Finite Automata

Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/~{meduna,ivrabel,izemek}

Supported by the FRVŠ MŠMT FR271/2012/G1 grant, 2012.

Contents

• Finite Automata

- Deterministic Finite Automata
- Computation
- Accepted Language

A finite automaton is a quintuple

$$M = (Q, \Sigma, R, s, F)$$

where

- Q is a finite set of states,
- Σ is a finite set of *input symbols*,
- R ⊆ Q × (Σ ∪ {ε}) × Q is a finite relation, called the set of rules,
- $s \in Q$ is the *start state*, and
- $F \subseteq Q$ is a set of final states.

Example

Consider the following model of a coke-vending machine:

Example

Let $M = (Q, \Sigma, R, \langle 0 \rangle, F)$ be a finite automaton, where

$$Q = \{\langle 0 \rangle, \langle 2 \rangle, \langle 4 \rangle, \langle 5 \rangle, \langle 7 \rangle, \langle \text{ret:} 0 \rangle, \langle \text{ret:} 1 \rangle, \langle \text{ret:} 3 \rangle\}$$

$$\Sigma = \{2, 5\}$$

$$\begin{array}{ll} \mathsf{R} &=& \{\langle 0 \rangle 2 \rightarrow \langle 2 \rangle, \langle 0 \rangle 5 \rightarrow \langle 5 \rangle, \langle 2 \rangle 2 \rightarrow \langle 4 \rangle, \langle 2 \rangle 5 \rightarrow \langle 7 \rangle, \\ && \langle 4 \rangle \varepsilon \rightarrow \langle \mathrm{ret:} 0 \rangle, \langle 7 \rangle \varepsilon \rightarrow \langle \mathrm{ret:} 3 \rangle, \langle 5 \rangle \varepsilon \rightarrow \langle \mathrm{ret:} 1 \rangle \} \end{array}$$

$$= \{\langle ret:0\rangle, \langle ret:1\rangle, \langle ret:3\rangle\}$$

Let $M = Q, \Sigma, R, s, F$) be a finite automaton. *M* is a *deterministic finite automaton* if *R* is a function from $Q \times \Sigma$ to *Q*.

Let $M = Q, \Sigma, R, s, F$) be a finite automaton. *M* is a *deterministic finite automaton* if *R* is a function from $Q \times \Sigma$ to *Q*.

Example

Consider the following finite automaton:

$$M = (Q, \Sigma, R, s, F)$$

where $Q = \{s, f\}$, $\Sigma = \{a, b, c\}$, $R = \{sa \rightarrow s, sb \rightarrow f, fc \rightarrow f\}$, and $F = \{f\}$. *M* is a deterministic finite automaton.

Configuration

Definition

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. A configuration of M is any pair from $Q \times \Sigma^*$.

Configuration

Definition

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. A *configuration* of M is any pair from $Q \times \Sigma^*$.

Example

Consider the finite automaton from the previous example:

$$M = (Q, \Sigma, R, s, F)$$

where $Q = \{s, f\}$, $\Sigma = \{a, b, c\}$, $R = \{sa \rightarrow s, sb \rightarrow f, fc \rightarrow f\}$, and $F = \{f\}$. Then, examples of configurations are (s, abc), (p, ccbd), and (f, ε) . Notice that the unread part of the input string can be empty, like in the case of (f, ε) .

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. The *direct move* relation over $Q \times \Sigma^*$, symbolically denoted by \vdash_M , is defined as follows: $(p, ax) \vdash_M (q, x)$ in M if and only if $pa \to q \in R$ and $x \in \Sigma^*$.

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. The *direct move* relation over $Q \times \Sigma^*$, symbolically denoted by \vdash_M , is defined as follows: $(p, ax) \vdash_M (q, x)$ in M if and only if $pa \to q \in R$ and $x \in \Sigma^*$.

Example

Consider the finite automaton from the previous example:

$$M = (Q, \Sigma, R, s, F)$$

where $Q = \{s, f\}$, $\Sigma = \{a, b, c\}$, $R = \{sa \rightarrow s, sb \rightarrow f, fc \rightarrow f\}$, and $F = \{f\}$. Then, for example, $(s, abc) \vdash_M (s, bc)$ by using the rule $sa \rightarrow s$, $(s, bc) \vdash_M (f, c)$ by the rule $sb \rightarrow f$, and $(f, c) \vdash_M (f, \varepsilon)$ by using the rule $fc \rightarrow f$.

Computation

Definition

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. If

 $C_1 \vdash_M C_2 \vdash_M \cdots \vdash_M C_n$

where c_i is a configuration of M for $1 \le i \le n$ and $n \ge 1$, then we write $c_1 \vdash_M^* c_n$ (a computation).

Computation

Definition

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. If

```
C_1 \vdash_M C_2 \vdash_M \cdots \vdash_M C_n
```

where c_i is a configuration of M for $1 \le i \le n$ and $n \ge 1$, then we write $c_1 \vdash_M^* c_n$ (a computation).

Example

Consider the finite automaton M from the previous example. Then, for example,

 $(s, abc) \vdash_{M}^{*} (f, \varepsilon)$

by using the rules $sa \rightarrow s$, $sb \rightarrow f$, and $fc \rightarrow f$, but also

```
(s, abc) \vdash^*_M (s, abc)
```

by using no rules.

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. The accepted language by M is denoted by L(M) and defined as

$$L(M) = \{ w : w \in \Sigma^*, (s, w) \vdash^*_M (f, \varepsilon) \text{ with } f \in F \}$$

Let $M = (Q, \Sigma, R, s, F)$ be a finite automaton. The accepted language by M is denoted by L(M) and defined as

$$L(M) = \{ w : w \in \Sigma^*, (s, w) \vdash^*_M (f, \varepsilon) \text{ with } f \in F \}$$

Example

Consider the finite automaton *M* from the previous example. By inspecting its set of rules and the way they can be used during a computation, we immediately see that the accepted language is composed of strings which start with an arbitrary number of *as*, followed by a single occurrence of *b*, and ended by an arbitrary number of *cs*. By using the standard notion involving operations over languages, we may state that the language accepted by *M* is

$$L(M) = \{a\}^* \{b\} \{c\}^*$$

References

A. Meduna, L. Vrábel, and P. Zemek.

Mathematical foundations of formal language theory, 2012. http://www.fit.vutbr.cz/-izemek/frvs2012.

Discussion