Alexander Meduna, Lukáš Vrábel, and Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/~{meduna,ivrabel.izemek}

Outline

- Introduction
- Motivation
- Definitions and Examples
- Results
- Open Problems

One-sided random context grammars

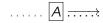
- variant of a random context grammar
- $P = P_L \cup P_R$
- $[A \rightarrow X, U, W] \in P$

One-sided random context grammars

- variant of a random context grammar
- $P = P_L \cup P_R$
- $[A \rightarrow X, U, W] \in P_L$

One-sided random context grammars

- variant of a random context grammar
- $P = P_L \cup P_R$
- $[A \rightarrow x, U, W] \in P_R$



One-sided random context grammars

- variant of a random context grammar
- $P = P_L \cup P_R$
- $[A \rightarrow x, U, W] \in P_R$

Illustration

$$[A \rightarrow X, \{B, C\}, \{D\}] \in P_L$$

bBcECbAcD

One-sided random context grammars

- variant of a random context grammar
- $P = P_L \cup P_R$
- $|A \rightarrow X, U, W| \in P_R$

$$A \longrightarrow A$$

Illustration

$$\lfloor A \to X, \{B, C\}, \{D\} \rfloor \in P_L$$

One-sided random context grammars

- variant of a random context grammar
- $P = P_L \cup P_R$
- $|A \rightarrow X, U, W| \in P_R$

$$A \longrightarrow A$$

Illustration

$$\lfloor A \to X, \{B, C\}, \{D\} \rfloor \in P_L$$

$$\overleftarrow{bBcECb} A cD \Rightarrow bBcECb x cD$$

Motivation

- A natural generalization of left forbidding grammars and left permitting grammars.
- Theoretical viewpoint:
 - What is the impact of this restriction on the generative power of random context grammars?
 - The achieved results may be useful in the future when solving open problems.
- Practical viewpoint: possible applicability in practice.

Definition

A one-sided random context grammar is a quintuple

$$G = (N, T, P_L, P_R, S)$$

where

- N is the alphabet of nonterminals;
- T is the alphabet of terminals;
- P_L and P_R two are finite sets of *rules* of the form

$$|A \rightarrow X, U, W|$$

where $A \in N$, $x \in (N \cup T)^*$, and $U, W \subseteq N$;

• S is the starting nonterminal.

Definition

A one-sided random context grammar is a quintuple

$$G = (N, T, P_L, P_R, S)$$

where

- N is the alphabet of nonterminals;
- T is the alphabet of terminals;
- P_L and P_R two are finite sets of *rules* of the form

$$[A \rightarrow X, U, W]$$

where $A \in N$, $x \in (N \cup T)^*$, and $U, W \subseteq N$;

• S is the starting nonterminal.

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $|x| \ge 1$, then G is propagating.

Definition

The direct derivation relation, denoted by \Rightarrow , is defined as

$$uAv \Rightarrow uxv$$

if and only if

$$[A \rightarrow X, U, W] \in P_{\mathbf{L}}, U \subseteq alph(\mathbf{u}), \text{ and } W \cap alph(\mathbf{u}) = \emptyset$$

or

$$[A \rightarrow X, U, W] \in P_{\mathbb{R}}, U \subseteq \text{alph}(\mathbf{v}), \text{ and } W \cap \text{alph}(\mathbf{v}) = \emptyset$$

Definition

The direct derivation relation, denoted by \Rightarrow , is defined as

$$uAv \Rightarrow uxv$$

if and only if

$$[A \rightarrow x, U, W] \in P_L, U \subseteq alph(u), and W \cap alph(u) = \emptyset$$

or

$$[A \rightarrow x, U, W] \in P_{R}, U \subseteq alph(v), \text{ and } W \cap alph(v) = \emptyset$$

Definition

The language of G, denoted by L(G), is defined as

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

where \Rightarrow^* is the reflexive-transitive closure of \Rightarrow .

Example

Example

Consider the one-sided random context grammar

$$G = (\{S, A, B, \bar{A}, \bar{B}\}, \{a, b, c\}, P_L, P_R, S)$$

where P_L contains

$$\begin{bmatrix} S \to AB, \emptyset, \emptyset \end{bmatrix} \\
\begin{bmatrix} B \to b\bar{B}c, \{\bar{A}\}, \emptyset \end{bmatrix}$$

$$\begin{bmatrix} \bar{B} \to B, \{A\}, \emptyset \rfloor \\ [B \to \varepsilon, \emptyset, \{A, \bar{A}\}]
\end{bmatrix}$$

and P_{P} contains

$$\begin{array}{ll} \lfloor A \to \alpha \bar{A}, \{B\}, \emptyset \rfloor & \qquad \qquad \lfloor A \to \varepsilon, \{B\}, \emptyset \rfloor \\ \lfloor \bar{A} \to A, \{\bar{B}\}, \emptyset \rfloor & \qquad \qquad \end{array}$$

$$L(G) = \{a^n b^n c^n \mid n \ge 0\}$$

Denotation of Language Families

- $\mathscr{L}_{\mathit{CF}}$. . . the family of context-free languages
- ullet $\mathscr{L}_{\mathit{CS}}$. . . the family of context-sensitive languages
- ullet $\mathscr{L}_{\mathit{RE}}$... the family of recursively enumerable languages
- \mathscr{L}_{RC} ... the family of random context languages
- $\mathcal{L}_{\mathit{RC}}^{-\varepsilon}$... the family of propagating random context languages
- $\mathscr{L}_{\mathit{ORC}}\dots$ the family of one-sided random context languages
- $\mathcal{L}_{ORC}^{-\varepsilon}$... the family of propagating one-sided random context languages

Generative Power

Random Context Grammars:

Theorem

$$\mathscr{L}_{\mathit{CF}} \subset \mathscr{L}_{\mathit{RC}}^{-\varepsilon} \subset \mathscr{L}_{\mathit{CS}} \subset \mathscr{L}_{\mathit{RC}} = \mathscr{L}_{\mathit{RE}}$$

Generative Power

Random Context Grammars:

Theorem

$$\mathscr{L}_{\mathit{CF}} \subset \mathscr{L}_{\mathit{RC}}^{-\varepsilon} \subset \mathscr{L}_{\mathit{CS}} \subset \mathscr{L}_{\mathit{RC}} = \mathscr{L}_{\mathit{RE}}$$

One-Sided Random Context Grammars:

Theorem

$$\mathscr{L}_{\mathrm{ORC}}^{-\varepsilon}=\mathscr{L}_{\mathrm{CS}}$$
 and $\mathscr{L}_{\mathrm{ORC}}=\mathscr{L}_{\mathrm{RE}}$

Generative Power

Random Context Grammars:

Theorem

$$\mathcal{L}_{CF} \subset \mathcal{L}_{RC}^{-\varepsilon} \subset \mathcal{L}_{CS} \subset \mathcal{L}_{RC} = \mathcal{L}_{RE}$$

One-Sided Random Context Grammars:

Theorem

$$\mathscr{L}_{\mathrm{ORC}}^{-arepsilon}=\mathscr{L}_{\mathrm{CS}}$$
 and $\mathscr{L}_{\mathrm{ORC}}=\mathscr{L}_{\mathrm{RE}}$

Corollary

$$\mathscr{L}_{RC}^{-\varepsilon} \subset \mathscr{L}_{ORC}^{-\varepsilon} \subset \mathscr{L}_{RC} = \mathscr{L}_{ORC}$$

One-Sided Permitting Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $W = \emptyset$, then G is a one-sided permitting grammar.

One-Sided Permitting Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $W = \emptyset$, then G is a one-sided permitting grammar.

- $\mathscr{L}_{\mathit{OPer}}$. . . the family of one-sided permitting languages
- $\mathcal{L}_{\mathit{OPer}}^{-\varepsilon}$... the family of propagating one-sided permitting languages

One-Sided Permitting Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $W = \emptyset$, then G is a one-sided permitting grammar.

- $\mathscr{L}_{\mathit{OPer}}$... the family of one-sided permitting languages
- $\mathcal{L}_{\mathit{OPer}}^{-\varepsilon}$... the family of propagating one-sided permitting languages

Theorem

$$\mathscr{L}_{CF} \subset \mathscr{L}_{OPer}^{-\varepsilon} \subseteq \mathscr{L}_{SC}^{-\varepsilon} \subseteq \mathscr{L}_{CS}$$

)

• $\mathcal{L}_{\mathit{SC}}^{-\varepsilon}$... the family of propagating scattered context languages

One-Sided Forbidding Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $U = \emptyset$, then G is a one-sided forbidding grammar.

One-Sided Forbidding Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $U = \emptyset$, then G is a one-sided forbidding grammar.

- ullet $\mathscr{L}_{\mathit{OFor}}\dots$ the family of one-sided forbidding languages
- $\mathscr{L}^{-\varepsilon}_{\mathit{OFor}}$... the family of propagating one-sided forbidding languages

One-Sided Forbidding Grammars

Definition

If $[A \to x, U, W] \in P_L \cup P_R$ implies that $U = \emptyset$, then G is a one-sided forbidding grammar.

- ullet $\mathscr{L}_{ extsf{OFor}}\dots$ the family of one-sided forbidding languages
- $\mathcal{L}_{\mathit{OFor}}^{-\varepsilon}$. . . the family of propagating one-sided forbidding languages

Theorem

$$\mathscr{L}_{\mathsf{OFor}}^{-arepsilon} = \mathscr{L}_{\mathsf{S}}^{-arepsilon}$$
 and $\mathscr{L}_{\mathsf{OFor}} = \mathscr{L}_{\mathsf{S}}$

- \mathcal{L}_{S} ...the family of languages generated by selective substitution grammars
- $\mathscr{L}_{\mathbb{S}}^{-\varepsilon}$... the family of languages generated by propagating selective substitution grammars

Left Random Context Grammars

Definition

If $P_R = \emptyset$, then G is a left random context grammar.

Left Random Context Grammars

Definition

If $P_R = \emptyset$, then G is a left random context grammar.

- ullet $\mathscr{L}_{\mathit{LRC}}$... the family of left random context languages
- $\mathscr{L}_{\mathit{LRC}}^{-\varepsilon}$... the family of propagating left random context languages

Left Random Context Grammars

Definition

If $P_R = \emptyset$, then G is a left random context grammar.

- \mathscr{L}_{IRC} ... the family of left random context languages
- $\mathcal{L}_{\mathit{LRC}}^{-\varepsilon}$... the family of propagating left random context languages

Open Problem

What is the generative power of left random context grammars?

Left Forbidding Grammars

Definition

A one-sided forbidding grammar G with $P_R = \emptyset$ is a left forbidding grammar.

Left Forbidding Grammars

Definition

A one-sided forbidding grammar G with $P_R = \emptyset$ is a left forbidding grammar.

- $\mathscr{L}_{\mathit{LFor}}$. . . the family of left forbidding languages
- $\mathscr{L}^{-\varepsilon}_{\mathit{LFor}}$. . . the family of propagating left forbidding languages

Left Forbidding Grammars

Definition

A one-sided forbidding grammar G with $P_R = \emptyset$ is a left forbidding grammar.

- $\mathscr{L}_{\mathit{LFor}}$... the family of left forbidding languages
- $\mathscr{L}^{-\varepsilon}_{\mathit{LFor}}$... the family of propagating left forbidding languages

Theorem

$$\mathcal{L}_{\mathsf{LFor}} = \mathcal{L}_{\mathsf{LFor}}^{-\varepsilon} = \mathcal{L}_{\mathsf{CF}}$$

0

Left Permitting Grammars

Definition

A one-sided permitting grammar G with $P_R = \emptyset$ is a left permitting grammar.

Left Permitting Grammars

Definition

A one-sided permitting grammar G with $P_R = \emptyset$ is a left permitting grammar.

- $\mathscr{L}_{\mathit{LPer}} \dots$ the family of left permitting languages
- $\mathscr{L}^{-\varepsilon}_{\mathrm{LPer}}$. . . the family of propagating left permitting languages

Left Permitting Grammars

Definition

A one-sided permitting grammar G with $P_R = \emptyset$ is a left permitting grammar.

- $\mathscr{L}_{\mathit{LPer}} \ldots$ the family of left permitting languages
- $\mathscr{L}^{-\varepsilon}_{\mathit{LPer}}$... the family of propagating left permitting languages

Theorem

$$\mathscr{L}_{\mathrm{CF}} \subset \mathscr{L}_{\mathrm{LPer}}^{-\varepsilon} \subseteq \mathscr{L}_{\mathrm{SC}}^{-\varepsilon} \subseteq \mathscr{L}_{\mathrm{CS}}$$

Some Other Interesting Properties

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar satisfying

$$P_L = P_R$$

Some Other Interesting Properties

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar satisfying

$$P_L = P_R$$

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar satisfying

$$P_L \cap P_R = \emptyset$$

Some Other Interesting Properties

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar satisfying

$$P_L = P_R$$

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar satisfying

$$P_L \cap P_R = \emptyset$$

Theorem

Every one-sided random context grammar can be turned into an equivalent one-sided random context grammar having at most 10 nonterminals.

Further Properties and Modifications

- other descriptional complexity results
- normal forms
- leftmost derivations
- generalized one-sided forbidding grammars
- LL one-sided random context grammars
- one-sided ETOL systems

Main Open Problems

- What is the generative power of left random context grammars?
- Are the inclusions $\mathscr{L}^{-\varepsilon}_{\mathit{OPer}} \subseteq \mathscr{L}^{-\varepsilon}_{\mathit{SC}}$ and $\mathscr{L}^{-\varepsilon}_{\mathit{LPer}} \subseteq \mathscr{L}^{-\varepsilon}_{\mathit{SC}}$, in fact, proper?
- Can one-sided forbidding grammars generate every recursively enumerable language?

Main References

A. Meduna and P. Zemek.

One-sided random context grammars. *Acta Informatica*, 48(3):149–163, 2011.

A. Meduna and P. Zemek.

Nonterminal complexity of one-sided random context grammars. *Acta Informatica*, 49(2):55–68, 2012.

A. Meduna and P. Zemek.

On one-sided forbidding grammars and selective substitution grammars. *International Journal of Computer Mathematics*, 89(5):586–596, 2012.

A. Meduna and P. Zemek.

One-sided random context grammars with leftmost derivations. *LNCS Festschrift Series: Languages Alive*, 160–173, 2012.

A. Meduna and P. Zemek.

Generalized one-sided forbidding grammars.

International Journal of Computer Mathematics, to appear.

P. Zemek.

Normal forms of one-sided random context grammars. In *EEICT 2012 Volume 3*, pages 430–434. BUT FIT, Brno, CZ, 2012.

A. Meduna, L. Vrábel, and P. Zemek.

LL one-sided random context grammars. Submitted manuscript.

