Finite Automata

Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 61200 Brno, CZ http://www.fit.vutbr.cz/~\{meduna,ivrabel,izemek \}

BRNO UNIVERSITY OF TECHNOLOGY

- Finite Automata
- Deterministic Finite Automata
- Computation
- Accepted Language

Definition

A finite automaton is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states,
- Σ is a finite set of input symbols,
- $R \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times Q$ is a finite relation, called the set of rules,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is a set of final states.

Example

Consider the following model of a coke-vending machine:

Example

Let $M=(Q, \Sigma, R,\langle 0\rangle, F)$ be a finite automaton, where

$$
\begin{aligned}
Q & =\{\langle 0\rangle,\langle 2\rangle,\langle 4\rangle,\langle 5\rangle,\langle 7\rangle,\langle\text { ret:0 } 0,\langle\text { ret: } 1\rangle,\langle\text { ret: } 3\rangle\} \\
\Sigma & =\{2,5\} \\
R & =\{\langle 0\rangle 2 \rightarrow\langle 2\rangle,\langle 0\rangle 5 \rightarrow\langle 5\rangle,\langle 2\rangle 2 \rightarrow\langle 4\rangle,\langle 2\rangle 5 \rightarrow\langle 7\rangle, \\
F & \langle 4\rangle \varepsilon \rightarrow\langle\text { ret:0 } 0,\langle 7\rangle \varepsilon \rightarrow\langle\text { ret:3 }\rangle,\langle 5\rangle \varepsilon \rightarrow\langle\text { ret: } 1\rangle\} \\
F & \{\langle\text { ret:0 } 0,\langle\text { ret: } 1\rangle,\langle\text { ret: } 3\rangle\}
\end{aligned}
$$

Definition

Let $M=Q, \Sigma, R, s, F)$ be a finite automaton. M is a deterministic finite automaton if R is a function from $Q \times \Sigma$ to Q.

Definition

Let $M=Q, \Sigma, R, s, F)$ be a finite automaton. M is a deterministic finite automaton if R is a function from $Q \times \Sigma$ to Q.

Example

Consider the following finite automaton:

$$
M=(Q, \Sigma, R, s, F)
$$

where $Q=\{s, f\}, \Sigma=\{a, b, c\}, R=\{s a \rightarrow s, s b \rightarrow f, f c \rightarrow f\}$, and $F=\{f\} . M$ is a deterministic finite automaton.

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. A configuration of M is any pair from $Q \times \Sigma^{*}$.

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. A configuration of M is any pair from $Q \times \Sigma^{*}$.

Example

Consider the finite automaton from the previous example:

$$
M=(Q, \Sigma, R, s, F)
$$

where $Q=\{s, f\}, \Sigma=\{a, b, c\}, R=\{s a \rightarrow s, s b \rightarrow f, f c \rightarrow f\}$, and $F=\{f\}$. Then, examples of configurations are ($s, a b c$), ($p, c c b d$), and (f, ε). Notice that the unread part of the input string can be empty, like in the case of (f, ε).

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. The direct move relation over $Q \times \Sigma^{*}$, symbolically denoted by \vdash_{M}, is defined as follows: $(p, a x) \vdash_{M}(q, x)$ in M if and only if $p a \rightarrow q \in R$ and $x \in \Sigma^{*}$.

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. The direct move relation over $Q \times \Sigma^{*}$, symbolically denoted by \vdash_{M}, is defined as follows: $(p, a x) \vdash_{M}(q, x)$ in M if and only if $p a \rightarrow q \in R$ and $x \in \Sigma^{*}$.

Example

Consider the finite automaton from the previous example:

$$
M=(Q, \Sigma, R, s, F)
$$

where $Q=\{s, f\}, \Sigma=\{a, b, c\}, R=\{s a \rightarrow s, s b \rightarrow f, f c \rightarrow f\}$, and $F=\{f\}$. Then, for example, $(s, a b c) \vdash_{M}(s, b c)$ by using the rule $s a \rightarrow s,(s, b c) \vdash_{M}(f, c)$ by the rule $s b \rightarrow f$, and $(f, c) \vdash_{M}(f, \varepsilon)$ by using the rule $f c \rightarrow f$.

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. If

$$
c_{1} \vdash_{M} c_{2} \vdash_{M} \cdots \vdash_{M} c_{n}
$$

where c_{i} is a configuration of M for $1 \leq i \leq n$ and $n \geq 1$, then we write $c_{1} \vdash_{M}^{*} c_{n}$ (a computation).

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. If

$$
c_{1} \vdash_{M} c_{2} \vdash_{M} \cdots \vdash_{M} c_{n}
$$

where c_{i} is a configuration of M for $1 \leq i \leq n$ and $n \geq 1$, then we write $c_{1} \vdash_{M}^{*} c_{n}$ (a computation).

Example

Consider the finite automaton M from the previous example.
Then, for example,

$$
(s, a b c) \vdash_{M}^{*}(f, \varepsilon)
$$

by using the rules $s a \rightarrow s, s b \rightarrow f$, and $f c \rightarrow f$, but also

$$
(s, a b c) \vdash_{M}^{*}(s, a b c)
$$

by using no rules.

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. The accepted language by M is denoted by $L(M)$ and defined as

$$
L(M)=\left\{w: w \in \Sigma^{*},(s, w) \vdash_{M}^{*}(f, \varepsilon) \text { with } f \in F\right\}
$$

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a finite automaton. The accepted language by M is denoted by $L(M)$ and defined as

$$
L(M)=\left\{w: w \in \Sigma^{*},(s, w) \vdash_{M}^{*}(f, \varepsilon) \text { with } f \in F\right\}
$$

Example

Consider the finite automaton M from the previous example. By inspecting its set of rules and the way they can be used during a computation, we immediately see that the accepted language is composed of strings which start with an arbitrary number of as, followed by a single occurrence of b, and ended by an arbitrary number of cs. By using the standard notion involving operations over languages, we may state that the language accepted by M is

$$
L(M)=\{a\}^{*}\{b\}\{c\}^{*}
$$

A. Meduna, L. Vrábel, and P. Zemek.

Mathematical foundations of formal language theory, 2012.
http://www.fit.vutbr.cz/~izemek/frvs2012.

Discussion

