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Introduction

Digital forensics can combine a variety of data source to
identify evidence.

Different tools need to be combined, the tools may require
specific OS, libraries, DB technology, etc.

Existing approaches to integrate forensic tools is via
Linux distribution, e.qg., Kali Linux.

We have developed number of various tools, how can be
integrated?

One of the main result of this project is an integrated
digital forensic platform.

https://resources.infosecinstitute.com/category/computerforensics/introduction/free-open-source-tools/overview-of-computer-forensics-
linux-distributions/
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Areas/Tools in TARZAN

Network forensics
a tool for processing of captured network communication

- Computer forensics
a tool for analysis of disk drive images

- Social network forensics
a tool for identification of various events in social
networks related to specified subject

- Tor analysis and monitoring
a tool providing Tor network operational information

- Cryptocurrency transaction analysis
a tool suitable for analysis and tracking transactions



Technology Enablers

The platform is a computing cluster providing hardware

resources for Docker Swarm

Individual tools provide API for intercommunication

Web-based user interface
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Toreator

An application for searching existence of IP addresses in Tor
network.

Toreator proxy - GraphQL proxy implementation provides
forwarding and caching for Toreator service.

Toreator web - Single-page React application.
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JANE

- A collection of modules/services:

- jane-cryptoclients - a collection of 7 most popular
cryptoclients for RPC access.

+jane-cryptoalarm - a module that enables to raise an
alarm on the appearance of particular transactions.

-+ sMaSheD - a system for detection of cryptocurrency
miners by network forensic approach.

Implemented as services, deployed in containers
+ Web interface + REST API



PLASO

Plaso is a computer forensic tool for timeline generation
and analysis.

Log2Timeline extracts events from individual files
Use cases:
Basic forensics investigation of a hard drive
Interactive timeline analysis of the content
- Automated reporting based on predefined queries
Issues of the integration with TARZAN
Plaso is a monolithical Python application

Plaso provides a large set of various parser/extractors



PLASO for TARZAN

Konverze
na RDF
(ontologicky popis) REST API

H DFS Spark Halyard Web client
extractor RDF store (Timeline
(HBase) analyzer)

i

Data ze socilalnich siti

Plaso
parsers

RDF data




Network Forensics

| have several of TB of PCAP files from various campaigns, test
beds, honeypots, etc.

It would be nice if it was possible to analyse them quickly.

| want to just know what data | have - IP addresses,
applications and services, timeline, etc.

Found a security issue in one set, | can create a specification
of this issue and test if such issues is not in other datasets

100.

| want to extract only a specific content/metadata for further

analysis by some other tool, e.g., Network Miner,ngrep,
mailsnarf,smtpcap,tstat, dsniff, firesheep,nfex,driftnet).

- and many other cases...



Too big data for Wireshark...

- Wireshark/tshark + scripting is fine, but when there is a
lot of data it takes a lot of time.
Get a log of all DNS packets:
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- Try the similar things with Scapy :)



Parallel TShark ?

Many tasks can be executed independently, e.g., filtering all
DNS traffic, extracting objects from all flows, etc.

TShark does not utilize all available resources...
~5% on Intel Xeon E5-2620 2.1Ghz

Executing many TShark instances in paraIIeI (4GB mput)
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Speed up the process

+ CPU is not an issue, the problem is I/0

+ We can buy a lot of memory - doing in memory as much
as possible provides the significant performance
Improvement.

- Popular frameworks for in-memory data processing:
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Use Cases of NFAT

Network traffic capturing and analysis
Evaluation of network performance
Detection of anomalies and misuse of resources
Determination of network protocols in use

- Aggregating data from multiple sources

- Security investigations and incident response

Protection of intellectual property




Typical Workload

- Feature extraction

- Packet-level
timestamp, size, entropy, n-grams, inter packet
delay, ...

- Flow-level
usual flow information, extended information
considering some application specific data,
statistical information

- Content Analysis

- Packet-level
CoAP, MQTT messages, DNS data, ...

- Flow-level
TCP/UDP Streams



Typical Workload

- Feature extraction

- Packet-level
timestamp, size, entropy, n-grams, inter packet
delay, ...
APACHE SPARK
- Flow-level

usual flow information, extended information
considering some application specific data,
statistical information

- Content Analysis

- Packet-level
CoAP, MQTT messages, DNS data, ... APACHE IGNITE

- Flow-level
TCP/UDP Streams



Apache Spark
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Simple operation (capinfo)

Stage 0

hadoopFile

org.ndx.model.Packe
org.ndx.model.Packetl I
org.ndx.model.Statistics;

frames = sc.hadoopFile(
classOf[org.ndx.spark.pcap.PcapIng
classOf [org.apache.hadoop.io.LongWr]
classOf[org.apache.hadoop.io.0bjectWr]

packets = frames.map(x=> Packet.parsePacket(x._2.get().asInstance0Of[RawFrame]))

capinfo = packets.map(x => Statistics.fromPacket(x)).reduce(Stat

ile type: Wireshark/tcpdump/... - pcap

ile encapsulation: Ethernet

ile timestamp precision: microseconds (6)

Packet size limit: file hdr: 65535 bytes

umber of packets: 50 M

ile size: 11 GB

Data size: 10 GB

apture duration: 24789795.090000 seco

irst packet time: 2015-04-20 13:49:56.140000

ast packet time: 2016-02-01 10:53:11.230000

Data byte rate: 417 bytes/s

Data bit rate: 3337 Eitsﬁs

Average packet size: 203.39 bytes

Average packet rate: 2 packets/s

SHAL: 97efe62aaa42402d3b84292d1fc010a5090f3332
IPEMD160: e71leffc6focd47490f886df5fd7941cfc5df1b47
MD5: 54844e4f6d9fa58f30b293d64a6b4150
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Little bit more...(get-flows)

Stage 0 Stage 1 _
org.ndx.model.Packe

hadoopFile reduceByKey org.ndx.model.PacketMc
° org.ndx.model.Conversa

frames = sc.hadoopFile(
takdordered classOf [org.ndx.spark.pcap.Pcar
classOf [org.apache.hadoop.io.LongW
classOf [org.apache.hadoop.io.0bjec

packets = frames.map(x=> Packet.parsePacket(x._2.get().asInstanceOf [RawFrame]));
flows = packets.map(x=>(x.getFlowString(),x));
stats = flows.map(x=>
(Xx._1,Conversations.fromPacket(x._2))).reduceByKey(Conversations.merge);
printin(

)
stats.takeOrdered(10) (Ordering[Int].reverse.on(x=>
X._2.getPackets())).map(c=>Conve

printin( )

Completed Stages (2)

Stageld ~ Description Submitted Duration  Tasks: Succeeded/Total Input Output  Shuffle Read Shuffle Write
1 takeOrdered at <console>:36 +details 2017/08/23 14:45:06 3s 102/102 191.5 MB

0 map at <console>:33 +details 2017/08/23 14:44:48 175 102/102 10.4 GB 191.5 MB




Feature Extraction

Apache Spark

Pcap files storage

pcaps—

Flow:Features
Database/
Cache
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> Feature extraction

Flow

<

Name Description
proto | Protocol
srcp | Source port
dstp | Destination port
packets | Number of packets in flow
size | Size of all packets in flow
paysize | Total size of payload in all packets in flow
duration | Flow duration
nopay | Number of packets without payload
avgps | Average packet size
minps | Minimal packet size
maxps | Maximal packet size
stddps | Standard deviation of packet size
avgpays | Average payload size
minpays | Minimal payload size
maxpays | Maximal payload size
stddpays | Standard deviation of payload size




Processing pipeline

256.00
Stage 0 Stage 1
hadoopFile Exchange
mapPartitions mapPartitionsinternal .
o
g 128.00
mapPartitions InMempryTableScan bryTableScan
| 64.00
ExigtingRDD WholeStageCodegen WholeStageCodegen 4 16 64
vCPU
—e—3 —e—6 9 12 —e—18 —e—36
rtMergeJoin 256
128
WholeStageCodegen
64
2
Deserialize ToObject =]
32
16
ExecutedCommand
8
1 4 16 64

file_size [GB]




Apache Ignite
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Ingesting data

PCAP File

Loading File
Parsing Packets

>

PcaplLoader

Streaming Data
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Broadcast computation
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Executing computation
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Dns Analyzer Dns Analyzer Dns Analyzer
(computation) (computation) (computation)
Dns Cache Dns Cache Dns Cache
Ignite Node Ignite Node Ignite Node




Get results
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Some numbers...
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- Apache Spark is suitable for a workload that can be
represented as a processing pipeline (DAG).

- It works well with HDFS.
- It scales quite well.
- Apache Ignite can do an arbitrary computation on data.
- Data collocation computations
- Sending computation not data.

- Bottleneck - data ingestion, once the data are in HDFS or
memory fabric, the computation is fast.



Spark + Ignite
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- Integrated platform is a collection of various tools for
several digital forensic domains.

- Their integration is only possible thanks to the use of
state-of-the-art technology for service virtualization.

- Several case studies demonstrate the implemented
functionality and considered usage scenarios.
TO BE SEEN THIS AFTERNOON

- The platform is open for other extensions and
customisations depending on the specific needs.



