Closures

Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 61200 Brno, CZ http://www.fit.vutbr.cz/~\{meduna,ivrabel,izemek \}

BRNO UNIVERSITY OF TECHNOLOGY

- Reflexive Relations
- Transitive Relations
- Reflexive-Transitive Closures

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If $a R a$ for every $a \in R$, then R is a reflexive relation.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If $a R a$ for every $a \in R$, then R is a reflexive relation.

Example

Consider the standard relation \geq on integers. Obviously, if we take any integer i, then $i \geq i$. For example, $6 \geq 6$. Therefore, we see that the relation \geq is reflexive.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If $a R a$ for every $a \in R$, then R is a reflexive relation.

Example

Consider the standard relation \geq on integers. Obviously, if we take any integer i, then $i \geq i$. For example, $6 \geq 6$. Therefore, we see that the relation \geq is reflexive.

Example

As an example of a relation that is not reflexive, consider the relation $>$ on integers. Indeed, $i \ngtr i$ for every integer i. For example, $6 \ngtr 6$.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If every $a, b, c \in Q$ satisfies that if $a R b$ and $b R c$ implies that $a R c$, then R is a transitive relation.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If every $a, b, c \in Q$ satisfies that if $a R b$ and $b R c$ implies that $a R c$, then R is a transitive relation.

Example

Once again, consider the standard relation \geq on integers. We have seen that it is a reflexive relation. Is it also transitive? If it is, then for every integers i, j, k, if $i \geq j$ and $j \geq k$, then $i \geq k$. This is true. For example, $6 \geq 4$ and $4 \geq 3$, and $6 \geq 3$.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. If every $a, b, c \in Q$ satisfies that if $a R b$ and $b R c$ implies that $a R c$, then R is a transitive relation.

Example

Once again, consider the standard relation \geq on integers. We have seen that it is a reflexive relation. Is it also transitive? If it is, then for every integers i, j, k, if $i \geq j$ and $j \geq k$, then $i \geq k$. This is true. For example, $6 \geq 4$ and $4 \geq 3$, and $6 \geq 3$.

Example

Consider the set $P=\{$ Diana, Sarah, Elinor $\}$ and the relation

$$
\text { mother }=\{(\text { Diana, Sarah }),(\text { Sarah, Elinor })\}
$$

over P. This relation is not transitive.

Definition

Let Q be a set and $R \subseteq Q \times Q$ be a relation over Q. The reflexive-transitive closure of R is denoted by R^{*} and it is the relation with the following three properties:
(1) Reflexivity and transitivity: R^{*} is both reflexive and transitive.
(2) Containment: $R \subseteq R^{*}$
(3) Minimality: There is no other reflexive and transitive relation relation R_{2} such that $R_{2} \subset R^{*}$ satisfies (1) and (2).

Example

Consider the following set of cities

$$
C=\{\text { Prague, Vienna, New York, Ottawa }\}
$$

and a relation that says you can get from a city to another one by taking a direct flight:
$F=\{($ Prague, Vienna), (Vienna, New York), (New York, Ottawa $)\}$
For simplicity, we assume that there is no way back-that is, even though you can fly from Prague to Vienna, there is no direct flight from Vienna back to Prague.
In what follows, we will now construct a reflexive-transitive closure of F, which will be denoted by F^{*}. While F means that you can take a single flight from a city to another city, F^{*} means that you can get from a city to another city by taking as many flights as needed. This is the general meaning of the reflexive-transitive closure.

Example

First, to satisfy (ii), we include all elements of F into F :

$$
F^{*}=F
$$

Therefore, we have covered the possibilities of getting into a city by taking a single flight. The next step is to make F^{*} reflexive. To this end, we extend it in the following way:

$$
\begin{aligned}
F^{*}=F^{*} \cup \quad & \{(\text { Prague, Prague }),(\text { Vienna, Vienna }), \\
& \text { (New York, New York), (Ottawa, Ottawa) }\}
\end{aligned}
$$

Even though it may seems strange, this extension of F^{*} says that when your are in a city X, then you do not have to take any flights (or 0 flights) to get into X. This makes sense, right? Now, F* is reflexive and satisfies (ii) and a half of (i).

Example

To complete the second half of (i), we have to make F^{*} transitive:

$$
\begin{gathered}
F^{*}=F^{*} \cup\{(\text { Prague, New York }),(\text { Prague, Ottawa }), \\
(\text { Vienna, Ottawa })\}
\end{gathered}
$$

After this extension, we see, for example, that we may fly from Prague into Ottawa-that is, Prague F* Ottawa. Observe that Prague F Ottawa does not hold because there is no direct flight from Prague to Ottawa.
A. Meduna, L. Vrábel, and P. Zemek.

Mathematical foundations of formal language theory, 2012.
http://www.fit.vutbr.cz/~izemek/frvs2012.

Discussion

