
Converting Finite Automata to

Regular Expressions

Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2, 612 00 Brno, CZ

http://www.fit.vutbr.cz/∼{meduna,ivrabel,izemek}

Supported by the FRVŠ MŠMT FR271/2012/G1 grant, 2012.

Converting Finite Automata to Regular Expressions 1 / 23

Outline

Introduction

Basic terms
Why?

Methods

Transitive Closure Method
State Removal Method
Brzozowski Algebraic Method

Comparison

Converting Finite Automata to Regular Expressions 2 / 23

Basic Terms

• Finite automata (NFAs, DFAs)

• Regular expressions (REGEXPs)

• . . .

Converting Finite Automata to Regular Expressions 3 / 23

Why?

Two possible transformations:

• Regular expression → Finite automaton

X

• Finite automaton → Regular expression

Uhm. . . Why?

Converting Finite Automata to Regular Expressions 4 / 23

Transitive Closure Method

• Rather theoretical approach.

• q1 q2 q3
a bc

ab

• Sketch of the method:

1 Let Q = {q1,q2, . . . ,qm} be the set of all automatons states.
2 Suppose that regular expression Rij represents the set of all

strings that transition the automaton from qi to qj .
3 Wanted regular expression will be the union of all Rsf , where

qs is the starting state and qf is one the final states.

• The main problem is how to construct Rij for all states qi ,qj .

Converting Finite Automata to Regular Expressions 5 / 23

How to construct Rij?

• Suppose Rk
ij represents the set of all strings that transition the

automaton from qi to qj without passing through any state
higher than qk . We can construct Rij by successively

constructing R1
ij ,R

2
ij , . . . ,R

|Q|
ij = Rij .

• Rk
ij is recursively defined as:

Rk
ij = Rk−1

ij + Rk−1
ik (Rk−1

kk)∗Rk−1
kj

• Assuming we have initialized R0
ij to be:

R0
ij =







r if i 6= j and r transitions NFA from qi to qj

r + ε if i = j and r transitions NFA from qi to qj

∅ otherwise

Converting Finite Automata to Regular Expressions 6 / 23

Example (1/5)

Transform the following NFA to the corresponding REGEXP using
Transitive Closure Method:

q1 q2

1

0, 1
0

Converting Finite Automata to Regular Expressions 7 / 23

Example (2/5)

1) Initialize R0
ij :

q1 q2

1

0, 1
0

R0
11 ε+ 1

R0
12 0

R0
21 ∅

R0
22 ε+ 0 + 1

Converting Finite Automata to Regular Expressions 8 / 23

Example (3/5)

2) Compute R1
ij :

q1 q2

1

0, 1
0

By direct substitution Simplified

R1
11 ε+ 1 + (ε+ 1)(ε+ 1)∗(ε+ 1) 1∗

R1
12 0 + (ε+ 1)(ε+ 1)∗0 1∗0

R1
21 ∅+ ∅(ε+ 1)∗(ε+ 1) ∅

R1
22 ε+ 0 + 1 + ∅(ε+ 1)∗0 ε+ 0 + 1

Converting Finite Automata to Regular Expressions 9 / 23

Example (4/5)

3) Compute R2
ij :

q1 q2

1

0, 1
0

By direct substitution Simplified

R2
11 1∗ + 1∗0(ε+ 0 + 1)∗∅ 1∗

R2
12 1∗0 + 1∗0(ε+ 0 + 1)∗(ε+ 0 + 1) 1∗0(0 + 1)∗

R2
21 ∅+ (ε+ 0 + 1)(ε+ 0 + 1)∗∅ ∅

R2
22 ε+ 0 + 1 + (ε+ 0 + 1)(ε+ 0 + 1)∗(ε+ 0 + 1) (0 + 1)∗

Converting Finite Automata to Regular Expressions 10 / 23

Example (5/5)

4) Get the resulting regular expression:

q1 q2

1

0, 1
0

⇒ R2
12 = R12 = 1∗0(0 + 1)∗ is the REGEXP corresponding to the

NFA.

Converting Finite Automata to Regular Expressions 11 / 23

State Removal Method

• Based on a transformation from NFA to GNFA (generalized
nondeterministic finite automaton).

• Identifies patterns within the graph and removes states,
building up regular expressions along each transition.

• Sketch of the method:

1 Unify all final states into a single final state using ε-trans.
2 Unify all multi-transitions into a single transition that contains

union of inputs.
3 Remove states (and change transitions accordingly) until

there is only the starting a the final state.
4 Get the resulting regular expression by direct calculation.

• The main problem is how to remove states correctly so the
accepted language won’t be changed.

Converting Finite Automata to Regular Expressions 12 / 23

Example (1/3)

Transform the following NFA to the corresponding REGEXP using
State Removal Method:

q3q1 q2

e

a

d

b

c

Converting Finite Automata to Regular Expressions 13 / 23

Example (2/3)

1) Remove the ”middle” state:

q3q1 q2

e

a

d

b

c

⇓

q1 q3

ae∗d ce∗b

ae∗b

ce∗d

Converting Finite Automata to Regular Expressions 14 / 23

Example (3/3)

2) Get the resulting regular expression r :

q1 q3

ae∗d ce∗b

ae∗b

ce∗d

⇒ r = (ae∗d)∗ae∗b(ce∗b + ce∗d(ae∗d)∗ae∗b)∗.

Converting Finite Automata to Regular Expressions 15 / 23

Brzozowski Algebraic Method

• Janusz Brzozowski, 1964

• Utilizes equations over regular expressions.

• Sketch of the method:

1 Create a system of regular equations with one regular
expression unknown for each state in the NFA.

2 Solve the system.
3 The regular expression corresponding to the NFA is the regular

expression associated with the starting state.

• The main problem is how to create the system and how to
solve it.

Converting Finite Automata to Regular Expressions 16 / 23

Example (1/5)

Transform the following NFA to the corresponding REGEXP using
Brzozowski Method:

q1 q2

a

c

b

b

Converting Finite Automata to Regular Expressions 17 / 23

Example (2/5)

1) Create a characteristic regular equation for state 1:

q1 q2

a

c

b

b

X1 = aX1 + bX2

Converting Finite Automata to Regular Expressions 18 / 23

Example (3/5)

2) Create a characteristic regular equation for state 2:

q1 q2

a

c

a

b

X2 = ε + bX1 + cX2

Converting Finite Automata to Regular Expressions 19 / 23

Example (4/5)

4) Solve the arisen system of regular expressions:

X1 = aX1 + bX2

X2 = ε + bX1 + cX2

Converting Finite Automata to Regular Expressions 20 / 23

Example (5/5)

Solution:
X1 = (a + bc∗b)∗bc∗

X2 = c∗[ε+ b(a + bc∗b)∗bc∗]

q1 q2

a

c

b

b

⇒ X1 is the REGEXP corresponding to the NFA.

Converting Finite Automata to Regular Expressions 21 / 23

Comparison of presented methods

• Transitive Closure Method

+ clear and simple implementation
- tedious for manual use
- tends to create very long regular expressions

• State Removal Method

+ intuitive, useful for manual inspection
- not as straightforward to implement as other methods

• Brzozowski Algebraic Method

+ elegant
+ generates reasonably compact regular expressions

Converting Finite Automata to Regular Expressions 22 / 23

References

J. Brzozowski.

Derivatives of regular expressions.
Journal of the ACM, 11(4):481–494, 1964.

J. E. Hopcroft and J. D. Ullman.

Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

P. Linz.

An introduction to Formal Languages and Automata.
Jones and Bartlett Publishers, 3rd edition, 1979.

C. Neumann.

Converting deterministic finite automata to regular expressions.
Available on URL:
http://neumannhaus.com/christoph/papers/2005-03-16.DFA to RegEx.pdf.

M. Češka, T. Vojnar, and A. Smrčka.

Studijnı́ opora do předmětu teoretická informatika.
Available on URL:
https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/oporaTIN.pdf.

Converting Finite Automata to Regular Expressions 23 / 23

Discussion

	Introduction
	Basic terms
	Why?

	Methods
	Transitive Closure Method
	State Removal Method
	Brzozowski Algebraic Method

	Comparison

