
nes fit

Blake Anderson, Andrew Chi, Scott Dunlop, and David McGrew. 2019. Limitless HTTP in an
HTTPS World: Inferring the Semantics of the HTTPS Protocol without Decryption.
In Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy (CODASPY '19). ACM, New York, NY, USA, 267-278. DOI: https://doi.org/

10.1145/3292006.3300025

Analysis of Encrypted
Communication

nes fit

Outline
• The Problem
• TLS Evolution
• Inferring HTTPS semantics
• Other possibilities?

TARZAN

nes fit

Motivation
• Security has become taken seriously these days. Most of

the communication on the Internet is protected by TLS.
• This reduces the possibility to apply the usual network

forensics approach.
• Is TLS Interception technique the only possibility we

have?
• Encrypted communication often uses TLS protocol.

Currently, most used is TLS 1.2, but some time we also
have version 1.3, which improved over the previous
version significantly.

TARZAN

nes fit

Current situation

TARZAN

• HTTPS protects communication with web servers using
encryption technology—SSL or TLS—to secure these
connections.

• One of the Google’s Transparency reports provides
information about the use of encryption in the Internet:
• Web traffic ~ 96% sites support HTTPS 

https://transparencyreport.google.com/https/overview
• Email encryption  

https://transparencyreport.google.com/safer-email/
overview

WINDOWS

ANDROID

TLS

nes fit

Overview of TLS
• TLS stands for Transport Layer Security and is the

successor to SSL (Secure Sockets Layer).
• TLS provides secure communication between web

browsers and servers. The connection itself is secure
because symmetric cryptography is used to encrypt the
data transmitted.

• The keys are uniquely generated for each connection and
are based on a shared secret negotiated at the beginning
of the session, also known as a TLS handshake.

• Many IP-based protocols, such as HTTPS, SMTP, POP3,
FTP support TLS to encrypt data.

TARZAN

nes fit

TLS 1.3 Improvements
• All cipher suites that do not provide forward secrecy have

been eliminated from TLS 1.3.
• TLS 1.3 features a new version downgrade protection to

guard against vulnerabilities like POODLE.
• In TLS 1.3, the certificate is encrypted.
• Intercepting TLS 1.3 is more difficult than in TLS 1.2:

• Passive interception - it is necessary to know the session
key (server key is not enough because perfect forward
secrecy and deprecation of RSA)

• Active interception - certificate issues, downgrade
detection

TARZAN

nes fit

TLS Interception

TARZAN

https://www.symantec.com/content/dam/symantec/docs/other-resources/responsibly-intercepting-tls-and-the-impact-of-tls-1.3-en.pdf

05TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

TLS 1.3 Intercept Protocol
Flow
An intercepted TLS 1.3 session (technique 2 used in Figure 2) would
follow the protocol flow depicted in Figure 4.

TLS 1.3 adds a complication: the CH must include the (EC)DHE
public value in the KeyShare extension. If the server does not
support or does not prefer the algorithm pre-selected by the client,
then it will trigger a HelloRetryRequest (HRR). For the TIA to use
the same (EC)DHE attributes on both TLS sessions (according to
the limiting-modifications principle), it must also send an HRR to
the client, as shown in Figure 5, even if the TIA does support the
algorithm selected by the client.

TLS 1.3 Passive Decrypt
TLS 1.3 deprecates the use of RSA key exchange in favor of (EC)
DHE, which implies that, for practical purposes, a TIA must be inline
to participate in the TLS handshake. One alternative would be to
share per-session secret information with one of the TLS endpoints.
This sharing would only be practical and useful if the TIA has the
cooperation of all the possible endpoints under the legal control
of the customer and enterprise – not to mention the infrastructure
and security measures needed to safely transfer the information in
a mostly non-homogeneous environment. Another alternative that
required installing a shared static DH private key was presented to
the IETF TLS working group recently10. It sparked many discussions
and prompted the creation of a document listing the perils of TLS
intercept11, with a bias towards preventing TLS intercept. The
argument from enterprise operational teams is that they require
a mechanism to aid in troubleshooting, compliance checking, and
performance management. More proposals and open debate are
required.

TLS 1.3 Downgrade
Detection
An attacker would downgrade TLS to a protocol version lower
than what is supported by both endpoints to exploit some known
vulnerability in the lower version. A TLS 1.3 client would advertise
support for TLS 1.3 in the CH and then wait for the SH from
the server to indicate which protocol version should be used.
The dilemma for the TLS 1.3 client is that it must avoid being
tricked into using a lower protocol version. TLS 1.3 attempts to
mitigate the protocol downgrade attack vector through a new TLS
version downgrade detection mechanism (TLS 1.2 uses the TLS_
FALLBACK_SCSV mechanism12). A TLS 1.3 server that negotiates
TLS 1.2 encodes the word DOWNGRD followed by 0116 in the last
8 bytes of the SH random field – this is called the downgrade
marker. A TLS 1.3 client that receives the marker should abort the
handshake with an illegal_parameter alert.

A TIA should implement the TLS 1.3 downgrade detection
mechanism as well as logic to prevent false aborts, as outlined in
Figure 6 through Figure 10. In Figure 6 the TIA downgrades TLS 1.3
to TLS 1.2 for some unspecified reason, e.g., the TIA does not yet
have support for TLS 1.3. The TLS 1.3 server adds the downgrade
marker, but the TIA does not propagate the marker to the TLS 1.3
client. The TIA acts as a TLS 1.2 server on the client side and as
a TLS 1.2 client on the server side, which explains why it does not
alert (on the server side) or propagate the marker (on the client
side).

C [1.3]

CH [1.3]

TLS session #1 TIA S [1.3]
TLS session #2

SH [1.3],{EE,SC,CVer,FIN}

{FIN}

CH [1.3]

{FIN}

Figure 4 - TLS 1.3 Intercept

SH [1.3],{EE,SC,CVer,FIN}

[HTTP]
[HTTP]

C [1.3]

CH [1.3]

TLS session #1 TIA S [1.3]
TLS session #2

CH [1.3]

{FIN}

CH [1.3]

CH [1.3]

{FIN}

Figure 5 - TLS 1.3 Intercept Requiring HelloRetryRequest

SH [1.3],{EE,SC,CVer,FIN}

HRR
SH [1.3],{EE,SC,CVer,FIN}

HRR

[HTTP]
[HTTP]

02TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

devices). The order of each cipher-suite is critical, and the TIA
should limit modifications to the list. Reordering the list is not good
practice, but acceptable modifications include removing weak,
deprecated, and unsupported cipher-suites. Unfortunately, many
TIAs use cipher-suite lists that are independent of the original CH
cipher-suite list, usually with only a short list of supported cipher-
suites. It is imperative to add support for as many modern cipher-
suites as possible to prevent situations like downgrading a client
with GCM/CCM cipher mode support to CBC mode3.

The same argument about limiting modifications to the CH can
be made for other TLS attributes, e.g., TLS version, key exchange
algorithm, ECDHE curve, signature algorithm, and TLS extensions.
Certain known TLS vulnerabilities can only be mitigated by later
TLS versions and specific TLS cipher modes and TLS extensions – a
good example is the padded oracle attack called Lucky134, which
can be mitigated with GCM/CCM cipher modes or support for the
encrypt-then-mac TLS extension5. It is the responsibility of the
TIA to support all the latest security-enhancing features in TLS. In
general, modern non-malicious TLS client applications advertise
TLS attributes that are beneficial to security, including the order in
which TLS attributes are presented to the server. The TIA should
trust the client to some degree, but in practice, this should balance
with detection and prevention of malicious TLS sessions.

As further background, the techniques used by most TIAs could be
reduced, on a high level, to the protocol flow in either Figure 1 or
Figure 2. Gray text in braces, e.g., {FIN}, is an indication that those
specific messages are encrypted. Note that variations in timing
would not change the high-level classification.

Technique 1 (Figure 1) defers the upstream TLS session until
the first application level payload is processed, but it prevents
the server from influencing the TLS attribute negotiation on TLS
session #1.

The approach taken with technique 2 (Figure 2) is to create the
upstream TLS session #2 as soon as the TLS session #1 CH is
received, which allows the TIA to modify the upstream CH according
to the limiting-modifications principle. The SH on TLS session #1
also follows the SH on TLS session #2, which allows the server
endpoint some level of control over the attributes of both TLS
sessions.

Third, the emulated X.509 certificate sent to the client should
retain as much as possible of the original server X.509 certificate,
including attributes like key type, key size, and subject. It is
especially important to retain the validity status of the original
X.509 certificate for client applications to enforce endpoint policies
and properly present TLS session errors to users (see Principle #4
for more detail). The emulated X.509 certificate should retain the
original not-before and not-after dates, and self-signed certificates
should remain self-signed. Special care must be taken when adding
X.509 extensions to the emulated X.509 certificate because some
X.509 extensions are not appropriate for emulated certificates,
specifically those extensions that are added by a public CA as part
of extended validation (EV). You should retain the values of certain
X.509 extensions without modification, e.g., SubjectAltNames,
BasicConstraints, KeyUsage, and ExtKeyUsage.

Principle #2: Actively track, fix, and
protect against known vulnerabilities
Malicious players rapidly exploit vulnerabilities in applications and
protocols on an almost daily basis. TIA vendors and the developers,
in particular, have a responsibility to actively track vulnerabilities
in their systems and respond in a timely manner. Issues in TLS
stack implementations, or the TLS protocol itself, usually have
far-reaching implications because other applications depend on
the confidentiality, authentication, and data integrity properties
of TLS. The Heartbleed6 vulnerability emphasizes the point about
responding promptly, but active tracking was not necessary in that
case due to the widespread news coverage. TIA developers should

C [1.2]

CH [1.2]

TLS session #1 TIA S [1.2]
TLS session #2

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}
CH [1.2]

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}

Build X.509 from SNI, or used
cached server information

Figure 1 - TLS Intercept Technique 1

C [1.2]

CH [1.2]

TLS session #1 TIA S [1.2]
TLS session #2

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

{HTTP}

CH [1.2]

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}

Figure 2 - TLS Intercept Technique 2

CCS,{FIN}

SH [1.2],SC,SKE,SHD

TLS 1.2 TLS 1.3

https://www.symantec.com/content/dam/symantec/docs/other-resources/responsibly-intercepting-tls-and-the-impact-of-tls-1.3-en.pdf

nes fit

Certificate Validation (PKI)

TARZAN

https://www.ssl.com/article/browsers-and-certificate-validation/

• Certificates are digital documents that bind a public key to an individual subject.
• The binding is asserted by having a trusted Certification Authority (CA) verify the identity of prospective

certificate owners.
• This trust relationship means that web user security is not absolute; rather, it requires users to trust browsers

and CAs to protect their security.

• The security of any CA-based system is based on many links and they’re not all cryptographic. People are
involved.

• What if people are less involved, e.g., Let’s Encrypt?

https://www.schneier.com/academic/paperfiles/paper-pki.pdf

How many certificates do you have installed in your OS?

I have 162 “system” CA certificates.

https://www.ssl.com/article/browsers-and-certificate-validation/
https://www.schneier.com/academic/paperfiles/paper-pki.pdf

https://securityboulevard.com/2019/01/lets-encrypt-are-enabling-the-bad-guys-and-why-they-should/

https://textslashplain.com/2017/01/16/certified-malice/

By December 8, 2016, LetsEncrypt had issued 409 certificates containing
“Paypal” in the hostname

https://transparencyreport.google.com/https/certificates

Current counter measures  
In browsers, we have a well-established concept of bad reputation (your
site or download appears on a block list)

https://transparencyreport.google.com/https/certificates/bLEAlT34F5LrzjsqdVJPr3ewyF0coHU5shcIEyHK330%3D

https://transparencyreport.google.com/safe-browsing/overview

https://securityboulevard.com/2019/01/lets-encrypt-are-enabling-the-bad-guys-and-why-they-should/
https://textslashplain.com/2017/01/16/certified-malice/
https://letsencrypt.org/
https://transparencyreport.google.com/https/certificates
https://transparencyreport.google.com/https/certificates/bLEAlT34F5LrzjsqdVJPr3ewyF0coHU5shcIEyHK330%3D
https://transparencyreport.google.com/safe-browsing/overview

https://labs.nettitude.com/tutorials/tls-certificate-pinning-101/

https://labs.nettitude.com/tutorials/tls-certificate-pinning-101/

nes fit

TLS Downgrade Protection
• The ClientHello message includes a list of supported

protocol versions.
• TLS 1.3 changes the way in which version negotiation is

performed as a protection against downgrade attacks.

TARZAN

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2019/february/downgrade-attack-on-tls-1.3-and-vulnerabilities-in-major-tls-libraries/

client servermitm

client hello (1.3) client hello* (1.2)

server hello (1.2)

ServerHello.random

RANDOM value + 44 4F 57 4E 47 52 44 01

nes fit

Summary
• TLS 1.3 removes some problematic cipher suites
• TLS 1.3 does not use RSA thus it is not enough to obtain

server private key to decrypt any communication.
• Passive MITM limited - need to obtain session key.
• Active MITM - similar as in TLS 1.2

• TLS 1.3 hides more information useful for identification of
the connection (certificate)

• Certificate pinning as a method to avoid active MITM.
• Not relying on PKI, certificates hardwired in

applications, not suitable for every application.

TARZAN

Inferring HTTPS
Semantics

