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Integrated Forensic Platform 
An Overview



Introduction
• Digital forensics can combine a variety of data source to 

identify evidence.   
• Different tools need to be combined, the tools may require 

specific OS, libraries, DB technology, etc. 
• Existing approaches to integrate forensic tools is via 

Linux distribution, e.g., Kali Linux. 
• We have developed number of various tools, how can be 

integrated?  
• One of the main result of this project is an integrated 

digital forensic platform.
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Areas/Tools in TARZAN
• Network forensics  

a tool for processing of captured network communication 
• Computer forensics  

a tool for analysis of disk drive images 
• Social network forensics  

a tool for identification of various events in social 
networks related to specified subject 

• Tor analysis and monitoring  
a tool providing Tor network operational information  

• Cryptocurrency transaction analysis  
a tool suitable for analysis and tracking transactions



Technology Enablers
• The platform is a computing cluster providing hardware 

resources for Docker Swarm 
• Individual tools provide API for intercommunication 
• Web-based user interface
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Toreator
• An application for searching existence of IP addresses in Tor 

network. 
• Toreator proxy - GraphQL proxy implementation provides 

forwarding and caching for Toreator service. 
• Toreator web - Single-page React application.

Obrázek 3 ukazuje příklad cesty skrze síť Tor do Internetu. Přestože ve sku-
tečnosti komunikuje anonymizovaný uživatel s Internetovou službou, na úrovni
protokolů TCP/IP se komunikace odehrává ve čtyřech různých spojeních.
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Obrázek 3. Klient sítě Tor posílá data skrze několik uzlů rozmístěných různě
ve světě.

Data odesílaná uživatelskou proxy anonymizovaného uživatele určená pro
Internetovou službu jsou několikanásobně šifrovaná: (1) klíčem používaným při
komunikaci s výstupním směrovačem, (2) klíčem používaným při komunikaci
s prostředním směrovačem a (3) klíčem používaným při komunikaci se vstupním
směrovačem. Směrovače na cestě tedy nevidí obsah přenášené komunikace. Pouze
výstupní směrovač je schopen dešifrovat data určená Internetové službě. Tato
data však mohou být také šifrovaná.

Obrázek 4 zobrazuje výstup aplikace Onion Circuits běžící na počítači připo-
jenému k Toru. V levé části okna jsou zobrazeny aktuálně otevřené okruhy z to-
hoto počítače. Na obrázku je vidět, kterými okruhy jsou přenášena data aktuálně
otevřených spojení k www.fit.vutbr.cz a https://3g2upl4pq6kufc4m.onion.
V pravé části okna jsou zobrazeny detaily k aktuálně vybranému okruhu v levé
části.

Skryté služby

Jak již bylo zmíněno, Tor umožňuje vytvoření tzv. skrytých služeb – serverů,
které je možné kontaktovat bez znalosti adresy IP, která u skrytých služeb není
veřejná.

Při vytváření skryté služby vytvoří správce veřejný a soukromý klíč, který se
používá při autentizaci skryté služby vůči návštěvníkům. Zároveň si skrytá služba
vytvoří okruhy k několika uzlům označovaným jako introductory point. Okruhy
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JANE
• A collection of modules/services: 

• jane-cryptoclients - a collection of 7 most popular 
cryptoclients for RPC access. 

• jane-cryptoalarm - a module that enables to raise an 
alarm on the appearance of particular transactions. 

• sMaSheD - a system for detection of cryptocurrency 
miners by network forensic approach. 

• Implemented as services, deployed in containers 
• Web interface + REST API



PLASO
• Plaso is a computer forensic tool for timeline generation 

and analysis. 
• Log2Timeline extracts events from individual files 
• Use cases: 

• Basic forensics investigation of a hard drive 
• Interactive timeline analysis of the content 
• Automated reporting based on predefined queries 

• Issues of the integration with TARZAN 
• Plaso is a monolithical Python application 
• Plaso provides a large set of various parser/extractors



PLASO for TARZAN



Network Forensics
• I have several of TB of PCAP files from various campaigns, test 

beds, honeypots, etc. 
• It would be nice if it was possible to analyse them quickly.  

• I want to just know what data I have - IP addresses, 
applications and services, timeline, etc. 

• Found a security issue in one set, I can create a specification 
of this issue and test if such issues is not in other datasets 
too. 

• I want to extract only a specific content/metadata for further 
analysis by some other tool, e.g., Network Miner,ngrep, 
mailsnarf,smtpcap,tstat, dsniff, firesheep,nfex,driftnet).  

• and many other cases…



Too big data for Wireshark…
• Wireshark/tshark + scripting is fine, but when there is a 

lot of data it takes a lot of time.  
Get a log of all DNS packets:

• Try the similar things with Scapy :)

File Size Execution time (s)

32M 1.596

64M 2.283

128M 4.400

256M 8.431

512M 14.747

1G 28.627

2G  57.558

4G  161.566

25G 877.220. (~15m)
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Parallel TShark ?
• Many tasks can be executed independently, e.g., filtering all 

DNS traffic, extracting objects from all flows, etc. 
• TShark does not utilize all available resources… 

~5% on Intel Xeon E5-2620 2.1Ghz 
• Executing many TShark instances in parallel (4GB input):

Number of Workers Execution time (s)

2 72.564

3 54.234

4 40.123

5  40.860

9  41.136

18  43.334

36 44.244

70  45.828



Speed up the process
• CPU is not an issue, the problem is I/O 
• We can buy a lot of memory - doing in memory as much 

as possible provides the significant performance 
improvement. 

• Popular frameworks for in-memory data processing:



Use Cases of NFAT
• Network traffic capturing and analysis 
• Evaluation of network performance 
• Detection of anomalies and misuse of resources 
• Determination of network protocols in use 
• Aggregating data from multiple sources 
• Security investigations and incident response 
• Protection of intellectual property



Typical Workload
• Feature extraction 

• Packet-level  
timestamp, size, entropy, n-grams, inter packet 
delay, …  

• Flow-level 
usual flow information, extended information 
considering some application specific data, 
statistical information 

• Content Analysis 
• Packet-level  

CoAP, MQTT messages, DNS data, … 
• Flow-level 

TCP/UDP Streams
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Apache Spark



Simple operation (capinfo)



Little bit more…(get-flows)



Feature Extraction

Big Data Network Flow Processing Using Apache Spark Submi�ed to ECBS’19, Sep 2-3, 2019, Bucharest, RO

Figure 1: First (current) part of the system.

In this paper, we primarily focus on the �rst part demonstrating
the capabilities of Apache Spark in network tra�c processing. How-
ever, our goal is to implement the advanced tra�c analysis system,
which will be mainly realized by the second part. The interface
between these two parts is represented by the distributed database
that contains the �ows with extracted statistical features. In the
analysis, machine learning algorithms for �ow classi�cation and
clustering will be employed. At �rst, we will train a classi�cation
model that will be able to distinguish malicious �ows from nor-
mal �ows. The malicious �ows will be then clustered into di�erent
groups based on the application protocol or by the type of attack.

To extend the functionality of the system, we will use Apache Ig-
nite [4]. The Apache Ignite provides multiple types of functionality.
It is a scalable and fault-tolerant solution that can grow horizon-
tally by adding new nodes. The Ignite can persist cache entries in
RDBMS, and it also supports NoSQL like Cassandra or MongoDB.

Figure 2: Second (future) part of the system.

The framework also provides Cache-as-a-Service for databases. One
of the other features is that it can serve as an accelerator for Hadoop,
and it also can share states in-memory across Spark jobs that is
by default not possible in Spark. Moreover, Apache Ignite can do
distributed computing and processing of never-ending streams of
data. Machine learning library is included in this framework and
provides a variety of con�gurable machine learning algorithms [18].
The Apache Ignite engine will serve as another framework in our
system.

3.1 Cluster Setup
The design of the cluster is based on the Docker [5] container archi-
tecture. Docker containers were chosen according to the simplicity
of deployment and environment isolation. The containers consume
minimal staging and system sources. The docker containers also en-
able us to switch between di�erent versions of the used frameworks.
The platform utilized in experiments was Supermicro SuperTwin2
6026TT-TF server equipped with eight Intel (R) Xeon E5520 @ 2.26
GHz. The cluster consists of 4 nodes. Three nodes equipped with
the 48 GB RAM and 16 CPU cores. One node equipped with the 23
GB RAM and 16 CPU cores. All nodes have installed 1 TB SSD disks
that serve as a data storage for HDFS and Cassandra. We decided
to use Docker Swarm for cluster management. The Docker Swarm
is proprietary cluster manager for Docker. It is easy to set up and
merely tunable solution.

Figure 3: Docker cluster setup.

The spread of the images follows Figure 3. Each logical part of the
di�erent framework has its container. The Spark Worker container
shares the same nodes with HDFS data node and a Cassandra node,
to provide a closer connection between the processing unit and the
data. This setup is set for three corresponding nodes. The last node
is equipped with HDFS Namenode, Spark Master, Spark Submit
container and Trae�k container. The Spark Submit has its container
from which the application is started. Spark application can be
run in two modes, the client mode and cluster mode. In the client
mode, the Spark driver resides in the container from which the
application is started. The cluster mode runs the driver in one of the
worker nodes. Choice of the modes should primarily depend on the
distance of the spark submit from the cluster as the communication
between the driver and the executors should be a bottleneck. We are
running spark application in the client mode as the spark submit
container resides on the same cluster. The Trae�k [6] is a reverse
proxy and load-balancer for the services running on the cluster. For
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the �les is bigger than 128 MB which is the default block size used
in HDFS.

Time [s] Description
25.392 Read from HDFS + parse packet

+ create pojo object + transform to DF.
19.112 Read from HDFS + parse packet

+ create pojo object.
14.921 Read from HDFS + parse packet.
3.242 Read from HDFS.

Table 1: Stage 0 analysis.

We also tested �les of 100 MB size with a di�erent number of
frames. The results for stage 0 (covers reading �les from HDFS
and parsing packets) were worse than with the �les divided by

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 5: Measurement of multiple feature extraction from
�ows of both stage 0 and stage 1 with di�erent core utiliza-
tion.

the speci�ed number of frames. To investigate this behavior, we
analyzed stage 0 in more detail.

The possible explanation of this behavior is that the bottleneck
in stage 0 (�le processing) is packet parsing according to Table 1.
The results were measured using the count action on the di�erent
parts of the stage; the number of executors was 6 with 36 number
of cores. The tested data were replicated to all data nodes. The
more packets are in the �le, the longer time the parsing consumes.
The parsing should be simpli�ed. The spark-ndx parser parses
frames up to the application layer. Parsing everything up to the
application layer would not be necessary for us in future processing.
However, as we are in the experimentation phase, we do not know
precisely what features will be useful. For now, we can extract more
information from packets if needed. However, this will be the place
for improvement.

The signi�cant impact on the computation time of the task has
the setup of executors, cores and their numbers. The spread of the
docker containers for each node is provided in Figure 3. We use
those three fully equipped nodes for Spark workers, Cassandra and
HDFS data nodes. The third node is dedicated for Spark master,
HDFS name node, Trae�k reverse proxy and Spark submit container.
All jobs were submitted in client mode. The Spark submit container
served as the driver for Spark.

Figure 5a shows the impact of the cores, its division between
executioners on the processing time of described stage 0. The mea-
surement starts with executioners that have only one core. The
graph points to the fact that with more cores we get better results
for reading and processing the data from HDFS. We can observe the
di�erent processing speed on the same amount of data for the di�er-
ent setup of executioners and cores assigned to them. As the stage
0 covers reading and parsing the frames from HDFS, we can see
that with all cores involved in Spark job there is still performance
improvement.

Name Description
proto Protocol
srcp Source port
dstp Destination port

packets Number of packets in �ow
size Size of all packets in �ow

paysize Total size of payload in all packets in �ow
duration Flow duration
nopay Number of packets without payload
avgps Average packet size
minps Minimal packet size
maxps Maximal packet size
stddps Standard deviation of packet size

avgpays Average payload size
minpays Minimal payload size
maxpays Maximal payload size
stddpays Standard deviation of payload size
Table 2: Flow feature names and descriptions.

Figure 5b depicts the impact of the cores and its division between
executioners on the processing time of the described stage 1. The



Processing pipeline
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experiments where we do the only query among extracted features,
the Cassandra containers are not deployed.

3.2 Processing Pipeline
The task that we are dealing with this paper is to process network
�ows and get statistical features for further processing by the sys-
tem. The data (captured network tra�c) are stored in a distributed
�le system HDFS/IGFS. As the �rst step, we have to load �les, ex-
tract raw frames (byte objects). The raw frames are then parsed and
transformed into packets. The packets contain the parsed network
and transport layer headers data together with other additional
information. We use spark-ndx, the part of the processing platform
presented in [14]. The spark-ndx module also provides a library
functions for reading pcap �les from the HDFS. For packet parsing,
there are generated classes using Google Protocol Bu�ers. The only
relevant features are extracted from the parsed packets into POJO
class. Not relevant frames are �ltered and deleted from the data set.
The input data may contain frames that do not carry IP data. We
are not interested in those.

The object containing packet information is aggregated into
bi-directional �ows. The statistical features are computed on the
aggregated �ows. The statistical features are then uploaded into
the Cassandra database.

Figure 4: Directed Acyclic Graph generated by Spark.

The task was divided by Spark into two separated processing
parts as it is depicted in Figure 4. The �rst part loads and works with
data in a practical fashion way as with RDD. The second part work
with data in the relational way hence the more suitable structure for
processing is Data Frame. The second part is primarily transformed
using Spark SQL.

4 EXPERIMENTS AND EVALUATION
This section describes experiments, measurement results and de-
tailed analysis of the system performance on speci�ed tasks. The
tasks are of di�erent level of complexity that begins from the most
basic to more complex. While solving problems and running exper-
iments we found some bottlenecks and places where the optimiza-
tion should be useful. The Spark generates directed oriented graph
with a sequence of operations divided into stages. The �nal DAG
generated for our task is described in the previous section.

Main features that can utilize the Spark job and that we were
utilizing are the usage of di�erent programming languages, trans-
formations on the data, cache, the number of partitions, a spread
of workload between the di�erent setup of executioners and cores.

The programming language we are using is Java. The di�er-
ent transformations such as map, flatmap, mapPartitions can
lead to slower computation. The best results were obtained with
mapPartitions that work with the data in a partition directly. Dur-
ing this step, the data are also �ltered, so nomore �ltering afterward
is needed.

Another feature is the cache. We are using SQL query among the
packet attributes stored in Data Frame. There is a join in the SQL
query that joins two di�erent views on the same data inData Frames.
Even it is the same set of data on which the views are computed, the
Spark generates two same stages as stage 0 for reading and parsing
the pcap �les from HDFS. Another key is the distribution of packet
objects between the partitions. To prevent the data to be distributed
on demand during the computation, we prevent that behavior by
using a SQL query to distribute the packet rows by flowKey. The
flowKey is an identi�er that uniquely identi�es all packets within
the same bi-directional �ow. The necessary data are redistributed.
At this moment, the data can be cached. We used a native Spark
cache that should keep the cached data in-memory. Alternatively, it
should be cached on disk, HDFS or other third party cache solution.
Among the cached data, we can do Spark queries e�ectively.

The partitions are directly related to the parallelism in Spark.
Hence, their utilization can in�uence the computation e�ciency of
the job in di�erent environments. The two parameters spark.de-
fault.parallelism together with spark.sql.shuffle.parti-
tions can tune default parallelism in spark. The �rst one applies
to RDD default partitioning. The second to inter Data Frame par-
titioning when using SQL, which is our case. The recommended
values are 1-3 times the total number of cores, while the default
Spark value is 200. For our query testing, we used the default value
of 200.

The testing set of pcap �les counts 231 �les with 125000 frames
each. The pcap �les contain 27369774 packets collected from the
honey-pot. The size of those �les is 10GB. Many of the �ows con-
tain packets with no payload, which corresponds to some types of
attacks. Hence the size variation of the �les is signi�cant. None of
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(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 8: Processing performance of feature extraction with
storing data into Cassandra, both stage 0 and stage 1 with
di�erent core utilization.

usage of more executioners decreases performance. It is caused by
Cassandra database residing on the same nodes and cores.

All of the previous measurements provided were tested on 10GB
�le sizes. We want to test and provide a measurement that shows
how the system scales with the processing of di�erent data amount.
We have chosen the same dataset for this test. The measurements
start on 2GB of data and increases every time by 2GB up to 50GB.
The dataset was divided into �les that contained exactly 125, 000
frames each. The size of every �le was less than 128MB which is
the default block size used in HDFS. The same query as in the �rst
measurement was used. As the setup for this test, we chosen 36
cores divided into six executioners (6 cores each). This setup was
chosen because of the previous measurement with storing data into
Cassandra database. We expect this setup for further usage together
with this persistent storage.

The results are depicted in the set of Figures 9. We can consider
that the system scales linearly with an increasing amount of data.

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 9: Processing performance of di�erent �le sizes, both
stage 0 and stage 1 with di�erent core utilization.

Nevertheless, we are limited by the maximum amount of memory
used on the nodes. The Spark carries everything in-memory, to be
able to process the more massive amount of data the system has to
be extended with more RAM.

The Table 3 shows concrete values from the measurements. We
have chosen two setups to compare, the �rst one with 45 cores
and nine executioners is the fastest in summary. The second one
is the fastest in respect to stage 1 (data querying) and most stable
regarding the deviation of the measurements. Each measurement
was run �ve times, and the result is the average of the measured
values.

From the results, we can observe that using the setup with more
cores we can read and parse the data in higher speed, but the query-
ing is slower than with fewer cores in a di�erent setup. Even in
more complicated tasks like more queries among the data we can
see signi�cant speed improvement with fewer cores setup than
with more cores. The processing speed of both stages have closer
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Ingesting data

PcapLoaderPCAP File

Loading File 
Parsing Packets Streaming Data  

[PacketKey]

Ignite Node

Packet Cache Flow Cache

Ignite Node

Packet Cache Flow Cache

Ignite Node

Packet Cache Flow Cache



Broadcast computation
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Executing computation
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Some numbers…

Ignite Nodes (Local) Ingesting Frames Tracking Flows Extracting DNS
1 93s 71s 39s
2 95s 34s 22s
4 97s 17s 13s
8 102s 9s 6s
16 105s 5s 4s
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Observations
• Apache Spark is suitable for a workload that can be 

represented as a processing pipeline (DAG). 
• It works well with HDFS. 
• It scales quite well. 

• Apache Ignite can do an arbitrary computation on data. 
• Data collocation computations 
• Sending computation not data. 

• Bottleneck - data ingestion, once the data are in HDFS or 
memory fabric, the computation is fast. 



Spark + Ignite



Summary
• Integrated platform is a collection of various tools for 

several digital forensic domains. 
• Their integration is only possible thanks to the use of 

state-of-the-art technology for service virtualization. 
• Several case studies demonstrate the implemented 

functionality and considered usage scenarios. 
TO BE SEEN THIS AFTERNOON 

• The platform is open for other extensions and 
customisations depending on the specific needs.


