#### Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2, 612 00 Brno, CZ

http://www.fit.vutbr.cz/~{meduna.jvrabel.jzemek}



## Contents

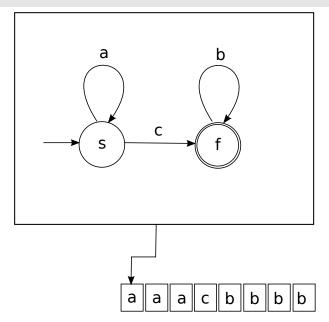


Introduction

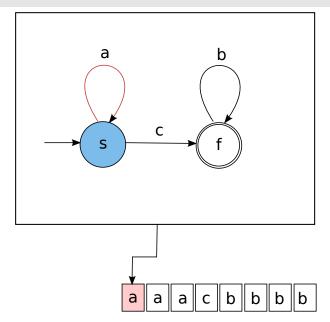
- Definitions and Examples
- Results

Concluding Remarks and Discussion

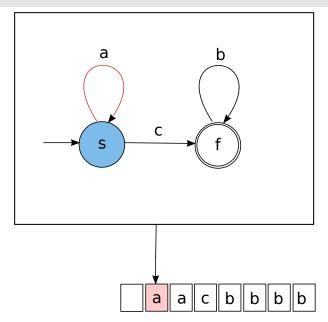




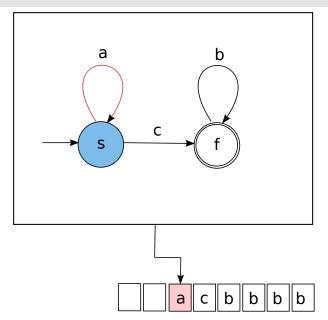




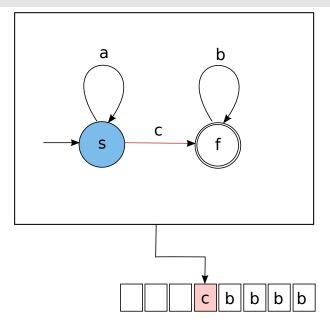




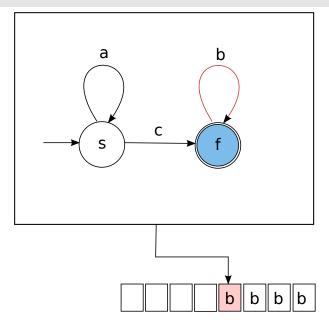




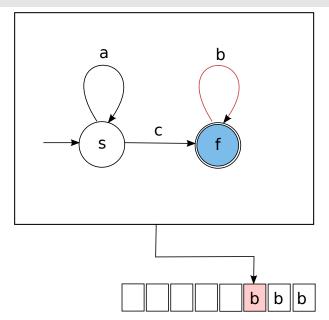




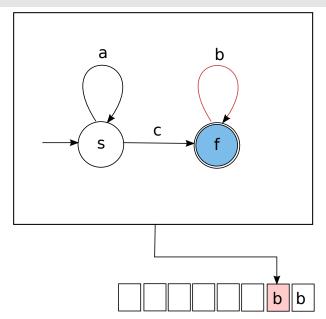




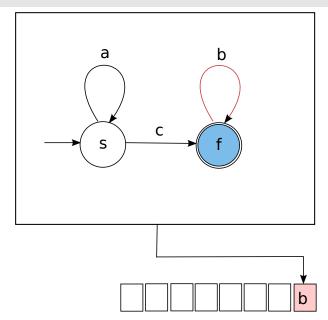




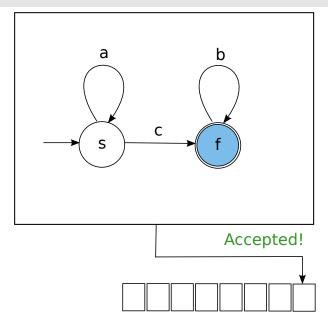




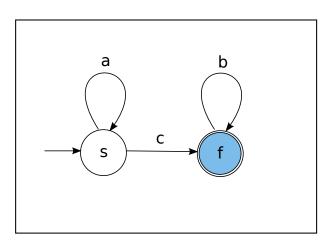






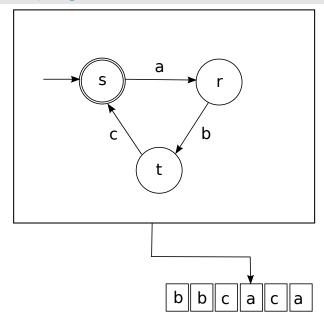




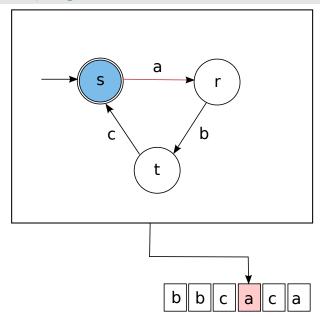


Accepted language:  $\{a\}^*\{c\}\{b\}^*$ 

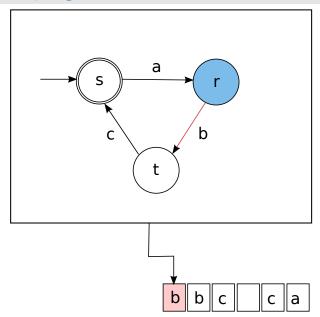




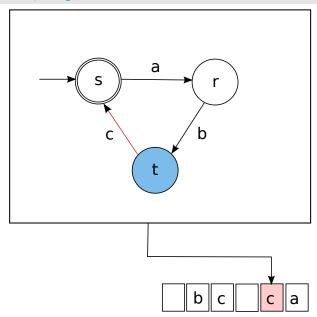




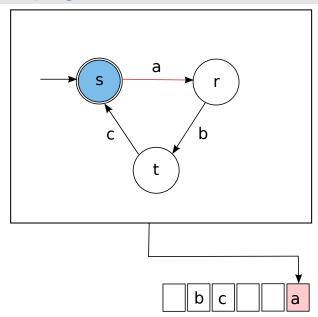




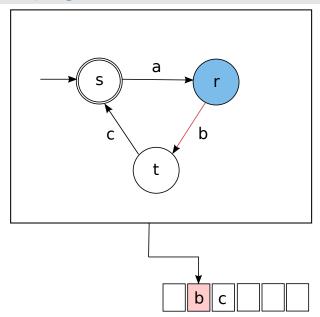




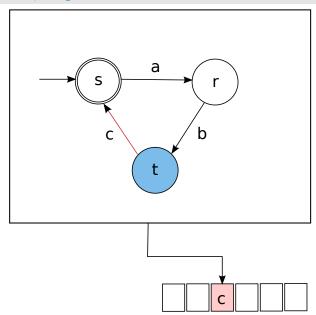




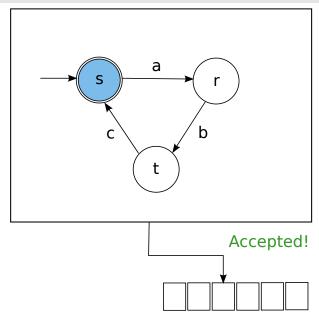




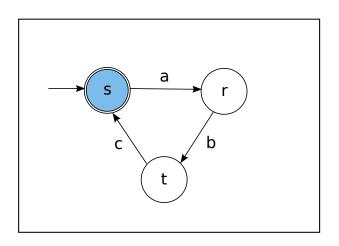












Accepted language:  $\{w \in \{a,b,c\}^* : |w|_a = |w|_b = |w|_c\}$ 

### Definitions



#### Definition

A general jumping finite automaton (GJFA) is a quintuple

$$M = (Q, \Sigma, R, s, F)$$

#### where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$py \rightarrow q$$
  $(p, q \in Q, y \in \Sigma^*)$ 

- s is the start state:
- F is a set of final states.

### Definitions



#### Definition

A general jumping finite automaton (GJFA) is a quintuple

$$M = (Q, \Sigma, R, s, F)$$

#### where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$py \rightarrow q$$
  $(p, q \in Q, y \in \Sigma^*)$ 

- s is the start state:
- F is a set of final states.

### **Definition**

If all rules  $py \to q \in R$  satisfy  $|y| \le 1$ , then M is a jumping finite automaton (JFA).

### Definitions – Continued



#### Definition

If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

### Definitions – Continued



#### Definition

If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

- $\curvearrowright^n$  intuitively, a sequence of n jumps ( $n \ge 0$ ); mathematically, the nth power of  $\curvearrowright$
- intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of

### Definitions – Continued



#### Definition

If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

- $\curvearrowright^n$  intuitively, a sequence of n jumps ( $n \ge 0$ ); mathematically, the nth power of  $\curvearrowright$
- intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of

#### Definition

The language accepted by M, denoted by L(M), is defined as

$$L(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f}, f \in F\}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

$$bacbc\underline{s}a \land bac\underline{r}bc \ [sa \rightarrow r]$$



#### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

bacbcsa 
$$\curvearrowright$$
 bacrbc  $[sa \rightarrow r]$   $\curvearrowright$  bacrbc  $[rb \rightarrow t]$ 



#### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$



### Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

$$bb\underline{s}baa \land bb\underline{f}a [sba \rightarrow f]$$



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa 
$$\curvearrowright$$
 bbfa [sba  $\rightarrow$  f]  $\curvearrowright$  fbb [fa  $\rightarrow$  f]



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa 
$$\curvearrowright$$
 bbfa [sba  $\rightarrow$  f]  
 $\curvearrowright$  fbb [fa  $\rightarrow$  f]  
 $\curvearrowright$  fb [fb  $\rightarrow$  f]



### Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa 
$$\sim$$
 bbfa [sba  $\rightarrow$  f]  
 $\sim$  fbb [fa  $\rightarrow$  f]  
 $\sim$  fb [fb  $\rightarrow$  f]  
 $\sim$  f [fb  $\rightarrow$  f]



### Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).



### **Theorem**

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

### Proof Idea

When using  $pa \rightarrow q$ , a can appear on any position.



### **Theorem**

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

### Proof Idea

When using  $pa \rightarrow q$ , a can appear on any position.

### Corollary

There is no JFA that accepts  $\{a,b\}^*\{ba\}\{a,b\}^*$ .



#### **Theorem**

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

#### Proof Idea

When using  $pa \rightarrow q$ , a can appear on any position.

### Corollary

There is no JFA that accepts  $\{a,b\}^*\{ba\}\{a,b\}^*$ .

#### **Theorem**

GJFAs are strictly stronger than JFAs.



#### **Theorem**

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

#### Proof Idea

When using  $pa \rightarrow q$ , a can appear on any position.

### Corollary

There is no JFA that accepts  $\{a,b\}^*\{ba\}\{a,b\}^*$ .

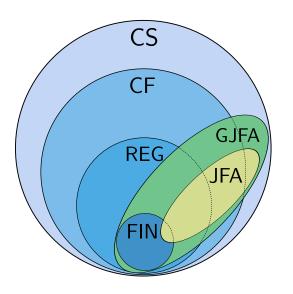
#### **Theorem**

GJFAs are strictly stronger than JFAs.

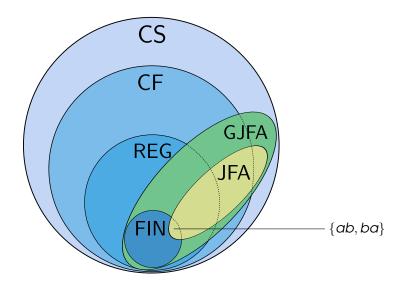
### Proof Idea

The language  $\{a,b\}^*\{ba\}\{a,b\}^*$  is accepted by the GJFA from Example #2.

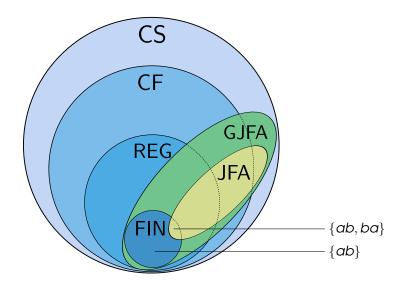




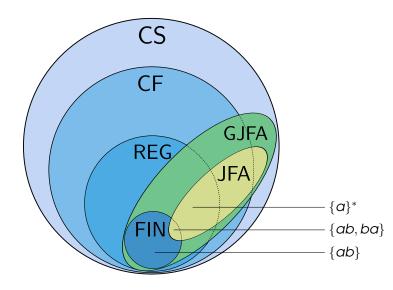




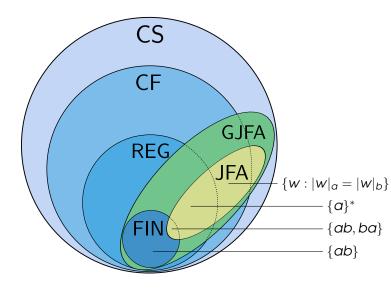




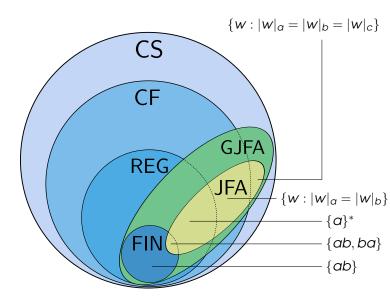




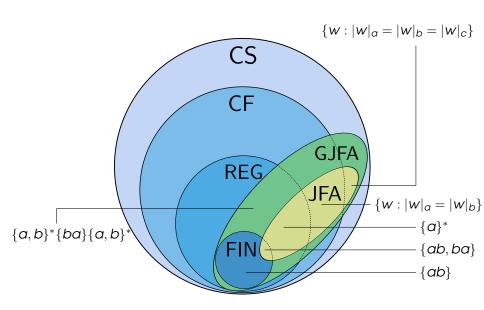




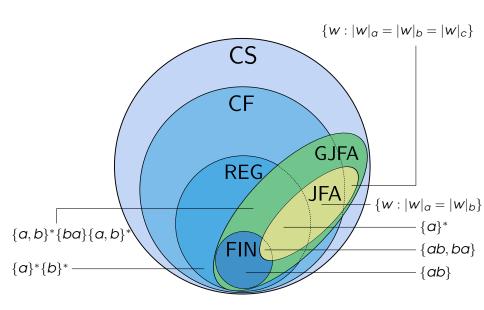




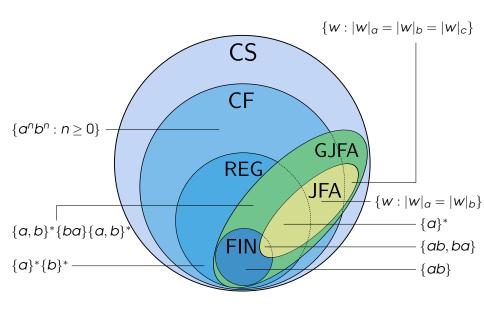




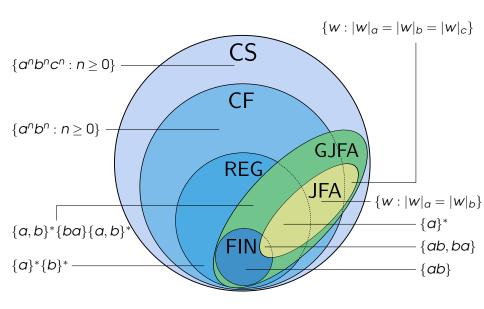














## By analogy with finite automata:

- removal of  $\varepsilon$ -moves  $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic



### By analogy with finite automata:

- removal of  $\varepsilon$ -moves  $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

### **Theorem**

Every unary language accepted by a JFA is regular.



### By analogy with finite automata:

- removal of  $\varepsilon$ -moves  $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

### **Theorem**

Every unary language accepted by a JFA is regular.

#### Proof Idea

In unary languages, it does not matter where the automaton jumps.





### By analogy with finite automata:

- removal of  $\varepsilon$ -moves  $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

### **Theorem**

Every unary language accepted by a JFA is regular.

### Proof Idea

In unary languages, it does not matter where the automaton jumps.

### Corollary

The language of primes

{ a<sup>p</sup> : p is a prime number}

cannot be accepted by any JFA.

## Closure Properties



### Theorem

JFA is closed under union.

## Closure Properties



#### **Theorem**

JFA is closed under union.

### Proof

We have: Two JFAs

• 
$$M_1 = (Q_1, \Sigma_1, R_1, s_1, F_1)$$

• 
$$M_2 = (Q_2, \Sigma_2, R_2, s_2, F_2)$$
  $(Q_1 \cap Q_2 = \emptyset)$ 

**We need**: JFA  $H = (Q, \Sigma, R, s, F)$  such that  $L(H) = L(M_1) \cup L(M_2)$ 

### Construction:

$$Q = Q_1 \cup Q_2 \cup \{s\} \qquad (s \notin Q_1 \cup Q_2)$$
  

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
  

$$R = R_1 \cup R_2 \cup \{s \to s_1, s \to s_2\}$$
  

$$F = F_1 \cup F_2$$

## Closure Properties – Continued



### **Theorem**

JFA is not closed under concatenation.

## Closure Properties – Continued



#### **Theorem**

**JFA** is not closed under concatenation.

### Proof

- Consider  $K_1 = \{a\}$  and  $K_2 = \{b\}$ .
- The JFA  $M_1 = (\{s, f\}, \{a\}, \{sa \to f\}, s, \{f\})$  accepts  $K_1$ .
- The JFA  $M_2 = (\{s, f\}, \{b\}, \{sb \to f\}, s, \{f\})$  accepts  $K_2$ .
- However, there is no JFA that accepts  $K_1K_2 = \{ab\}$ .

# Closure Properties – Summary



|                              | GJFA | JFA | REG |
|------------------------------|------|-----|-----|
| union                        | +    | +   | +   |
| intersection                 | _    | +   | +   |
| concatenation                | _    | _   | +   |
| intersection with reg. lang. | _    | _   | +   |
| complement                   | _    | +   | +   |
| shuffle                      | ?    | +   | +   |
| mirror image                 | ?    | +   | +   |
| Kleene star                  | ?    | _   | +   |
| Kleene plus                  | ?    | _   | +   |
| substitution                 | _    | _   | +   |
| regular substitution         | _    | _   | +   |
| finite substitution          | +    | _   | +   |
| homomorphism                 | +    | _   | +   |
| arepsilon-free homomorphism  | +    | _   | +   |
| inverse homomorphism         | +    | +   | +   |

# Decidability – Summary



|              | GJFA | JFA |
|--------------|------|-----|
| membership   | +    | +   |
| emptiness    | +    | +   |
| finiteness   | +    | +   |
| infiniteness | +    | +   |



### Definition

A GJFA  $M = (Q, \Sigma, R, s, F)$  is of degree n, where  $n \ge 0$ , if  $py \to q \in R$  implies that  $|y| \le n$ .



#### Definition

A GJFA  $M = (Q, \Sigma, R, s, F)$  is of degree n, where  $n \ge 0$ , if  $py \to q \in R$  implies that  $|y| \le n$ .

### Example

The GJFA  $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$  with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.



#### Definition

A GJFA  $M = (Q, \Sigma, R, s, F)$  is of degree n, where  $n \ge 0$ , if  $py \to q \in R$  implies that  $|y| \le n$ .

### Example

The GJFA  $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$  with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.

**GJFA**<sub>n</sub> the family of languages accepted by GJFAs of degree *n* 



### Definition

A GJFA  $M = (Q, \Sigma, R, s, F)$  is of degree n, where  $n \ge 0$ , if  $py \to q \in R$  implies that  $|y| \le n$ .

### Example

The GJFA  $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$  with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.

**GJFA**<sub>n</sub> the family of languages accepted by GJFAs of degree *n* 

### **Theorem**

 $\mathbf{GJFA}_n \subset \mathbf{GJFA}_{n+1}$  for all  $n \geq 0$ 

## Left and Right Jumps



### Definition

A GJFA makes a *left jump* from wxpyz to wqxz by  $py \rightarrow q$ :

where  $w, x, y, z \in \Sigma^*$ .

## Left and Right Jumps



### Definition

A GJFA makes a *left jump* from wxpyz to wqxz by  $py \rightarrow q$ :

where  $w, x, y, z \in \Sigma^*$ .

### Definition

A GJFA makes a *right jump* from wpyxz to wxqz by  $py \rightarrow q$ :

$$W \not D y X Z_r \curvearrowright W X \not Q Z$$

where  $w, x, y, z \in \Sigma^*$ .

### Left and Right Jumps



#### Definition

A GJFA makes a *left jump* from wxpyz to wqxz by  $py \rightarrow q$ :

$$WXDYZ \cap WQXZ$$

where  $w, x, y, z \in \Sigma^*$ .

#### Definition

A GJFA makes a right jump from wpyxz to wxqz by  $py \rightarrow q$ :

$$W \not D y X Z_r \curvearrowright W X \not Q Z$$

where  $w, x, y, z \in \Sigma^*$ .

GJFAs using only left jumps
JFAs using only left jumps
GJFAs using only right jumps
JFAs using only right jumps
JFAs using only right jumps



### Theorem

$$_r$$
GJFA =  $_r$ JFA = REG



### **Theorem**

 $_{r}$ GJFA =  $_{r}$ JFA = REG

#### Proof Idea

- $_r$ **JFA** = **REG** simulating a finite automaton
- rGJFA = REG simulating a general finite automaton



### **Theorem**

 $_{r}$ GJFA =  $_{r}$ JFA = REG

### Proof Idea

- ,JFA = REG simulating a finite automaton
- $_r$ GJFA = REG simulating a general finite automaton

#### **Theorem**

 $_{\prime}$ JFA - REG  $eq\emptyset$ 



#### **Theorem**

$$_{\Gamma}$$
GJFA  $=_{\Gamma}$ JFA  $=$  REG

### Proof Idea

- rJFA = REG simulating a finite automaton
- rGJFA = REG simulating a general finite automaton

### **Theorem**

 $_{/}$ JFA - REG  $eq \emptyset$ 

### Proof Idea

$$M = (\{s, p, q\}, \{a, b\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow p, pb \rightarrow s, sb \rightarrow q, qa \rightarrow s\}$$

accepts

$$_{I}L(M) = \{ w : |w|_{a} = |w|_{b} \}$$

## A Variety of Start Configurations



### Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^{b}L(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^{a}L(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^{e}L(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

## A Variety of Start Configurations



### Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^bL(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^aL(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^eL(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

```
    GJFA GJFAs starting at the beginning
    GJFA GJFAs starting anywhere
    GJFA GJFAs starting at the end
    JFA JFAs starting at the beginning
    JFA JFAs starting anywhere
    JFAs starting at the end
```

### A Variety of Start Configurations



### Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^bL(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^aL(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^eL(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

```
<sup>b</sup>GJFA GJFAs starting at the beginning a GJFA GJFAs starting anywhere
```

<sup>e</sup>GJFA GJFAs starting at the end

<sup>b</sup>**JFA** JFAs starting at the beginning

<sup>a</sup>**JFA** JFAs starting anywhere <sup>e</sup>**JFA** JFAs starting at the end

### Observations:

- ${}^{\alpha}L(M)=L(M)$
- ${}^{a}$ GJFA = GJFA and  ${}^{a}$ JFA = JFA



### Theorem

 $^{a}$ JFA  $\subset$   $^{b}$ JFA



### **Theorem**

aJFA  $\subset b$ JFA

### Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies 
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$



#### **Theorem**

aJFA  $\subset b$ JFA

### Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies 
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$

### **Theorem**

$$^{a}$$
GJFA  $\subset$   $^{b}$ GJFA



### **Theorem**

aJFA  $\subset b$ JFA

### Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies 
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$

### **Theorem**

aGJFA  $\subset b$ GJFA

#### **Theorem**

$$^{e}$$
GJFA =  $^{a}$ GJFA and  $^{e}$ JFA =  $^{a}$ JFA

## Conclusion and Open Problem Areas



- closure properties of GJFA (shuffle, Kleene star, Kleene plus, and mirror image)
- other decision problems of GJFA and JFA, like equivalence, universality, inclusion, or regularity
- the effect of left jumps to the power of JFAs and GJFAs (we only know that  ${}_{J}\mathbf{FA} \mathbf{REG} \neq \emptyset$ )
- strict determinism
- applications: verification of a relation concerning the number of symbol occurrences (genetics)

### References





A. Meduna and P. Zemek.

Jumping finite automata.

International Journal of Foundations of Computer Science, to appear in 2012.



G. Rozenberg and A. Salomaa, editors.

Handbook of Formal Languages, Volumes 1 through 3. Springer, 1997.



A. Salomaa.

Formal Languages.
Academic Press, 1973.



A. Salomaa.

Computation and Automata.

Cambridge University Press, 1985.

