
Lookahead k > 1 in LL and LR
Translators

Alexander Meduna, Lukáš Vrábel, and Petr Zemek
Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2, 612 00 Brno, CZ
http://www.fit.vutbr.cz/∼{meduna,ivrabel,izemek}

Supported by the FRVŠ MŠMT FR271/2012/G1 grant, 2012.

Contents

Introduction
Basic Terms
Recognizers × Translators
Recognition Power

Lookahead k > 1
Why Use k > 1?
Claim 1: Grammar Transformation
Claim 2: LR(1) Equals LR(k > 1)
Claim 3: Space and Time Requirements

Conclusion
Conclusion

Lookahead k > 1 in LL and LR Translators 2 / 13

LL Parsers and Grammars

LL parser • Top-down parser.
• It parses the input from Left to right, and

constructs a Leftmost derivation of the
sentence.

LL grammar • Grammar, on which some LL parser can be
based.

Lookahead k > 1 in LL and LR Translators 3 / 13

LR Parsers and Grammars

LR parser • Bottom-up parser.
• It parses the input from Left to right, and

constructs a (reverse of) Rightmost derivation
of the sentence.

LR grammar • Grammar, on which some LR parser can be
based.

Lookahead k > 1 in LL and LR Translators 4 / 13

Lookahead

Lookahead • The number of input tokens, which a parser
use to decide which rule it should use.

• Normally, we use lookahead of size 1.

id + id * id id (id
A 2 3 7

. . .

. . .

Figure : Example of an LL(2) table.

An LL (LR) parser is called an LL(k) (LR(k)) parser if it uses
lookahead of size k when parsing a sentence.

Lookahead k > 1 in LL and LR Translators 5 / 13

Recognizers × Translators

Recognizer • Given a source code and a grammar, can this
code be generated by this grammar?

• Answer: Yes or No.

Translator • Translates source code defined by some
grammar into an equivalent target code.

• More than just a recognizer.

Lookahead k > 1 in LL and LR Translators 6 / 13

Recognition Power

CFL

LL(1)

LL(2)

LL(k)

 DFCL =
LR(1) = LR(k)

...

Figure : Hierarchy of language families.Lookahead k > 1 in LL and LR Translators 7 / 13

Why Use k > 1?

LL and LR translators with lookahead k = 1 has been almost
exclusively used because of the following claims:
• Transformation techniques (e.g. factorization) can be used.
• LR(1) equals LR(k > 1) in recognition power.
• k > 1 is not plausible (space and time requirements).

Problems:
• The first claim is often impractical.
• The second claim is not true in case of translators.
• The third claim is outdated.

Lookahead k > 1 in LL and LR Translators 8 / 13

Claim 1: Grammar Transformation

stat: ID ":" stat /* statement label */
| expr ";"
;

expr: ID "=" expr /* assignment */
;

Figure : LL(2) grammar for a fragment of the C language.

It could be transformed into an equivalent LL(1) grammar using
factorization, but:
• LL(2) grammar is more convenient – where to put semantic

actions in the transformed grammar?
• It can be practically implausible, because expr occurs

throughout the grammar.

Lookahead k > 1 in LL and LR Translators 9 / 13

Claim 2: LR(1) Equals LR(k > 1)

Semantic actions can decrease the power of translators based
on LR parsers.

start: {printf("X ahead");} A X
| A Y
;

Figure : LR(2) grammar, which is not LR(1) (due to actions).

In worst case:

LL(1) = LR(1) ⊂ LL(2) = LR(2) ⊂ · · · ⊂ LL(k) = LR(k)

However, this do not often happen in practice.

Lookahead k > 1 in LL and LR Translators 10 / 13

Claim 3: Space and Time Requirements

Is lookahead k > 1 plausible in practice?
• In theory, storing full lookahead information for one

decision requires O(|T |k) space, where |T | is the number of
token types.

It was not plausible earlier, but it can be today:
• More available memory, faster processors.
• Various techniques and heuristics were developed:

• Linear-approximate lookahead – O(k |T |)

Lookahead k > 1 in LL and LR Translators 11 / 13

Conclusion

• Recognizers × Translators

• There are practical needs for k > 1 lookahead:
• Transformation techniques might be impractical.
• The presence of actions reduces the strength of LR(k)

translators.
• With current computers and heuristic approaches, use of

k > 1 is feasible.

Lookahead k > 1 in LL and LR Translators 12 / 13

References

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Boston, 2nd edition, 2006.

T. Parr and R. Quong.
ll and lr translators need k > 1 lookahead.
ACM SIGPLAN Notices, 31(2), 1996.

Lookahead k > 1 in LL and LR Translators 13 / 13

Discussion

	Introduction
	Basic Terms
	Recognizers Translators
	Recognition Power

	Lookahead k > 1
	Why Use k > 1?
	Claim 1: Grammar Transformation
	Claim 2: LR(1) Equals LR(k > 1)
	Claim 3: Space and Time Requirements

	Conclusion
	Conclusion

