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LL Parsers and Grammars

LL parser • Top-down parser.
• It parses the input from Left to right, and

constructs a Leftmost derivation of the
sentence.

LL grammar • Grammar, on which some LL parser can be
based.
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LR Parsers and Grammars

LR parser • Bottom-up parser.
• It parses the input from Left to right, and

constructs a (reverse of) Rightmost derivation
of the sentence.

LR grammar • Grammar, on which some LR parser can be
based.
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Lookahead

Lookahead • The number of input tokens, which a parser
use to decide which rule it should use.

• Normally, we use lookahead of size 1.

id + id * id id ( id
A 2 3 7

. . .

. . .

Figure : Example of an LL(2) table.

An LL (LR) parser is called an LL(k) (LR(k)) parser if it uses
lookahead of size k when parsing a sentence.
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Recognizers × Translators

Recognizer • Given a source code and a grammar, can this
code be generated by this grammar?

• Answer: Yes or No.

Translator • Translates source code defined by some
grammar into an equivalent target code.

• More than just a recognizer.
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Recognition Power

CFL

LL(1)

LL(2)

LL(k)

      DFCL =
LR(1) = LR(k)

...
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Why Use k > 1?

LL and LR translators with lookahead k = 1 has been almost
exclusively used because of the following claims:
• Transformation techniques (e.g. factorization) can be used.
• LR(1) equals LR(k > 1) in recognition power.
• k > 1 is not plausible (space and time requirements).

Problems:
• The first claim is often impractical.
• The second claim is not true in case of translators.
• The third claim is outdated.
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Claim 1: Grammar Transformation

stat: ID ":" stat /* statement label */
| expr ";"
;

expr: ID "=" expr /* assignment */
;

Figure : LL(2) grammar for a fragment of the C language.

It could be transformed into an equivalent LL(1) grammar using
factorization, but:
• LL(2) grammar is more convenient – where to put semantic

actions in the transformed grammar?
• It can be practically implausible, because expr occurs

throughout the grammar.
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Claim 2: LR(1) Equals LR(k > 1)

Semantic actions can decrease the power of translators based
on LR parsers.

start: {printf("X ahead");} A X
| A Y
;

Figure : LR(2) grammar, which is not LR(1) (due to actions).

In worst case:

LL(1) = LR(1) ⊂ LL(2) = LR(2) ⊂ · · · ⊂ LL(k) = LR(k)

However, this do not often happen in practice.
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Claim 3: Space and Time Requirements

Is lookahead k > 1 plausible in practice?
• In theory, storing full lookahead information for one

decision requires O(|T |k) space, where |T | is the number of
token types.

It was not plausible earlier, but it can be today:
• More available memory, faster processors.
• Various techniques and heuristics were developed:

• Linear-approximate lookahead – O(k |T |)
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Conclusion

• Recognizers × Translators

• There are practical needs for k > 1 lookahead:
• Transformation techniques might be impractical.
• The presence of actions reduces the strength of LR(k)

translators.
• With current computers and heuristic approaches, use of

k > 1 is feasible.
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