Precise IPv4/IPv6 Packet Generator Based on NetCOPE Platform

Jiří Matoušek, Pavol Korček

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 00 Brno, CZ

Outline

Motivation

Related Work

COMBOv2 Cards and NetCOPE Platform

Generator Architecture

Conclusion

Motivation

- testing of network devices at speed of 10 Gbit/s
- existing but expensive special hardware network testers
- existing the NetCOPE platform for building hardware accelerated network applications

Software based solutions

- pros
 - availability of required sotware and hardware
 - well-known software tools (e.g. tcpdump and tcpreplay)
- cons
 - low throughput
 - inaccurate for time critical experiments

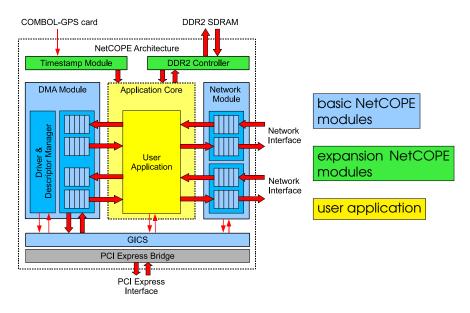
Hardware network testers

- pros
 - ability to operate at full wire speed
 - great number of possible settings
- cons
 - very high price

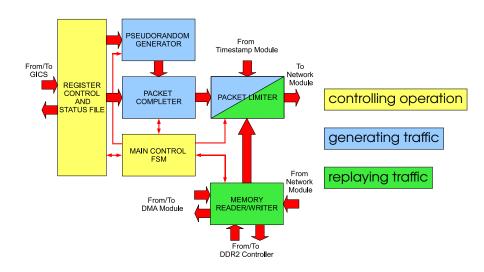
NetFPGA platform solution

- hardware card with the Virtex-II Pro FPGA chip developed at Stanford University
 - PCI bus connector
 - on-board memory (at most 64 MB)
 - four 1 Gbit/s network interfaces
- two stage transmission process
 - loading network traffic to the platform's memory
 - transmission of traffic from the memory
- pros
 - cheaper than hardware network testers
- cons
 - unable to operate at speed of 10 Gbit/s

COMBOv2 Cards



- mother card (Virtex-5 FPGA chip, PCI Express x8 interface, DDR2 SODIMM connector for up to 2 GB memory)
- add-on cards (2x10 Gbit/s or 4x1 Gbit/s interface cards, GPS-based clock system card)


NetCOPE Platform

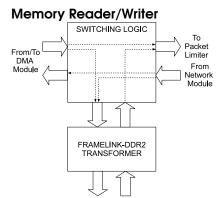
Generator Architecture

Generator Submodules

Pseudorandom Generator

- generates IPv4/IPv6 header fields
- based on Multiple LFSR architecture

Generator Type	Diehard Score
LFSR	756
MLFSR	154
true	22


 utilizes DSP48 slices for shifting and multiplication

Packet Completer

- forms complete IP packet
- header fields can be generated or constant
- payload length can be generated or constant

Generator Submodules

To/From DDR2 Controller

Packet Limiter

- plans and controls data transmission
- modes of data transmission limitation
 - no restrictions
 - limitation to specified bitrate
 - timestamp based limitation

Generator Submodules

Main Control FSM

- controls operation of all generator modules
- four different modes of operation
 - generating synthetic network traffic
 - loading data to the DDR2 memory
 - transmission data from the DDR2 memory
 - standard NIC

Register Control and Status File

- software accessible registers for controlling and monitoring generator's operation
 - registers for pseudorandom generator
 - mode of operation registers
 - IP protocol version
 - type of transmission limitation
 - etc.

Key Features

- 10 Gigabit Ethernet support
- synthetic network traffic generation
- DRAM based network traffic replaying
- software based network traffic replaying
- IPv6 support
- output rate limitation
- timestamp based transmission

Thank you for your attention