Probabilistic Context-Free Grammar

Petr Horáček, Eva Zámečníková and Ivana Burgetová

Department of Information Systems Faculty of Information Technology

Brno University of Technology Božetěchova 2, $61200 \mathrm{Brno}, \mathrm{CZ}$

BRNO
URIVERSITY
UNIVERSITY
OF TECHNOLOGY

- Probabilistic Context-Free Grammar

Definition and examples
Properties and usage

- Probabilistic Context-Free Grammar

Definition and examples
Properties and usage

- Inside and Outside Probabilities

Definitions
Algorithms

- Probabilistic Context-Free Grammar

Definition and examples
Properties and usage

- Inside and Outside Probabilities

Definitions
Algorithms

- Inside-Outside Algorithm

Idea, formal description and properties

- Probabilistic Context-Free Grammar

Definition and examples
Properties and usage

- Inside and Outside Probabilities

Definitions
Algorithms

- Inside-Outside Algorithm

Idea, formal description and properties

- A probabilistic context-free grammar (PCFG; also called stochastic CFG, SCFG) is a context-free grammar, where a certain probability is assigned to each rule.
- Thus, some derivations become more likely than other.

Definition

A PCFG G is a quintuple $G=(M, T, R, S, P)$, where

- $M=\left\{N^{i}: i=1, \ldots, n\right\}$ is a set of nonterminals
- $T=\left\{w^{k}: k=1, \ldots, V\right\}$ is a set of terminals
- $R=\left\{N^{i} \rightarrow \zeta^{j}: \zeta^{j} \in(M \cup T)^{*}\right\}$ is a set of rules
- $S=N^{1}$ is the start symbol
- P is a corresponding set of probabilities on rules such that

$$
\forall i \sum_{j} P\left(N^{i} \rightarrow \zeta^{j}\right)=1
$$

Notations

G	Grammar (PCFG)
$L(G)$	Language generated by grammar G
t	Parse tree
$\left\{N^{1}, \ldots, N^{m}\right\}$	Nonterminal vocabulary
$\left\{w^{1}, \ldots, w^{V}\right\}$	Terminal vocabulary
N^{1}	Start symbol
$w_{1} \ldots w_{m}$	Sentence to be parsed
$N_{p q}^{j}$	Nonterminal N^{j} spans positions p through q $\alpha_{j}(p, q)$
$\beta_{j}(p, q)$	Outside probabilities
Inside probabilities	

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3
$\mathrm{P} \rightarrow$ with	1.0
$\mathrm{~V} \rightarrow$ saw	1.0
$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{NP} \rightarrow$ telescopes	0.1

$\mathrm{S} \rightarrow$ NP VP	1.0	$t_{1}: \quad \mathrm{S}_{1.0}$			
$\mathrm{PP} \rightarrow \mathrm{PNP}$	1.0				
$\mathrm{VP} \rightarrow \mathrm{VNP}$	0.7				
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3	$\mathrm{NP}_{0.1} \quad \mathrm{VP}_{0.7}$			
$\mathrm{P} \rightarrow$ with	1.0				
$\mathrm{V} \rightarrow$ saw	1.0	astronomers	$\mathrm{V}_{1.0} \quad \mathrm{NP}_{0.4}$		
$N P \rightarrow$ NP PP	0.4				
NP \rightarrow astronomers	0.1				
NP \rightarrow ears	0.18		saw	$\mathrm{NP}_{0.18}$	$\mathrm{PP}_{1.0}$
NP \rightarrow saw	0.04				,
NP \rightarrow stars	0.18			stars	$\mathrm{P}_{1.0} \mathrm{NP}_{0.18}$
NP \rightarrow telescopes	0.1			stars	with ears
$\begin{aligned} P\left(t_{1}\right) & =1.0 \times 0 . \\ & =0.00090 \end{aligned}$	$\begin{aligned} & 1 \times 0 . \\ & 72 \end{aligned}$	$1.0 \times 0.4 \times 0$	8×1	$0 \times 1.0 \times$	

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3
$\mathrm{P} \rightarrow$ with	1.0
$\mathrm{~V} \rightarrow$ saw	1.0
$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{NP} \rightarrow$ telescopes	0.1

$\mathrm{S} \rightarrow$ NP VP	1.0	$t_{2}: \quad \mathrm{S}_{1.0}$		
$\mathrm{PP} \rightarrow \mathrm{PNP}$	1.0			
$\mathrm{VP} \rightarrow \mathrm{VNP}$	0.7			
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3	$\mathrm{NP}_{0.1}$	$\mathrm{VP}_{0.3}$	
$\mathrm{P} \rightarrow$ with	1.0			
$\mathrm{V} \rightarrow$ saw	1.0	astronomers	VP 0.7	$\mathrm{PP}_{1.0}$
$N P \rightarrow$ NP PP	0.4		${ }^{0.7}$	
NP \rightarrow astronomers	0.1			
NP \rightarrow ears	0.18		$\mathrm{V}_{1.0} \quad N P_{0.18}$	$\mathrm{P}_{1.0} \mathrm{NP}_{0.18}$
NP \rightarrow saw	0.04			
NP \rightarrow stars	0.18		saw stars	with ears
NP \rightarrow telescopes	0.1			

$\mathrm{S} \rightarrow$ NP VP	1.0	$t_{2}: \quad \mathrm{S}_{1.0}$		
$\mathrm{PP} \rightarrow \mathrm{PNP}$	1.0			
$\mathrm{VP} \rightarrow \mathrm{VNP}$	0.7			
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3	$\mathrm{NP}_{0.1}$	$\mathrm{VP}_{0.3}$	
$\mathrm{P} \rightarrow$ with	1.0			
$\mathrm{V} \rightarrow$ saw	1.0	astronomers		
NP \rightarrow NP PP	0.4			
NP \rightarrow astronomers	0.1			
NP \rightarrow ears	0.18			$\mathrm{P}_{1.0} \mathrm{NP}_{0.18}$
NP \rightarrow saw	0.04			
NP \rightarrow stars	0.18		saw stars	with ears
NP \rightarrow telescopes	0.1			

$$
\begin{aligned}
P\left(t_{2}\right) & =1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18 \\
& =0.0006804
\end{aligned}
$$

- For the sentence
astronomers saw stars with ears,
we can construct 2 parse trees.

$$
\begin{aligned}
& P\left(t_{1}\right)=0.0009072 \\
& P\left(t_{2}\right)=0.0006804
\end{aligned}
$$

- Sentence probability:

$$
\begin{aligned}
& P\left(w_{15}\right)=P\left(t_{1}\right)+P\left(t_{2}\right) \\
& P\left(w_{15}\right)=0.0009072+0.0006804 \\
& P\left(w_{15}\right)=0.0015876
\end{aligned}
$$

(1) Place invariance

$$
\forall k, I \quad P\left(N_{k(k+c)}^{j} \rightarrow \zeta\right)=P\left(N_{l(l+c)}^{j} \rightarrow \zeta\right)
$$

(1) Place invariance

$$
\forall k, I \quad P\left(N_{k(k+c)}^{j} \rightarrow \zeta\right)=P\left(N_{l(l+c)}^{j} \rightarrow \zeta\right)
$$

(2) Context-free

$$
P\left(N_{k l}^{j} \rightarrow \zeta \mid \text { anything outside } k \text { through } I\right)=P\left(N_{k l}^{j} \rightarrow \zeta\right)
$$

(1) Place invariance

$$
\forall k, I \quad P\left(N_{k(k+c)}^{j} \rightarrow \zeta\right)=P\left(N_{l(l+c)}^{j} \rightarrow \zeta\right)
$$

(2) Context-free

$$
P\left(N_{k l}^{j} \rightarrow \zeta \mid \text { anything outside } k \text { through } I\right)=P\left(N_{k l}^{j} \rightarrow \zeta\right)
$$

(3) Ancestor-free

$$
P\left(N_{k l}^{j} \rightarrow \zeta \mid \text { any ancestor nodes outside } N_{k l}^{j}\right)=P\left(N_{k l}^{j} \rightarrow \zeta\right)
$$

- Gives a probabilistic language model.
- Can give some idea of the plausibility of different parses of ambiguous sentences.
- However, only structure is taken into account, no lexical co-occurence.
- Good for grammar induction.
- Can be learned from positive data alone.
- Robust, able to deal with grammatical mistakes.
- In practice, PCFG shows to be a worse language model for English than n-gram models (no lexical context).
- However, we could combine the strengths of PCFGs (sentence structure) and n-gram models (lexical co-ocurence).
(1) Probability of a sentence $w_{1 m}$ according to grammar G :

$$
P\left(w_{1 m} \mid G\right)=?
$$

- We will consider grammars in Chomsky Normal Form (without loss of generality).
(1) Probability of a sentence $w_{1 m}$ according to grammar G :

$$
P\left(w_{1 m} \mid G\right)=?
$$

(2) The most likely parse for a sentence:

$$
\arg \max _{t} P\left(t \mid w_{1 m}, G\right)=?
$$

- We will consider grammars in Chomsky Normal Form (without loss of generality).
(1) Probability of a sentence $w_{1 m}$ according to grammar G :

$$
P\left(w_{1 m} \mid G\right)=?
$$

(2) The most likely parse for a sentence:

$$
\arg \max _{t} P\left(t \mid w_{1 m}, G\right)=?
$$

(3) Setting rule probabilities to maximize the probability of a sentence:

$$
\arg \max _{G} P\left(w_{1 m} \mid G\right)=?
$$

- We will consider grammars in Chomsky Normal Form (without loss of generality).
- Probabilistic Context-Free Grammar Definition and examples Properties and usage
- Inside and Outside Probabilities

Definitions
Algorithms

- Inside-Outside Algorithm

Idea, formal description and properties

Definition

Sentence probability of a sentence $w_{1 m}$ according to grammar G :

$$
P\left(w_{1 m} \mid G\right)=\sum_{t} P\left(w_{1 m}, t\right)
$$

where t is a parse tree of the sentence.

- Trivial solution:

Find all parse trees, calculate and sum up their probabilities.

- Problem:

Exponential time complexity in general - unsuitable in practice.

- Efficient solution:

Using inside and outside probabilities.

Definition

- Inside probability: $\beta_{j}(p, q)=P\left(w_{p q} \mid N_{p q}^{j}, G\right)$

$$
N^{1}
$$

$$
W_{1} \quad \cdots \quad W_{p-1} W_{p} \quad \cdots \quad W_{q} W_{q+1} \quad \cdots \quad W_{m}
$$

Definition

- Outside probability: $\alpha_{j}(p, q)=P\left(w_{1(p-1)}, N_{p q}^{j}, w_{(q+1) m} \mid G\right)$

Definition

- Inside probability: $\beta_{j}(p, q)=P\left(w_{p q} \mid N_{p q}^{j}, G\right)$
- Outside probability: $\alpha_{j}(p, q)=P\left(w_{1(p-1)}, N_{p q}^{j}, w_{(q+1) m} \mid G\right)$

- Dynamic programming algorithm based on inside probabilities:

$$
P\left(w_{1 m} \mid G\right)=P\left(w_{1 m} \mid N_{1 m}^{1}, G\right)=\beta_{1}(1, m)
$$

- Calculates the inside probabilities recursively, bottom up.
(1) Base case:

$$
\beta_{j}(k, k)=P\left(w_{k} \mid N_{k k}^{j}, G\right)=P\left(N^{j} \rightarrow w_{k} \mid G\right)
$$

(2) Induction:

$$
\begin{aligned}
\beta_{j}(p, q) & =P\left(w_{p q} \mid N_{p q}^{j}, G\right) \quad \widehat{w_{p}} w_{d} \widehat{w_{c}} \\
& =\sum_{r, s} \sum_{d=p}^{q-1} P\left(N^{j} \rightarrow N^{r} N^{s}\right) \beta_{r}(p, d) \beta_{s}(d+1, q)
\end{aligned}
$$

| Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1					
2					
3					
4					
5					
	astronomers	saw	stars	with	ears

| Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2					
3					
4					
5					
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$			
3					
4					
5					
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$			
3			$\beta_{N P}=0.18$		
4					
5					
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$			
3			$\beta_{N P}=0.18$		
4				$\beta_{P}=1.0$	
5					
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$			
3			$\beta_{N P}=0.18$		
4				$\beta_{P}=1.0$	
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{PNP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		
3			$\beta_{N P}=0.18$		
4				$\beta_{P}=1.0$	
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$				
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		
3			$\beta_{N P}=0.18$		
4				$\beta_{P}=1.0$	$\beta_{P P}=0.18$
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$		$\beta_{S}=0.0126$		
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		
3			$\beta_{N P}=0.18$		
4				$\beta_{P}=1.0$	$\beta_{P P}=0.18$
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

Inside Algorithm - Example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$		$\beta_{S}=0.0126$		
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		
3			$\beta_{N P}=0.18$		$\beta_{N P}=0.01296$
4				$\beta_{P}=1.0$	$\beta_{P P}=0.18$
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{PNP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$		$\beta_{S}=0.0126$		
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		$\beta_{V P}=0.015876$
3			$\beta_{N P}=0.18$		$\beta_{N P}=0.01296$
4				$\beta_{P}=1.0$	$\beta_{P P}=0.18$
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

	1	2	3	4	5
1	$\beta_{N P}=0.1$		$\beta_{S}=0.0126$		$\beta_{S}=0.0015876$
2		$\beta_{N P}=0.04$ $\beta_{V}=1.0$	$\beta_{V P}=0.126$		$\beta_{V P}=0.015876$
3			$\beta_{N P}=0.18$		$\beta_{N P}=0.01296$
4				$\beta_{P}=1.0$	$\beta_{P P}=0.18$
5					$\beta_{N P}=0.18$
	astronomers	saw	stars	with	ears

- Dynamic programming algorithm based on outside probabilities:

$$
\begin{aligned}
P\left(w_{1 m} \mid G\right)= & \sum_{j} P\left(w_{1(k-1)}, w_{k}, w_{(k+1) m}, N_{k k}^{j} \mid G\right) \\
= & \sum_{j} P\left(w_{1(k-1)}, N_{k k}^{j}, w_{(k+1) m} \mid G\right) \\
& \times P\left(w_{k} \mid w_{1(k-1)}, N_{k k}^{j}, w_{(k+1) m}, G\right) \\
= & \sum_{j} \alpha_{j}(k, k) P\left(N^{j} \rightarrow w_{k}\right)
\end{aligned}
$$

for any k such that $1 \leq k \leq m$.

- Calculates the outside probabilities recursively, top down.
- Requires reference to inside probabilities.

(1) Base case:

$$
\begin{aligned}
\alpha_{1}(1, m) & =1 \\
\alpha_{j}(1, m) & =0 \text { for } j \neq 1
\end{aligned}
$$

(2) Induction:

$$
\begin{aligned}
\alpha_{j}(p, q)= & {\left[\sum_{f, g} \sum_{e=q+1}^{m} \alpha_{f}(p, e) P\left(N^{f} \rightarrow N^{j} N^{g}\right) \beta_{g}(q+1, e)\right] } \\
& +\left[\sum_{f, g} \sum_{e=1}^{p-1} \alpha_{f}(e, q) P\left(N^{f} \rightarrow N^{g} N^{j}\right) \beta_{g}(e, p-1)\right]
\end{aligned}
$$

- Using inside probabilities:

$$
P\left(w_{1 m} \mid G\right)=\beta_{1}(1, m)
$$

- Using outside probabilities:

$$
P\left(w_{1 m} \mid G\right)=\sum_{j} \alpha_{j}(k, k) P\left(N^{j} \rightarrow w_{k}\right)
$$

for any k such that $1 \leq k \leq m$.

- Probability of a sentence $w_{1 m}$ and that there is some constituent spanning from word p to q :

$$
P\left(w_{1 m}, N_{p q} \mid G\right)=\alpha_{j}(p, q) \beta_{j}(p, q)
$$

- Modication of the inside algorithm:
- Find the maximum element of the sum in each step.
- Record which rule gave this maximum.
- We can define accumulators (similar to Viterbi algorithm for HMM):
$\delta_{i}(p, q)=$ the highest probability parse of a subtree $N_{p q}^{i}$
(1) Base case:

$$
\delta_{i}(p, p)=P\left(N^{i} \rightarrow w_{p}\right)
$$

(2) Induction:

$$
\delta_{i}(p, q)=\max _{\substack{1 \leq 1, k \leq n \\ p \leq r<q}} P\left(N^{i} \rightarrow N^{j} N^{k}\right) \delta_{j}(p, r) \delta_{k}(r+1, q)
$$

Backtrace:

$$
\psi_{i}(p, q)=\arg \max _{(j, k, r)} P\left(N^{i} \rightarrow N^{i} N^{k}\right) \delta_{j}(p, r) \delta_{k}(r+1, q)
$$

(3) Termination:

$$
P(\hat{t})=\delta_{1}(1, m)
$$

We need to reconstruct the parse tree \hat{t}.

- Probabilistic Context-Free Grammar Definition and examples Properties and usage
- Inside and Outside Probabilities Definitions Algorithms
- Inside-Outside Algorithm

Idea, formal description and properties

- Assume a certain topology of the grammar G given in advance.
- Number of terminals and nonterminals.
- Name of the start symbol.
- Set of rules (we can have a given structure of the grammar, but we can also assume all possible rewriting rules exist).
- We want to set the probabilities of rules to maximize the likelihood of the training data.

$$
\hat{P}\left(N^{j} \rightarrow \zeta\right)=\frac{C\left(N^{j} \rightarrow \zeta\right)}{\sum_{\gamma} C\left(N^{j} \rightarrow \gamma\right)}
$$

where $C(x)$ is the number of times the rule x is used.

- Trivial if we have a parsed corpus for training.
- Usually, a parsed training corpus is not available.
- Hidden data problem - we can only directly see the probabilities of sentences, not rules.
- We can use an iterative algorithm to determine improving estimates - the inside-outside algorithm.

Idea

(1) Begin with a given grammar topology and some initial probability estimates for rules.
(2) The probability of each parse of a training sentence according to G will act as our confidence in it.
(3) Sum the probabilities of each rule being used in each place to give an expectation of how often each rule was used.
(4) Use the expectations to refine the probability estimates increase the likelihood of the traning corpus according to G.

$$
\begin{aligned}
\alpha_{j}(p, q) \beta_{j}(p, q) & =P\left(w_{1 m}, N_{p q}^{j} \mid G\right) \\
& =P\left(w_{1 m} \mid G\right) P\left(N_{p q}^{j} \mid w_{1 m}, G\right) \\
P\left(N_{p q}^{j} \mid w_{1 m}, G\right) & =\frac{\alpha_{j}(p, q) \beta_{j}(p, q)}{P\left(w_{1 m} \mid G\right)}
\end{aligned}
$$

- To estimate the count of times the nonterminal N^{j} is used in the derivation:

$$
\begin{equation*}
E\left(N^{j} \text { is used in the derivation }\right)=\sum_{p=1}^{m} \sum_{q=p}^{m} \frac{\alpha_{j}(p, q) \beta_{j}(p, q)}{P\left(w_{1 m} \mid G\right)} \tag{1}
\end{equation*}
$$

- If N^{j} is not a preterminal, we can substitute the inductive definition of β. Then, $\forall r, s, p, q$:

$$
P\left(N_{p q}^{j} \mid w_{1 m}, G\right)=\frac{\sum_{d=p}^{q-1} \alpha_{j}(p, q) P\left(N^{j} \rightarrow N^{r} N^{s}\right) \beta_{r}(p, d) \beta_{s}(d+1, q)}{P\left(w_{1 m} \mid G\right)}
$$

- To estimate the number of times this rule is used in the derivation:

$$
\begin{align*}
& E\left(N^{j} \rightarrow N^{r} N^{s}, N^{j} \text { used }\right) \\
& =\frac{\sum_{p=1}^{m-1} \sum_{q=p+1}^{m} \sum_{d=p}^{q-1} \alpha_{j}(p, q) P\left(N^{j} \rightarrow N^{r} N^{s}\right) \beta_{r}(p, d) \beta_{s}(d+1, q)}{P\left(w_{1 m} \mid G\right)} \tag{2}
\end{align*}
$$

- For the maximization step, we want:

$$
\hat{P}\left(N^{j} \rightarrow N^{r} N^{s}\right)=\frac{E\left(N^{j} \rightarrow N^{r} N^{s}, N^{j} \text { used }\right)}{E\left(N^{j} \text { used }\right)}
$$

- Reestimation formula:

$$
\begin{align*}
& \hat{P}\left(N^{j} \rightarrow N^{r} N^{s}\right)=(1) /(2) \\
& =\frac{\sum_{p=1}^{m-1} \sum_{q=p+1}^{m} \sum_{d=p}^{q-1} \alpha_{j}(p, q) P\left(N^{j} \rightarrow N^{r} N^{s}\right) \beta_{r}(p, d) \beta_{s}(d+1, q)}{\sum_{p=1}^{m} \sum_{q=p}^{m} \alpha_{j}(p, q) \beta_{j}(p, q)} \tag{3}
\end{align*}
$$

- Analogically for preterminals, we get:

$$
\begin{equation*}
\hat{P}\left(N^{j} \rightarrow w^{k}\right)=\frac{\sum_{h=1}^{m} \alpha_{j}(h, h) P\left(w_{h}=w^{k}\right) \beta_{j}(h, h)}{\sum_{p=1}^{m} \sum_{q=p}^{m} \alpha_{j}(p, q) \beta_{j}(p, q)} \tag{4}
\end{equation*}
$$

Method

(1) Initialize probabilities of rules in G.
(2) Calculate inside probabilities for the training sentence.
(3) Calculate outside probabilities for the training sentence.
(4) Update the rule probabilities using reestimation formulas (3) and (4).
(5) Repeat from step 2 until the change in estimated rule probabilities is sufficiently small.

- The probability of the training corpus according to G will improve (or at least not get worse):

$$
P\left(W \mid G_{i+1}\right) \geq P\left(W \mid G_{i}\right)
$$

where i is the current iteration of training.

- Time complexity:

For each sentence, each iteration of training is $O\left(m^{3} n^{3}\right)$, where m is the length of the sentence and n is the number of nonterminals in the grammar.

- Relatively slow compared to linear models (such as HMM).
- Problems with local maxima, higly sensitive to the initialization of parameters.
- Generally, we cannot guarantee any resemblance between the trained grammar and the kinds of structures commonly used in NLP (NP, VP, etc.). The only hard constraint is that N^{1} remains the start symbol.
- We could impose further constraints.

國 Christopher D. Manning, Hinrich Schütze: Foundations of Statistical Natural Language Processing, MIT Press, 1999
囯 Fei Xia:
Inside-ouside algorithm (presentation), University of Washington, 2006
http://faculty.washington.edu/fxia/courses/
LING572/inside-outside.ppt

Thank you for your attention!

End

