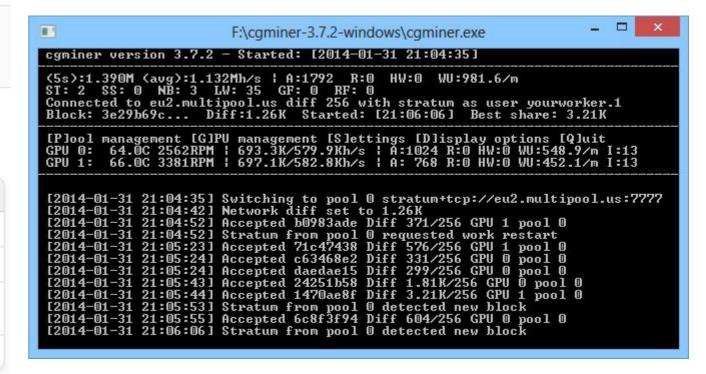
Sdružení těžařů

- Zvýšení šance na vytěžení bloku
 - odměna 12,5 BTC (~650 tis. Kč)
 - proporcionální distribuce výdělku

- Protokoly
 - Stratum (TCP + JSON)
 - Getwork, Getworktemplate (HTTP + JSON)
 - dynamické porty, dynamické adresy

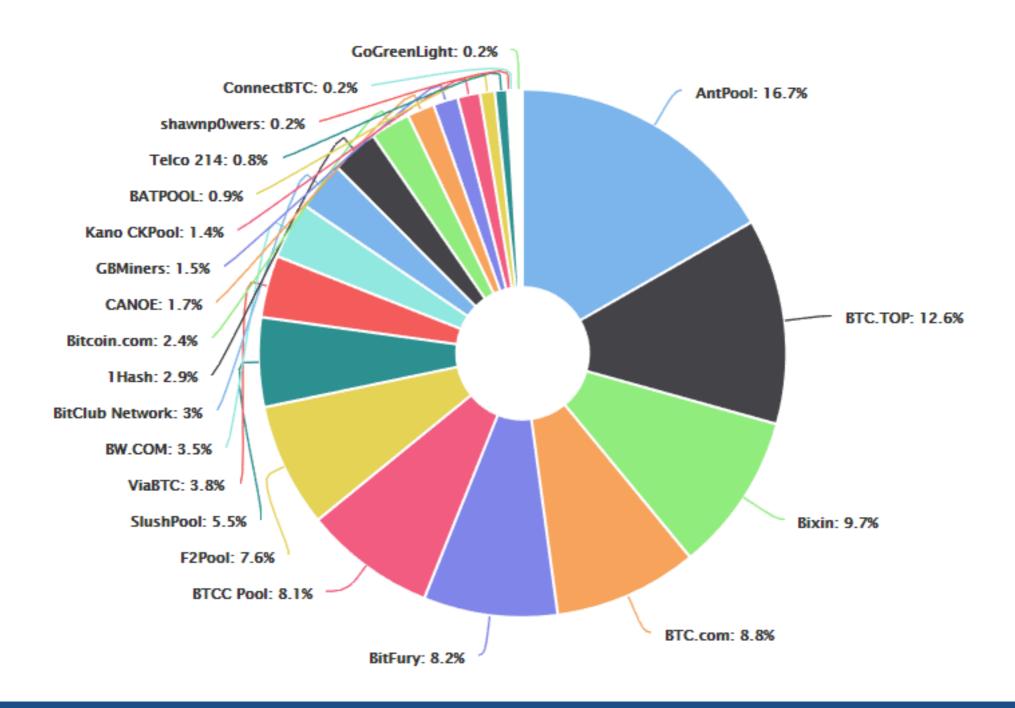
Těžba

Patřičný HW


The login credentials needed for your miner look like this: (please, fill your user ID and worker name)

URL: stratum+tcp://stratum.slushpool.com:3333 userID: userName.workerName password: anything

The password can be an arbitrary text since there is no security issue present here. If someone tried to connect to our servers with your credentials, he would be just mining for your benefit.


The servers can be chosen from the following list based on your geographical location:

Servers Location	Address
USA, east coast	stratum+tcp://us-east.stratum.slushpool.com:3333
Europe	stratum+tcp://eu.stratum.slushpool.com:3333
China, mainland	stratum+tcp://cn.stratum.slushpool.com:3333 stratum+tcp://cn.stratum.slushpool.com:443
Asia-Pacific/Singapore	stratum+tcp://sg.stratum.slushpool.com:3333

Existující Pooly

https://blockchain.info/pools

sMaSheD

• Mining Server Detector of Cryptocurrency Pools

Demo

Problém 2)

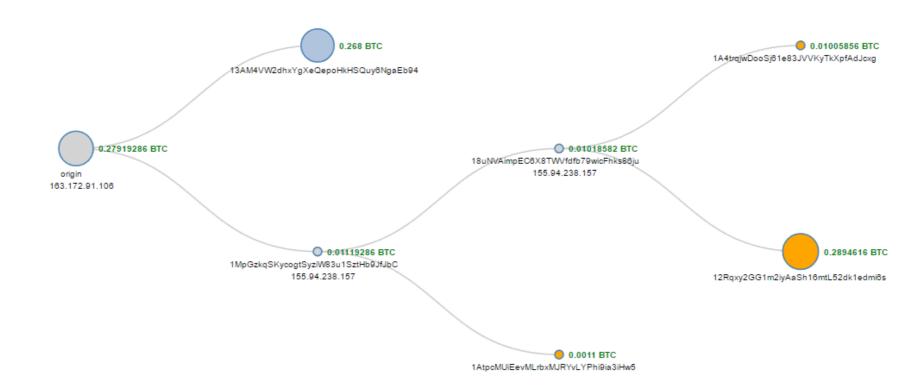
- Praní špinavých peněz
- Krádeže, výkupné

Transakce

- 1 transakce
 - transakční historie vytváří obousměrně vázaný seznam

bafebce4967d23a2d14725dec005477b393ba3385f8fd6a9b1805eda1cf94c05

(Fee: 0.002282 BTC - 438 sat/B - Size: 521 bytes) 2017-05-23 07:13:30


1N3y3Gt6KFan6jBNMpSrovDgjRHNAXweR3 (0.12648354 BTC - Output)
1LLnRwX1mcaPSvXiZydWe8LB1Zqqwcfamy (0.01381087 BTC - Output)
1FpSCzBtQ2wSppTMv2VyHX2ssCeYVKAf9N (0.14118045 BTC - Output)

13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 - (Unspent) 1MpGzkqSKycogtSyziW83u1SztHb9JfJbC - (Spent) 0.268 BTC 0.01119286 BTC

0.268 BTC

trasování utrácení

Blockchain

- Veřejná účetní kniha
 - má ji k dispozici každý
- 1 blok
 - vytváří se co 10 minut

28 minutes

2602

obsahuje tolik transakcí, co se naskládá do 1 MB dat

LATEST BLOCKS SEE MORE → Height Age Total Sent Transactions Relayed By Size (kB) 1716 469200 11 minutes 27.992.30 BTC ViaBTC 999.11 17 minutes 469199 2202 33.188.84 BTC F2Pool 999.83 469198 22 minutes 1858 32,770.28 BTC BTCC Pool 989.18

26.945.10 BTC

BitFury

998.2

469197

CCA

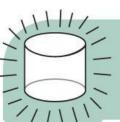
• <u>CryptoCurrency Analyzer</u>

Otázky?

How a Bitcoin transaction works

Bob, an online merchant, decides to begin accepting bitcoins as payment. Alice, a buyer, has bitcoins and wants to purchase merchandise from Bob.

WALLETS AND **ADDRESSES**


Bob and Alice both have Bitcoin "wallets" on their computers.

Wallets are files that provide access to multiple Bitcoin addresses.

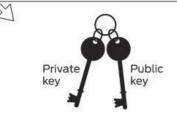
is a string of letters and numbers, such as **1HULMWZEP** kiEPeCh 43BeKJLlyb

Bob creates a new Bitcoin address for Alice to send her payment to.

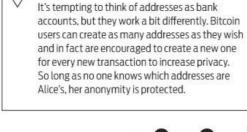
CREATING A NEW **ADDRESS**

Each address has its own balance of bitcoins.

LCWrfDpN



Alice tells her Bitcoin client that she'd like to transfer the purchase amount to Bob's address.


.

Private

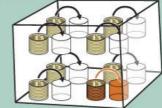
Public Key Cryptography 101

When Bob creates a new address, what he's really doing is generating a "cryptographic key pair," composed of a private key and a public key. If you sign a message with a private key (which only you know), it can be verified by using the matching public key (which is known to anyone). Bob's new Bitcoin address represents a unique public key, and the corresponding private key is stored in his wallet. The public key allows anyone to verify that a message signed with the private key is valid.

Gary, Garth.

VERIFYING THE TRANSACTION

Public


Alice's wallet holds the private key for each of her addresses. The Bitcoin client signs her transaction request with the private key of the address she's transferring bitcoins from.

the public key to verify that the transaction request is actually coming from the legitimate account owner.

Their computers bundle the transactions of the past 10 minutes into a new "transaction block."

......

The miners' computers are set up to calculate cryptographic hash functions.

As time goes on, Alice's transfer to Bob gets buried beneath other, more recent transactions. For anyone to modify the details, he would have to redo the work that Gary did-because any changes require a completely different winning nonce—and then redo the work of all the subsequent miners. Such a feat is nearly impossible.

The mining computers calculate new hash values based on a combination of the previous hash value, the new transaction block, and a nonce. value

Cryptographic hash functions transform a collection of data into an alphanumeric string with a fixed length, called a hash value. Even tiny changes in the original data drastically change the resulting hash value. And it's essentially impossible to predict which initial data set will create a specific hash value.

Cryptographic Hashes

* Each new hash value contains

Bitcoin transactions.

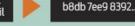
information about all previous

New

hash

value

6d0a 1899 086a... (56 more characters)


Hash

value*

486c 6be4 6dde.

Nonces

To create different hash values from the same data. Bitcoin uses "nonces." A nonce is just a random number that's added to data prior to hashing. Changing the nonce results in a wildly different hash value.

action that pays out 50 bitcoins to the

balance of newly minted bitcoins.

New hash

The miners

New

hash

value

Creating hashes is computationally trivial, but the Bitcoin system requires that the new hash value have a particular form-specifically, it must start with a certain number of zeros.

required number of leading zeros. So they're forced to generate many hashes with different nonces until they happen upon one that works.

