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Why Is Proving Important?

1 Proofs assure us that what we do is right.
2 Proofs convince people.
3 Proofs save time and money.
4 Proving is learning.
5 Last, but certainly not least, proofs are fun :-).
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General Layout of a Statement

Statement

Formal wording of the statement.

Proof

Argumentation that the statement is true.
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Theorem

A theorem is the most basic type of a statement that is proved
using rigorous mathematical reasoning. Usually, theorems are
regarded as the most important results.

Theorem

For a right triangle with legs a and b and hypotenuse c,

a2 + b2 = c2

Theorem

For every finite automaton, there is an equivalent regular
expression and vice versa.
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Lemma

A lemma is a minor result whose purpose is to help in proving a
theorem.

Lemma

For every finite automaton, there is an equivalent regular
expression.

Lemma

For every regular expression, there is an equivalent finite
automaton.
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Corollary

A corollary is a consequence of some other result.

Corollary

Finite automata and regular expressions define the same family
of languages.
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Summary of Mathematical Statements

Statement Usage
Theorem You want to write a statement that you prove

on the basis of previously established results. As
a rule of thumb, if you do not know what type
of a statement you should use, use a theorem.

Lemma You want to divide a proof of a theorem into
several parts, where each part is a lemma. It is
usually used as a stepping stone to a theorem.
There is no formal distinction between a lemma
and a theorem.

Corollary You want to write a statement that follows read-
ily from a previous statement. There is no formal
distinction between a theorem, lemma, and
corollary. Use of a corollary is plainly subjective.
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Direct Proof

In a direct proof, we show that a statement is true by
combining known facts.

Theorem

The sum of two even integers is itself an even integer.

Proof

Let a and b be two even integers. Since they are even, they
can be written in the forms a = 2x and b = 2y for some
integers x and y , respectively. Then, a + b can be written in the
form 2x + 2y , giving the following equation:

a + b = 2x + 2y = 2(x + y)

From this, we see that a + b is divisible by 2. Hence, a + b is an
even integer, and the theorem holds.
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Proof By Contradiction

A proof by contradiction is based on these two basic rules of
mathematical logic:

1 Any mathematical statement is either true or false.
2 If a statement is true, its negation is false.

A proof by contradiction works as follows: To prove that a
statement A holds, we start by assuming that A does not hold.
Then, we obtain a contradiction, and so we know that A has to
hold.
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Proof By Contradiction (Example)

Theorem

There are infinitely many primes.

Proof

To obtain a contradiction, we will assume that there exist only
finitely many prime numbers

p1 < p2 < · · · < pn

Let q = p1p2 · · ·pn + 1 be the product of p1, p2, . . . , pn plus one.
Like any other natural number, q is divisible by at least one
prime number (it is possible that q itself is a prime). However,
none of the primes p1, p2, . . . , pn divides q without a remainder
because dividing q by any of them leaves a remainder 1.
Therefore, there has to exist a yet other prime number than p1,
p2, . . . , pn, which is a contradiction with the initial assumption.
Therefore, there are infinitely many primes.
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Proof By Induction

A proof by induction is typically used to prove that a statement
holds for all natural numbers.

Formally, we need to prove the following statements:
1 A holds for 0 (the starting point, called basis).
2 If A holds for n, then it also holds for n + 1 (the spreading

nature, called induction step).
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Proof By Induction (Example 1/3)
For every natural number n, let S(n) denote the sum of all the
numbers 0, 1, 2, . . . , n. In symbols,

S(n) =
∑

0≤i≤n

i

Theorem

S(n) = n(n+1)
2

Proof

We prove this theorem by induction.

Basis. We show that the statement holds for 0. This means we
have to prove that

0 =
0(0 + 1)

2
Since the right-hand side can be simplified to 0, we have that
0 = 0, so the basis holds.
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Proof By Induction (Example 2/3)

Proof

Induction Step. In the induction step, we have to show that if
the statement holds for S(n), then it holds for S(n + 1). To this
end, assume that it holds for S(n) (that is, we ask the question
“what would happen, if it holds for n?” in a mathematical way).
Then, to prove that it holds for S(n + 1), we have to prove that

(0 + 1 + 2 + · · ·+ n) + (n + 1) =
(n + 1)((n + 1) + 1)

2

Using the assumption that S(n) is true, the left-hand side of the
equation can be rewritten to

n(n + 1)
2

+ (n + 1)
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Proof By Induction (Example 3/3)

Proof

n(n + 1)
2

+ (n + 1)

can be rewritten in the following way:

n(n + 1)
2

+ (n + 1) =
n(n + 1) + 2(n + 1)

2

=
n2 + n + 2n + 2

2

=
(n + 1)(n + 2)

2

=
(n + 1)((n + 1) + 1)

2

This implies that S(n + 1) holds. Since we have proved both the
basis and the induction step, by the principle of induction, the
theorem holds.
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