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| Basic Terms i

e Finite automata (NFAs, DFAS)

e Regular expressions (REGEXPs)
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| Why? i

Two possible transformations:

o Regular expression — Finite automaton
v

¢ Finite automaton — Regular expression
uhm. .. Why?
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| Transitive Closure Method i

o Rather theoretical approach.
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e Sketch of the method:
1 LetQ={a, @,...,gm} be the set of all automatons states.
2 Suppose that regular expression R; represents the set of alll
strings that fransition the automaton from g; to g;.
3 Wanted regular expression will be the union of all Ry, where
Qs is the starting state and gy is one the final states.

» The main problem is how fo construct R; for all states g;, g;.

Converting Finite Automata to Regular Expressions | 5/23



| How to construct R;? m

e Suppose /?,f represents the set of all strings that transition the
automaton from g; to g; without passing through any state
higher than g,. We can construct R; by successively

; 1 P2 Q _ p
constructing /?,j,l?,j,...,l?,j =Ry

* Ry is recursively defined as:
R = R+ R (R R

o Assuming we have inifialized Rg’ to be:

r+e¢ if i =jandrtransitions NFA from g; to g;

r if i # j and r transitions NFA from g; to g;
RO —
' 0 otherwise
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| Example (1/5) i

Transform the following NFA to the corresponding REGEXP using
Transitive Closure Method:
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| Example (2/5) i

1) Initialize R,?:

/??] e+ 1
R |0

RS | 0

R§2 e+0+1
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| Example (3/5) i

2) Compute Rj:

| By direct substitution | Simplified
Ry let1+(E+ND)e+1)(+1)] 1"
Rl | O+ (c+ 1)(e+1)*0 10
Ry, | 040+ 1) (e +1) 0
Ry | e+0+1+0(e+1)*0 e+0+41
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| Example (4/5) i

3) Compute R?:

| By direct substitution | Simplified
RZ, [ 17*+1*0(e + 0+ 1)*0 1*
R2, | 1*0+1"0(s + 0+ 1)*(e + 0+ 1) 1*0(0 + 1)*
Rz | 0+ (e +0+1)(e+0+1)*0 0

Rz, | e+0+1+(+0+1)(e+0+1)*(e+0+1) | (O+1)
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| Example (5/5) i

4) Get the resulting regular expression:

= R2, = Rjp = 1*0(0 + 1)* is the REGEXP corresponding to the
NFA.
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| State Removal Method |

Based on a fransformation from NFA to GNFA (generalized
nondeterministic finite automaton).

Identfifies patterns within the graph and removes states,
building up regular expressions along each transition.

Sketch of the method:
1 Unify all final states info a single final state using e-frans.
2 Unify all multi-fransitions into a single transition that contains
union of inpufts.
3 Remove states (and change transitions accordingly) until
there is only the starting a the final state.
4 Get the resulting regular expression by direct calculation.

The main problem is how to remove states correctly so the
accepted language won’t be changed.
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| Example (1/3) |

Transform the following NFA to the corresponding REGEXP using
State Removal Method:
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| Example (2/3) i

1) Remove the “middle” state: e
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| Example (3/3) i

2) Get the resulting regular expression r:

= r = (ae*d)*ae*b(ce*b + ce*d(ae*d)*ae*b)*.
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| Brzozowski Algebraic Method il

Janusz Brzozowski, 1964

Utilizes equations over regular expressions.

Sketch of the method:
1 Create a system of regular equations with one regular
expression unknown for each state in the NFA.
2 Solve the system.
3 The regular expression corresponding to the NFA is the regular
expression associated with the starting state.

The main problem is how to create the system and how to
solve it.
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| Example (1/5) i

Transform the following NFA to the corresponding REGEXP using
Brzozowski Method:

Converting Finite Automata to Regular Expressions | 17/23



| Example (2/5) i

1) Create a characteristic regular equation for state 1:

Converting Finite Automata to Regular Expressions | 18/23



| Example (3/5) i

2) Create a characteristic regular equation for state 2:
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| Example (4/5) i

4) Solve the arisen system of regular expressions:

X, = ax, + bX
X, = ¢ + bXy + ¢cX
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| Example (5/5) i

Solution:
X, = (a+ bc*b)*bc*
Xo = C*[e + b(a + bc*b)*bc*|

= X; is the REGEXP corresponding to the NFA.
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| Comparison of presented methods i

o Transitive Closure Method

+ clear and simple implementation
- tedious for manual use
- fends to create very long regular expressions

o State Removal Method

+ intuitive, useful for manual inspection
- not as straightforward to implement as other methods

e Brzozowski Algebraic Method

+ elegant
+ generates reasonably compact regular expressions
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