
 1

APPLICATION OF E-LEARNING IN PROGRAMMING LANGUAGES

THEORY

Filip Goldefus
1)

, Ota Jirák
2)

Brno University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno,

Czech Republic

igoldefu@fit.vutbr.cz
1)

, ijirak@fit.vutbr.cz
2)

www.fit.vutbr.cz/~igoldefu/, www.fit.vutbr.cz/~ijirak/

Abstract. This paper summarizes the present state of learning of programming languages on Faculty

of Information Technology, Brno University of Technology. The survey into the new methods of

teaching programming languages, especially interactive support for teaching functional and logic

programming, is given in this paper. Main goals of theoretical introduction lead to practical

application of theoretical methods, implementation of software project. Proposed e-learning course

contains theoretical part and practical parts with Prolog programming language. The generated set of

examples and applications are employed in education. Finally, improvements for future development

of the e-learning of programming languages are listed.

Keywords: programming languages, spaced repetition, lambda calculus, synchronous role,

asynchronous role, Prolog, SLD resolution

1. INTRODUCTION

The knowledge of programming languages on Faculty of

Information Technology, Brno University of Technology is

a main part of profile of graduated students. This faculty

deals with inconsistency of e-learning methodology, because

there is no unified framework for creating and managing e-

learning courses contrary of the Masaryk University of

Brno, where the unified framework is provided as a part of

web information system. The teacher of e-learning course is

able to create and manage the courses. The uniform e-course

framework leads to unified evaluation of students and

preparation of courses with commonly known components

and graphical user interface.

There are three types of communication in every e-course

for building and sustaining communities, or types of

information exchange respectively.

 Content-related exchange of information.

 Planning of tasks.

 Social support.

This paper deals only with the content-related exchange of

information and partially by planning of e-learning task,

which is a result of full specification of grant project. This

project creates interactive support for teaching programming

languages.

The principal part of solution of grant project called

Interactive support for teaching functional and logic

programming is creation of software application using

Adobe Flash
1
 and Action Script 3. Modeling of this

application uses strict methods of software design, e. g.

1
 http://www.adobe.com/

programming in pairs, design of entity relationship diagram,

diagram of functions and dataflow diagram.

2. THEORETICAL INTRODUCTION

Aspects of modeling of an e-learning software application

are given in this part of paper. The realized software

application is oriented on asynchronous type of preparation

for the teacher, which means, preparation of the course

contents by building database with resources and

programming examples. The student’s role is synchronous,

course is interactive and the evaluation of answers is

immediate. There is a test verifying student’s knowledge of

subject area at the end of learning session.

There are two main areas of the whole system. The first one

contains e-learning application called flashcards (see [2]).

This application is based on principles used for memorize

vocabulary words from classes of foreign languages. The

second area is focused on logical programming and

visualization of SLD resolution.

Fig. 1.Passive review of flashcards, where two consequent

cards are shown in a learning session (in 10 seconds

interval).

Haskell data

types.

- Int

- Char

- Bool

- Float

Programming

Paradigms.

- Functional

- Declarative

- Imperative

10 seconds

 2

Flashcard type of e-learning

Flashcard type of e-learning is based on a random repetition

of cards with some information. Course content is stored in

data structure called vocabulary or database of facts. This

information should be memorized by students. The

vocabulary is divided into lessons by topics and by their

difficulty. Every card is shown for a particular time, the

easy memorable information is shown for a short time, and

once during given learning session. Hard to remember

information is shown for a long time, and two or more

times during given learning session.

After several series of cards (see Fig. 1), there is a quiz (see

Fig. 2), discovering student’s knowledge of presented

vocabulary. This method is sometimes called spaced

repetition.

Fig. 2. Active recall of flashcards, where two consequent

cards are shown in a testing session (in 20 seconds

interval).

The time between repetitions of subsequent reviews is

increased. There is a field for experimenting, how to set up

the suitable periods of time for showing one flashcard,

frequency of showing same card in one learning session,

and the number of consequent cards for passive review

followed by questions for active recall.

In [1], there are several hypotheses for determination of the

frequency called:

 strength hypothesis,

 multiple-trace hypothesis,

 propositional encoding hypothesis.

The Strength hypothesis assumes that the increasing number

of repetitions leads to strengthen memory. Every learning

session enhances student’s memory. Every repetition adds

quantitative measurable amount of change in memory

between two course lessons. This theory treats with

cumulative frequency of repetition, depending on individual

student cognitive abilities. The frequency is altered by

obtaining successful or unsuccessful questions during the

active recall phase.

The multiple-trace hypothesis assumes:

 Each presentation of information leaves its own trace in

student’s memory.

 Every trace of different presentations of same

information coexists with another one in memory.

 Traces of different presentations of the same

information can carry different attributes.

The propositional encoding hypothesis is that information

per se is accumulated in propositional form during study of

the list.

In the following text, only the strength hypothesis is used,

because the multiple-trace and the propositional encoding

hypotheses have no effect on design of e-course preparation

and software application.

There is a problem, how to choose information for spaced

repetition and massed repetition. The spaced repetition uses

big stack of flashcards for every learning session. The

massed repetition uses more stacks with fewer amounts of

flashcards used in a learning session. There were many

experiments exploring the dependency between type of

information, and number of learning sessions (see [2]).

Example. The spaced condition corresponds to the strategy

of using a big stack of 10 flashcards; the massed condition

corresponded to the strategy of splitting flashcards into five

smaller stacks of five cards each. There are two 100

seconds sessions, divided by 5 minute pause. They are

followed by testing of all cards. After two sessions of

passive review, where all flashcards for spaced repetition

and all flashcards for massed repetition sequentially

displayed (see Fig. 3).

Fig. 3. Example of one learning course using 10 spaced

time flashcards and 10 massed flashcards.

In [2], it was proved that spacing repetition is more

effective than massed type of repetition. Experiments

similar to previous example were used.

In experiments [3] with learning foreign languages was

discovered dependence of questioning after learning a word.

This experiment led to discovery of trace of probability of

correct response, which declines dependence on time.

Relation between time and successful response is illustrated

on Fig. 4.

1 2

3 4 5

6 7 8 9

Spaced repetition

10

1 2

3 4 5

Massed repetition

Session 1

1 2

3 4 5

6 7 8 9

Spaced repetition

10

1 2

3 4 5

Massed repetition

Session 2

Test all cards

Session 3

Haskell data

types.

????????????

Programming

Paradigms.

????????????

20 seconds

 3

There are standalone software applications based on spaced

repetition generally usable on any e-learning course, e. g.:

Anki
2
, Mnemosyne

3
 and SuperMemo

4
.

 All implementations have limited possibilities of changing

time intervals and other important attributes for spaced

repetition.

It is important to divide e-learning course into several parts.

As a result of previous theoretical premises we split the

courses into: (1) memory part, and (2) creative part.

The first part contains “course vocabulary”, information

designated to be memorized.

Probability of correct response

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time (Seconds)

%

Fig. 4. Graph of probability of correct response depending

on time after passive review of information [3].

Remaining part of e-learning course information is used in

interactive part of software application. This learning

section is more content dependable, and it is part of the

following subsection.

SLD resolution and visualization

This section deals with preparation of content-dependent

parts of e-learning courses focused on programming

languages. Representation of an essential part of software

application follows.

The visualization part of application consists of two

segments:

 Visualization of Selective Linear Definite (SLD) clause

resolution.

 Visual completion of programming code.

2
 http://ichi2.net/anki/

3
 http://www.mnemosyne-proj.org/

4
 http://www.supermemo.com/

The SLD resolution is the main principle used in logic

programming. The advantage of the SLD resolution is

systematic inference of rules. The SLD resolution is general

process of mathematical logic used to inference

conclusions.

The SLD resolution of a formula F is a sequention of tuples

<C0, B0>, …, <Cn, Bn>. Every Ci+1 is resolvent of <Cn, Bn>

and Cn+1 = F. For more details see [5].

The input for the resolution is a set (potentially an empty

set) of sets of clauses – statements with variables. Clauses

are defined as a disjunction (sequence of logical

disjunctions) of literals, e.g. clause

.1 rqpF 

Literals are atomic formulas or their negations (p,  q, r).

We can say that literals or clauses take the values true or

false in logic programming. Logic programming language

Prolog
5
 uses special type of clauses, called Horn clauses. A

Horn clause contains at most one positive literal, so the

clause F1 is not a Horn clause.

Every Prolog program contains: (1) database of facts,

(2) rules.

Example of Prolog database of facts follows.

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

The same facts represented as Horn clauses:

{mother_child(trude, sally)},

{father_child(tom, sally)},

{father_child(tom, erica)},

{father_child(mike, tom)}.

The second part includes rules:

sibling(X, Y) :- parent_child(Z, X),

parent_child(Z, Y).

parent_child(X, Y) :- father_child(X,

Y).

parent_child(X, Y) :- mother_child(X,

Y).

Previous rules represent follows Horn clauses.

{sibling(X, Y), parent_child(Z, X),

parent_child(Z, Y)},

{parent_child(X, Y), father_child(X,
Y)},

{parent_child(X, Y), mother_child(X,
Y)}.

5
 http://www.swi-prolog.org/

 4

Practicing of the SLD resolution is in the style “fill the

gaps.” The questions contain parts of programs and student

has to fill it in. He chooses the right literals and variables to

complete the code to perform required results. Every

resolution step will be animated. Student is asked for the

right substitution of variables (X, Y, Z) and result of

resolution step.

Example. The following set of clauses is given,

)}}.,(),,({),,()},,({{ ZYPXZPXXPbaPC 

SLD resolution has to find a substitution for variables X, Y,

Z to satisfy the goal {P(Y, a)} using clauses from C.

Fig. 5. One step of SLD resolution, creation of a resolvent

from clauses.

Example of one step of SLD resolution for clause {P(Y,

a)} and set of clauses C is on Fig. 5.

SLD resolution can be visualized as a tree where nodes are

clauses and edges are labeled by substitutions for variables.

E.g. X/a corresponds to substitution of variable X by value

a.

4. IMPLEMENTATION

The implementation is based on Adobe Flash with Action

Script. This technology can be used in most web browsers

on common operation systems like Windows, Linux, etc.

The whole system is divided into two main sections:

 flashcards,

 SLD resolution visualization.

These parts have similar architecture depicted on Fig. 6.

The architecture is divided into several parts. The first,

called loader, loads examples from:

 predefined files,

 uploaded files,

 textbox.

The second part transforms example/course lesson, stored in

special format, into inner representation.

The third part returns semi code representing SLD

resolution steps.

The last part handles visualization and GUI controls.

As we can see, this type of architecture enables us to change

particular parts to add new type of examples.

Fig. 6. System architecture.

5. CONCLUSION

The part of grant project related to logic programming is

completed; the functional programming section remains, but

will contain similar units (flashcards, animated resolutions)

as a logic programming section.

The functional programming section similar to SLD

resolution involves Lambda Calculus for fundamental

principles of functional programming. Haskell
6
 is functional

language chosen for code examples.

Main interest of future research is aimed to experiments

with flashcard application part, exploration of periods of

time for each card, and selection of proper Haskell code

examples.

Experiments include students activities with e-learning

course and their classification.

6. REFERENCES

[1] Hintzman, D. L.: Repetition and Memory, In: Gordon H.

Bower, Editor(s), Psychology of Learning and Motivation.

Academic Press, 1976, Volume 10, pp. 47-91.

[2] Kornell, N.: Optimizing learning using flashcards:

Spacing is more effective than cramming. Applied Cognitive

Psychology, John Wiley & Sons, 2009, pp. 1297-1317.

6
 http://www.haskell.org/

Uploaded

File

Predefined

File

TextBox

Transformation

SLD

resolution

Resolution

Visualisator
FlashCard

Visualisator

FlashCard

{P(Y, a)} {P(Z, X), P(X, Y), P(Y, Z)}

Z/Y, X/a Y/W

{P(a, W),  P(W,Y)}

 5

[3] Pimsleur, P.: A Memory Schedule. The Modern

Language Journal, Blackwell Publishing, 1967, pp. 73-75.

[4] Hankin, Ch.: An Introduction To Lambda Calculi For

Computer Scientists. King’s College Publications London,

2004, 166 pages, 0-9543006-5-3.

[5] Sterling, L., Saphiro, E.: The Art of Prolog. MIT Press,

1994, 549 pages.

THE AUTHORS

Goldefus Filip:

- Profession: 3
rd

 grade of postgraduate

studium BUT Brno, Faculty of Information

Technology

- Scientific activity: theoretical computer

science, formal languages, compilers

Jirák Ota:

- Profession: 3
rd

 grade of postgraduate

studium BUT Brno, Faculty of Information

Technology

- Scientific activity: formal languages,

automata, compilers, lambda calculus.

ACKNOWLEDGEMENT

This work was partially supported by the BUT grant FIT-

10-S-2, the research plan MSM 00021630528, and the

FRVŠ grant FR2392/2010/G1.

