Converting Finite Automata to
Regular Expressions

Alexander Meduna, Lukds Vrdbel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology

Bozetéchova 1/2, 612 00 Brno, CZ
http://www.fit.vutbr.cz/~{meduna.ivrabel izemek}

Supported by the FRVS MSMT FR271/2012/G1 grant, 2012,

Converting Finite Automata to Regular Expressions | 1/23

| Outline |

® |ntroduction
Basic ferms
Why?

o Methods
Transitive Closure Method
State Removal Method
Brzozowski Algebraic Method

e Comparison

Converting Finite Automata to Regular Expressions | 2/23

| Basic Terms i

e Finite automata (NFAs, DFAS)

e Regular expressions (REGEXPs)

Converting Finite Automata to Regular Expressions | 3/23

| Why? i

Two possible transformations:

o Regular expression — Finite automaton
v

¢ Finite automaton — Regular expression
uhm. .. Why?

Converting Finite Automata to Regular Expressions | 4/23

| Transitive Closure Method i

o Rather theoretical approach.
ab

_ - - -
- ~
- ~
- ~

@@

e Sketch of the method:
1 LetQ={a, @,...,gm} be the set of all automatons states.
2 Suppose that regular expression R; represents the set of alll
strings that fransition the automaton from g; to g;.
3 Wanted regular expression will be the union of all Ry, where
Qs is the starting state and gy is one the final states.

» The main problem is how fo construct R; for all states g;, g;.

Converting Finite Automata to Regular Expressions | 5/23

| How to construct R;? m

e Suppose /?,f represents the set of all strings that transition the
automaton from g; to g; without passing through any state
higher than g,. We can construct R; by successively

; 1 P2 Q _ p
constructing /?,j,l?,j,...,l?,j =Ry

* Ry is recursively defined as:
R = R+ R (R R

o Assuming we have inifialized Rg’ to be:

r+e¢ if i =jandrtransitions NFA from g; to g;

r if i # j and r transitions NFA from g; to g;
RO —
' 0 otherwise

Converting Finite Automata to Regular Expressions | 6/23

| Example (1/5) i

Transform the following NFA to the corresponding REGEXP using
Transitive Closure Method:

Converting Finite Automata to Regular Expressions | 7/23

| Example (2/5) i

1) Initialize R,?:

/??] e+ 1
R |0

RS | 0

R§2 e+0+1

Converting Finite Automata to Regular Expressions | 8/23

| Example (3/5) i

2) Compute Rj:

| By direct substitution | Simplified
Ry let1+(E+ND)e+1)(+1)] 1"
Rl | O+ (c+ 1)(e+1)*0 10
Ry, | 040+ 1) (e +1) 0
Ry | e+0+1+0(e+1)*0 e+0+41

Converting Finite Automata to Regular Expressions | 9/23

| Example (4/5) i

3) Compute R?:

| By direct substitution | Simplified
RZ, [17*+1*0(e + 0+ 1)*0 1*
R2, | 1*0+1"0(s + 0+ 1)*(e + 0+ 1) 1*0(0 + 1)*
Rz | 0+ (e +0+1)(e+0+1)*0 0

Rz, | e+0+1+(+0+1)(e+0+1)*(e+0+1) | (O+1)

Converting Finite Automata to Regular Expressions | 10/23

| Example (5/5) i

4) Get the resulting regular expression:

= R2, = Rjp = 1*0(0 + 1)* is the REGEXP corresponding to the
NFA.

Converting Finite Automata to Regular Expressions | 11/23

| State Removal Method |

Based on a fransformation from NFA to GNFA (generalized
nondeterministic finite automaton).

Identfifies patterns within the graph and removes states,
building up regular expressions along each transition.

Sketch of the method:
1 Unify all final states info a single final state using e-frans.
2 Unify all multi-fransitions into a single transition that contains
union of inpufts.
3 Remove states (and change transitions accordingly) until
there is only the starting a the final state.
4 Get the resulting regular expression by direct calculation.

The main problem is how to remove states correctly so the
accepted language won’t be changed.

Converting Finite Automata to Regular Expressions | 12/23

| Example (1/3) |

Transform the following NFA to the corresponding REGEXP using
State Removal Method:

Converting Finite Automata to Regular Expressions | 13/23

| Example (2/3) i

1) Remove the “middle” state: e

Converting Finite Automata to Regular Expressions | 14/23

| Example (3/3) i

2) Get the resulting regular expression r:

= r = (ae*d)*ae*b(ce*b + ce*d(ae*d)*ae*b)*.

Converting Finite Automata to Regular Expressions | 15/23

| Brzozowski Algebraic Method il

Janusz Brzozowski, 1964

Utilizes equations over regular expressions.

Sketch of the method:
1 Create a system of regular equations with one regular
expression unknown for each state in the NFA.
2 Solve the system.
3 The regular expression corresponding to the NFA is the regular
expression associated with the starting state.

The main problem is how to create the system and how to
solve it.

Converting Finite Automata to Regular Expressions | 16/23

| Example (1/5) i

Transform the following NFA to the corresponding REGEXP using
Brzozowski Method:

Converting Finite Automata to Regular Expressions | 17/23

| Example (2/5) i

1) Create a characteristic regular equation for state 1:

Converting Finite Automata to Regular Expressions | 18/23

| Example (3/5) i

2) Create a characteristic regular equation for state 2:

Converting Finite Automata to Regular Expressions | 19/23

| Example (4/5) i

4) Solve the arisen system of regular expressions:

X, = ax, + bX
X, = ¢ + bXy + ¢cX

Converting Finite Automata to Regular Expressions | 20/23

| Example (5/5) i

Solution:
X, = (a+ bc*b)*bc*
Xo = C*[e + b(a + bc*b)*bc*|

= X; is the REGEXP corresponding to the NFA.

Converting Finite Automata to Regular Expressions | 21/23

| Comparison of presented methods i

o Transitive Closure Method

+ clear and simple implementation
- tedious for manual use
- fends to create very long regular expressions

o State Removal Method

+ intuitive, useful for manual inspection
- not as straightforward to implement as other methods

e Brzozowski Algebraic Method

+ elegant
+ generates reasonably compact regular expressions

Converting Finite Automata to Regular Expressions | 22/23

| References i

J. Brzozowski.

Derivatives of regular expressions.

Journal of the ACM, 11(4):481-494, 1964.

J. E. Hopcroft and J. D. Uliman.

Infroduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

P Linz.

An infroduction to Formal Languages and Automata.

Jones and Bartlett Publishers, 3rd edition, 1979.

C. Neumann.

Converting deterministic finite automata to regular expressions.
Available on URL:

=) = =B @

http://neumannhaus.

@ M. Ceska, T. Vojnar, and A. Smréka.,

Studijni opora do predmeétu teoretickd informatika.
Available on URL:
https://

m/christoph/r

.fit.vutbr.cz/study/courses/TIN/public/Texty/oporaTIN.pdf.

Converting Finite Automata to Regular Expressions | 23/23

Discussion

	Introduction
	Basic terms
	Why?

	Methods
	Transitive Closure Method
	State Removal Method
	Brzozowski Algebraic Method

	Comparison

