Integrated Forensic Platform
An Overview

2019-09-09

TARZAN

Introduction

Digital forensics can combine a variety of data source to
identify evidence.

Different tools need to be combined, the tools may require
specific OS, libraries, DB technology, etc.

Existing approaches to integrate forensic tools is via
Linux distribution, e.qg., Kali Linux.

We have developed number of various tools, how can be
integrated?

One of the main result of this project is an integrated
digital forensic platform.

https://resources.infosecinstitute.com/category/computerforensics/introduction/free-open-source-tools/overview-of-computer-forensics-
linux-distributions/

Title Text nes@i@ﬁt

https://resources.infosecinstitute.com/category/computerforensics/introduction/free-open-source-tools/overview-of-computer-forensics-linux-distributions/
https://resources.infosecinstitute.com/category/computerforensics/introduction/free-open-source-tools/overview-of-computer-forensics-linux-distributions/

Areas/Tools in TARZAN

Network forensics
a tool for processing of captured network communication

- Computer forensics
a tool for analysis of disk drive images

- Social network forensics
a tool for identification of various events in social
networks related to specified subject

- Tor analysis and monitoring
a tool providing Tor network operational information

- Cryptocurrency transaction analysis
a tool suitable for analysis and tracking transactions

Technology Enablers

The platform is a computing cluster providing hardware

resources for Docker Swarm

Individual tools provide API for intercommunication

Web-based user interface

NTPAC NFX LOGTIME Toreator Jane
Akka Ignite Spark Web/DB Web/DB
TARZAN Aplikace
Docker Swarm / Kubernetes
Docker Docker Docker Docker Docker
HW Node HW Node HW Node HW Node HW Node

{ REST }

nede

kubernetes

Toreator

An application for searching existence of IP addresses in Tor
network.

Toreator proxy - GraphQL proxy implementation provides
forwarding and caching for Toreator service.

Toreator web - Single-page React application.

Vstupni smeérovac
(strazce T Vystupni
smeérovac

Spojeni realizovana >
na urovni TCP/IP pFip. most)

Prostredni

~ smerovac
N\

- Anonym_izovane
spojeni

/
/

Uzivatelska ¥

proxy @

Anonymizovany
uzivatel - klient
sité Tor

Internetova
sluzba

JANE

- A collection of modules/services:

- jane-cryptoclients - a collection of 7 most popular
cryptoclients for RPC access.

+jane-cryptoalarm - a module that enables to raise an
alarm on the appearance of particular transactions.

-+ sMaSheD - a system for detection of cryptocurrency
miners by network forensic approach.

Implemented as services, deployed in containers
+ Web interface + REST API

PLASO

Plaso is a computer forensic tool for timeline generation
and analysis.

Log2Timeline extracts events from individual files
Use cases:
Basic forensics investigation of a hard drive
Interactive timeline analysis of the content
- Automated reporting based on predefined queries
Issues of the integration with TARZAN
Plaso is a monolithical Python application

Plaso provides a large set of various parser/extractors

PLASO for TARZAN

Konverze
na RDF
(ontologicky popis) REST API

H DFS Spark Halyard Web client
extractor RDF store (Timeline
(HBase) analyzer)

i

Data ze socilalnich siti

Plaso
parsers

RDF data

Network Forensics

| have several of TB of PCAP files from various campaigns, test
beds, honeypots, etc.

It would be nice if it was possible to analyse them quickly.

| want to just know what data | have - IP addresses,
applications and services, timeline, etc.

Found a security issue in one set, | can create a specification
of this issue and test if such issues is not in other datasets

100.

| want to extract only a specific content/metadata for further

analysis by some other tool, e.g., Network Miner,ngrep,
mailsnarf,smtpcap,tstat, dsniff, firesheep,nfex,driftnet).

- and many other cases...

Too big data for Wireshark...

- Wireshark/tshark + scripting is fine, but when there is a
lot of data it takes a lot of time.
Get a log of all DNS packets:

File Size Execution time (s) 100

32M 1.596

64M 2.283 o

128M 4.400 E

256M 8431 S 10

512M 14.747 g

16 28.627 -

26 57.558

4G 161.566 1

256 877.220. (~15m) oM fesM o12M 26

File Size

- Try the similar things with Scapy :)

Parallel TShark ?

Many tasks can be executed independently, e.g., filtering all
DNS traffic, extracting objects from all flows, etc.

TShark does not utilize all available resources...
~5% on Intel Xeon E5-2620 2.1Ghz

Executing many TShark instances in paraIIeI (4GB mput)

CPU tel(R) Xeon(R) C

Number of Workers Execution time (s)

2 72.564 _.,

3 54234

4 40123

> 40.860

’ 41.136 EERNR EEEEE
18 43.334 |

36 44.944

/0 45828

60 seconds

Speed up the process

+ CPU is not an issue, the problem is I/0

+ We can buy a lot of memory - doing in memory as much
as possible provides the significant performance
Improvement.

- Popular frameworks for in-memory data processing:

1 §

™

apache

onite

APACHE

Spa

Use Cases of NFAT

Network traffic capturing and analysis
Evaluation of network performance
Detection of anomalies and misuse of resources
Determination of network protocols in use

- Aggregating data from multiple sources

- Security investigations and incident response

Protection of intellectual property

Typical Workload

- Feature extraction

- Packet-level
timestamp, size, entropy, n-grams, inter packet
delay, ...

- Flow-level
usual flow information, extended information
considering some application specific data,
statistical information

- Content Analysis

- Packet-level
CoAP, MQTT messages, DNS data, ...

- Flow-level
TCP/UDP Streams

Typical Workload

- Feature extraction

- Packet-level
timestamp, size, entropy, n-grams, inter packet
delay, ...
APACHE SPARK
- Flow-level

usual flow information, extended information
considering some application specific data,
statistical information

- Content Analysis

- Packet-level
CoAP, MQTT messages, DNS data, ... APACHE IGNITE

- Flow-level
TCP/UDP Streams

Apache Spark

Worker Node

Master Node

Cache
Driver Program
Spark Cluster
Context Manager
Worker Node

Cache

Simple operation (capinfo)

Stage 0

hadoopFile

org.ndx.model.Packe
org.ndx.model.Packetl I
org.ndx.model.Statistics;

frames = sc.hadoopFile(
classOf[org.ndx.spark.pcap.PcapIng
classOf [org.apache.hadoop.io.LongWr]
classOf[org.apache.hadoop.io.0bjectWr]

packets = frames.map(x=> Packet.parsePacket(x._2.get().asInstance0Of[RawFrame]))

capinfo = packets.map(x => Statistics.fromPacket(x)).reduce(Stat

ile type: Wireshark/tcpdump/... - pcap

ile encapsulation: Ethernet

ile timestamp precision: microseconds (6)

Packet size limit: file hdr: 65535 bytes

umber of packets: 50 M

ile size: 11 GB

Data size: 10 GB

apture duration: 24789795.090000 seco

irst packet time: 2015-04-20 13:49:56.140000

ast packet time: 2016-02-01 10:53:11.230000

Data byte rate: 417 bytes/s

Data bit rate: 3337 Eitsﬁs

Average packet size: 203.39 bytes

Average packet rate: 2 packets/s

SHAL: 97efe62aaa42402d3b84292d1fc010a5090f3332
IPEMD160: e71leffc6focd47490f886df5fd7941cfc5df1b47
MD5: 54844e4f6d9fa58f30b293d64a6b4150

nes%@@ﬁt

Little bit more...(get-flows)

Stage 0 Stage 1 _
org.ndx.model.Packe

hadoopFile reduceByKey org.ndx.model.PacketMc
° org.ndx.model.Conversa

frames = sc.hadoopFile(
takdordered classOf [org.ndx.spark.pcap.Pcar
classOf [org.apache.hadoop.io.LongW
classOf [org.apache.hadoop.io.0bjec

packets = frames.map(x=> Packet.parsePacket(x._2.get().asInstanceOf [RawFrame]));
flows = packets.map(x=>(x.getFlowString(),x));
stats = flows.map(x=>
(Xx._1,Conversations.fromPacket(x._2))).reduceByKey(Conversations.merge);
printin(

)
stats.takeOrdered(10) (Ordering[Int].reverse.on(x=>
X._2.getPackets())).map(c=>Conve

printin()

Completed Stages (2)

Stageld ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1 takeOrdered at <console>:36 +details 2017/08/23 14:45:06 3s 102/102 191.5 MB

0 map at <console>:33 +details 2017/08/23 14:44:48 175 102/102 10.4 GB 191.5 MB

Feature Extraction

Apache Spark

Pcap files storage

pcaps—

Flow:Features
Database/
Cache

Flow:features
T

Interactive query

/

» Flow aggregation

> Feature extraction

Flow

<

Name Description
proto | Protocol
srcp | Source port
dstp | Destination port
packets | Number of packets in flow
size | Size of all packets in flow
paysize | Total size of payload in all packets in flow
duration | Flow duration
nopay | Number of packets without payload
avgps | Average packet size
minps | Minimal packet size
maxps | Maximal packet size
stddps | Standard deviation of packet size
avgpays | Average payload size
minpays | Minimal payload size
maxpays | Maximal payload size
stddpays | Standard deviation of payload size

Processing pipeline

256.00
Stage 0 Stage 1
hadoopFile Exchange
mapPartitions mapPartitionsinternal .
o
g 128.00
mapPartitions InMempryTableScan bryTableScan
| 64.00
ExigtingRDD WholeStageCodegen WholeStageCodegen 4 16 64
vCPU
—e—3 —e—6 9 12 —e—18 —e—36
rtMergeJoin 256
128
WholeStageCodegen
64
2
Deserialize ToObject =]
32
16
ExecutedCommand
8
1 4 16 64

file_size [GB]

Apache Ignite

Compute

task1]
Node 2
2 / |
Q Couxits Result \\'&i lte
(]—' @ / Compute
Node 1 > Cluster 7 task?2 }

Submit the list of jobs > network ‘._,-Compute 3

- 9 € Resut |
\\l &‘It e g(a:ln l;z,;s; ‘Egllect reda:)ed responses - %pule Ql&l[e

reducer
Resul\k

Ingesting data

PCAP File

Loading File
Parsing Packets

>

PcaplLoader

Streaming Data
[PacketKey]

Packet Cache

Flow Cache

Ignite Node

Packet Cache

Flow Cache

Ignite Node

Packet Cache

Flow Cache

Ignite Node

Broadcast computation

Packet Cache

Flow Cache

Ignite Node

Packet Cache

Flow Cache

Ignite Node

Packet Cache

Flow Cache

Ignite Node

Broadcast Computation

Dns Analyzer
(computation)

Ignite Client

Executing computation

Packet Cache Flow Cache Packet Cache Flow Cache Packet Cache Flow Cache
Dns Analyzer Dns Analyzer Dns Analyzer
(computation) (computation) (computation)
Dns Cache Dns Cache Dns Cache
Ignite Node Ignite Node Ignite Node

Get results

Packet Cache Flow Cache

Dns Cache |

Ignite Node
Packet Cache || Flow Cache \
3| Getresults
Dns Cache /
Ignite Client
Ignite Node

Packet Cache Flow Cache

Dns Cache V]

Ignite Node

Some numbers...

Ignite Nodes (Local) Ingesting Frames Tracking Flows Extracting DNS
1 93s /1s 39s
2 95s 34s 225s
4 97s 17s 13s
38 102s Os 6S
16 105s oS 4s
120

R

90
é 60
=
30
0 —————
1 2 4 8 16 File size ~ 4GB

- Apache Spark is suitable for a workload that can be
represented as a processing pipeline (DAG).

- It works well with HDFS.
- It scales quite well.
- Apache Ignite can do an arbitrary computation on data.
- Data collocation computations
- Sending computation not data.

- Bottleneck - data ingestion, once the data are in HDFS or
memory fabric, the computation is fast.

Spark + Ignite

Spark Application
Spark Worker Spark Worker Spark Worker
Share state and : Boost DataFrame
data among and SQL

Spark jobs Performance
No data ® In-Memory Shared RDD or DataFrame SQL on top
movement of RDDs

Ignite Node Ignite Node Ignite Node

In-place query
N /’ N - N oy
G & |

- Integrated platform is a collection of various tools for
several digital forensic domains.

- Their integration is only possible thanks to the use of
state-of-the-art technology for service virtualization.

- Several case studies demonstrate the implemented
functionality and considered usage scenarios.
TO BE SEEN THIS AFTERNOON

- The platform is open for other extensions and
customisations depending on the specific needs.

