Mathematical Foundations of
Formal Language Theory

Alexander Meduna, Lukas Vrabel, and Petlr Zemek

Faculty of Information Technology, Brno University of Technology

January 6, 2013

Alexander Meduna, Lukas Vrabel, and Petr Zemek

Mathematical Foundations of Formal
Language Theory

January 6, 2013

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic

Abstract and Acknowledgements 1I

Abstract

This document gives a gentle introduction into the mathematical foundations of formal
language theory. More specifically, it reviews sets, relations, sequences, functions, rela-
tional closures, types of mathematical statements and their proofs. To explain these basic
mathematical notions that underly the theory of formal languages, we use a running ex-
ample, where, starting solely from the idea of a finite automaton, we gradually build our
way up to a formal definition of this model. In this way, it can be seen not just how
various mathematical concepts are applied, but also the motivation for using them over
the others. We also cover the basics of mathematical statements and their proofs. The
present document emphasises clarity and comprehensibility. Every notion is described
informally prior its definition, and many examples illustrating the concepts are provided.

Acknowledgements

The present work was supported by the FRVS MSMT FR271/2012/G1 grant. We wish to
thank our girlfriends, Ivana, Pavla, and Daniela, whose everlasting interest and constant
support have given us the motivation to realize this work.

Contents

0 Tntroductionl.coiiiiii 1
2 Defining Finite Automatal 6
20 Sets] .. o 8

T2 SOQUOTCOT -+ o e oo oo e 18

2.3 REIALIONS -+« v e ettt e e e e 20

R TUNCHONE. « v ettt 23
25 Finite Automatonl 25
[3_ Defining Computation and Accepted Language|..................... 28
BT Compuiation) - - oo 29

3.2 Accepted Language]. 32

3.3 CIOSUTES. . o oottt 33
4___Mathematical Statements and Their Proofsl......................... 37
4.1 Why is Proving so Important?| 38

4.2 Layout and Types of Mathematical Statements|............... 39
4.2.1 General Layout of a Statement|.............. 39

4.2.2 The Basics: Theorem, Lemma, and Corollary| 40

4.2.3 Where Everything Starts: Axiom|.............. 41

4. 2.4 SUIIMNATY| . ¢ o oot e 43

4.3 es of Mathematical Proofs| 44
... 44

4.3.2 Proof by Contradiction|. 45

4.3.3 Proof by Induction| 47

4.4 Examples from Formal Language Theory|.......... 49
4.4.1 Concatenation of Languages| 49

4. umping Lemma). e 51

1.4.3 Operations Over SEngs| . .o v vt e e 54

B ConclUSIOn]ottt et e 57
Bibliography|. 59

1

Introduction

Have you ever wondered why there is so much mathematics in computer science? For
example, computer graphics is filled with linear algebra, relational databases are built
upon relations, computer networks greatly utilize graph theory, compiler design take ad-
vantage of automata, and the area of formal verification and analysis use formal methods.
Indeed, everywhere you look, you see the “queen of science”. Some people even say that
computer science in general is mathematics’ younger sister. Why is this so? In this doc-
ument, we will show why mathematics is important for computer science, and how to
understand, read, and write it.

However, the area of computer science is so huge that we cannot cover it all. Instead,
we narrow our main attention to formal language theory, which fulfils a crucial role in
most computer science fields that grammatically analyze and process languages, ranging
from compilers through computational linguistics up to bioinformatics. We will see which
mathematical concepts fit very nicely in this theory and the reasons for using them.

One of the basic mathematical concept is formalization. We take a real-world sce-
nario and convert it into a formal mathematical representation. Then, we may formally
deduce properties of this representation and actually prove that the system works as
intended by using one of the strongest weapon for reasoning—mathematical logic. Thus,
we can connect and use one of the oldest sciences known to man and profit from its vast
knowledge base.

Consider the following three real-life scenarios. Mainly, notice their similarities, which
we will discuss shortly.

1. Coke-vending machine. Consider a classical coke-vending machine which, given a
sufficient amount of money, provides a beverage. Such a machine may provide a
variety of different beverages as well as it may accept coins or paper money. After
choosing what you want and putting enough money into the machine, you will receive
the chosen drink. Furthermore, if you overpaid, you will (in most cases) get the change
back. These machines start with no beverage selected and no inserted money. Then,
as the customer provides input in the form of drink selection and money, the machine
changes its state reflecting these inputs. Finally, after a drink is provided, it restarts
into the start state.

2. Soldier in a computer game. Apart from their look, soldiers from computer games,
like Warcraft or Operation Flashpoint, differ in many ways. For example, they may

1 Introduction 2

hold various equipment, like weapons, have different skills, and fulfil different tasks.
Their current behavior is altered by changes in the environment. For example, if an
enemy is in sight, the soldier may switch to an aggressive state and start shooting
at him, or, when the enemy is too powerful, he can switch to a fleeing state and
run away from him. Usually, a soldier starts from some default state. Then, as the
game evolves, he is switching to various other states based on the environment and
commands, and finally ends if he dies or the end of game is reached.

. Remowal of comments from computer programs. Consider, for example, the block

comments in the C language, delimited by “/*” and “*/”. Usually, a tool that removes
such comments from C source code is a part of compilers. It reads the input program
in a symbol-by-symbol way, and when encountering “/*”, it changes its state to
a comment-removing state so that the comment does not appear in the output.
Furthermore, it has to remember when it is inside of a string, where comments
are not to be eliminated. Indeed, “printf ("/* Hello */ Ben")” should print “/*
Hello */ Ben!”, not just “ Ben”. A tool like this usually starts at the beginning of
the input program and ends when the end of the input file has been reached.

Naturally, engineers get into contact with these kinds of situations. When designing

a computer system or program used to simulate or solve problems in such scenarios, it is
useful to find some simple formal system preserving all the important properties of the
scenario. Having such systems allows us to answer a lot of questions more easily. The
first step in finding such a system is to find these important properties.

From a rather general viewpoint, all of the above scenarios share the following five

similarities:

First of all, they have some state by which they can be specified in any time moment.
The state of a coke-vending machine is composed of the selected beverage and the
amount of money that have already been put into the machine. A soldier may be
described by his equipment, set of skills, goal, position, etc. Finally, the tool for
eliminating block comments in C code may be specified by the piece of information
inside which syntactical construct it appears (block comment, string, etc.) and by the
unread part of the input.

They act based on the input provided from the environment. In the case of a vending
machine, the input are choices of the user (type of beverage) and inserted money.
The act of a soldier depends on the presence of enemies, items, and other things that
surround him. And, as for the comment-eliminating tool, the input are, of course, the
read characters that the source code is composed of.

The change of their state is based on the current state and the currently processed
input. This change may be prescribed by so-called state transition rules. When we
insert a new coin into a vending machine, it has to remember this fact by switching
its state. Soldiers work in the same way. For example, if a soldier has a gun (state)
and sees an enemy (input), it starts to fire at him (the next state). In the source-
code-altering tool, we may prescribe that after reading “/*”, it starts to discard the
subsequent characters until “*/” is read.

They all start from some designated start state. A coke-vending machine usually starts
with no pre-selected beverage and no inserted coins. A soldier may start from some
default state, like without any equipment and waiting for orders. And, as we have
already said, our tool starts at the beginning of the input source code.

1 Introduction 3

e They end when they reach some final state. In the case of a vending machine, such
states may be all states where we have selected a beverage and have inserted a suffi-
cient amount of money. The number of such states depend on the variety and prices
of products as well as on the permissible types of money. A soldier may end when he
dies, finishes his assignment, or the end of the game has been reached. The comment-
eliminating tool ends when the input source program has been completely read and
transformed.

These similarities bring us to the idea of creating a single simple model for all of these
scenarios. This concept is described next.

The main strategy behind the usage of mathematics for problem solving is a process
called abstraction. The word abstraction is used in the following sense: we take these
somewhat complex real-world problems, and we simplify them as much as we can—that
is, we strip them of everything that can be left out, everything that is not important for
our problem solving. For example, in the case of a coke-vending machine, it is not really
important if the drink is a coke. It is not even important that it is a drink, or that we
are counting coins! The only thing we need to concern ourselves with is that we need to
add up some numbers and then do some action.

After we simplify as much as we can, we are left with a very simplified model of real-
world problems. This model has, in fact, almost no resemblance to the original real-world
case study. We do this simplifying in order to solve the key problems while doing as little
work as possible as well as minimizing the chance of errors. We can then focus just on
the important parts of our problem and we do not have to concern ourselves with tedious
petty details.

Actually, there is an even better approach—we can even entirely skip the model
creation part! We can just simplify until we reach an existing abstract model, and then
we can use previously established results of other people as the basis for our solution to
the problem. In our case, the very well understood model of a finite automaton is a simple
model that is sufficient for our problems. Of course, for some problems we could simplify
even more, and some of the problems will need a little bit extra complexity for the best
solutions. Thus, in order to achieve the best solutions, we could create an entirely new
model for every problem. However, by using the theory of finite automata, we can build
from the already known result&ﬂ By using these known results, we will save a lot of time
and money, which would be otherwise spent to reinvent the “wheel” in slightly different,
new model, and we will get much better efficiency. Indeed, if we look at the model of a
finite automaton intuitively, it consists of a lot of different states, and the active state
is changed based on the inputs of the automaton. That is everything we need for our
scenarios.

Furthermore, by learning mathematics, abstraction, and model creation, you are
learning one of the core skills of an engineer. Sometimes, as can be seen in Figure
computer-science students are more inclined to learn about popular, hot topics. However,
these attractive topics tend to be flushed away, being replaced by other seasonal booms.
On the other hand, core topics in computer science provide firm foundation on which
one can build and learn.

1 One of such useful results would be that for implementing a finite automaton of n states, we
need just a simple electronic circuit with log, n memory bits.

1 Introduction 4

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(r), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.,.. THE RUNNING TIME IS O¢p%m)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN. I JUST
WANTED To LEARN
How TO PROGRAM
VIDEQ GAMES,

Fig. 1.1. Sometimes, students are more inclined to learn about popular topics in contrast to
core ideas of computer science (adopted from [10]).

Example 1.1. Examples of some hot topics for computer science in early 2000, compared
to the corresponding underlying core topics:

Hot topic: cloud computing
Core topics: distributed systems, distributed algorithms, operating systems

Hot topic: programming in CH
Core topics: programming language theory, compilers

Hot topic: multi-core systems
Core topics: computer architecture, instruction sets, digital systems

Hot topic: writing video games
Core topics: graphics, linear algebra, digital image processing, artificial intelligence
Learning math and core topics allows students to gain new skills in the future more easily.

On the other hand, learning hot topics without understanding the underlying core ideas
will probably make students unprepared for the things of the near future.

1 Introduction 5

Goals

The principle goal of this document is to give you a gentle introduction into the math-
ematical foundations of formal language theory. The secondary goals include a demon-
stration of the usefulness of mathematical notation and rigorous methods, notes on how
to read and write your of definitions and statements, and why are mathematical proofs
of major importance.

Approach

To explain the basic mathematical notions that underly the theory of formal languages,
we will use a running example. Starting solely from the idea of a finite automaton, we
will gradually build our way up to a formal definition of this model. In this way, you
will not just see how various mathematical concepts are applied, but also the motivation
for using them over the others. Of course, during the course, we will also provide many
worked-out examples to illustrate the concepts. Furthermore, we will try to relate the
concepts to an area of application of formal language theory—programming.

Prerequisites

Although this text is self-contained in the sense that no other sources are needed to
grasp all the presented material, the reader is expected to have at least basic knowledge
regarding elemental notions from formal language theory, like strings, languages, and
operations over them.

Organization

The present text is organized as follows. After this introductory chapter, Chapter
guides you through a mathematical formalization of finite automata. In a greater detail,
it provides you with the basics concerning sets, sequences, relations, and functions. At
the end of the chapter, we put all of these notions together to create a formal definition
of a finite automaton. Next, in Chapter [3] we introduce more notions that are needed
to properly and formally define a computation and the accepted language of a finite
automaton. After that, Chapter [@ covers the basics of mathematical statements and
proofs. As mathematics is based upon statements like theorems and their proofs, it is
vital for you to understand the motivation behind proving and stating proved results
formally. Chapter |5| concludes the present text by giving a summary of everything you
have learned during our journey through the world of mathematical foundations of formal
language theory.

2

Defining Finite Automata

In the introduction, we have seen how a simple formal model—finite automaton—is suit-
able for modelling many real-world scenarios. Basically, a finite automaton is composed
of states and rules that are used to transition between these states. In essence, states
represent information and rules are used to modify this information based on the input
from the environment. Usually, a single state is designed to be the start state. From this
state, the automaton always starts its computation process. Furthermore, some states are
marked as final states. They tell us that in such states, the automaton can successfully
finish its computation. Every transition rule has associated a symbol, which represents a
piece of information that is obtained from the environment. The automaton then works
in the following way. It starts in the start state. Based on the information provided from
the environment, it selects an appropriate rule which will take him into another state.
For every such piece of information, it uses a rule which results into the change of the
current state. When the automaton appears in a final state and there is no more informa-
tion from the environment, the computation is successful. Otherwise, if there is either no
appropriate rule to be used or no more information and the automaton has not reached
a final state yet, the computation is said to be unsuccessful.

A very succinct and illustrative way of representing finite automata is their graphical
representation. It is of the form of a transition diagram. This diagram shows the states of
the automaton, the rules used to transition from a state to another state, the designated
start state and final states. In Figure we see an example of a finite automaton repre-
senting a rather simplified version of a payment mechanism in a coke-vending machine.

In such a diagram, states are represented by round rectangles whose label is a symbolic
name of the state. In our example, we label states by the amount of money that was
already put into the machine and the amount of money the machine will return as
change. For simplicity, let us imagine that we have only coins with values 2 and 5, and
a coke costs 4. Then, the state labeled by (0) denotes the fact that when the automaton
is in this state, no money has been put into the vending machine. States labeled by
(2), (4), (5), and (7) represent the given sum of coins that have been put into the vending
machine. Furthermore, states whose labels start with ret: represent the final states of
the automaton. In these states, enough money have been already put into the vending
machine in order to get a coke. In addition, these states also store the information about
the amount of money that have to be returned. The start state is denoted by an ingoing

2 Defining Finite Automata 7

T)
M tern |
=)

Fig. 2.1. A transition diagram of a finite automaton representing a payment mechanism in a
coke-vending machine. When the price of the coke is 4, some states are needed to sum up the
coins while other states store the amount of change returned to the customer along with the
coke.

arrow, and final states are marked by double outline. Regarding transition rules, they
are written as arrows from a state into another state, labeled by a piece of information
provided by the environment. In our case, the environment is the person who wants a
coke, and the pieces of information are the coins which are put into the machine. You can
see that some arrows have a coin value attached to them, with corresponding sums in
the adjacent states. On the other hand, some arrows have no additional symbols. These
arrows represent transitions that do not require any input—that is, if we put enough
money, we can transition to coke-giving states without any further input.

The primary goal of the present chapter is to provide you with the understanding of
the basic mathematical notions that enable us to define finite automata formally. The
secondary goal is to show you how how to read mathematical text, how to understand
it, and how to write rigorous definitions.

In order to describe finite automata in a formal, mathematical way, we will need to
specify the following parts:

states,

the starting state,
final states,

input symbols, and
transition rules.

In the course of this chapter, we will introduce appropriate mathematical constructs for
each part, together with basic explanations of these constructs.

This chapter is organized as follows. First, Section [2.1| introduces sets, which are
the basic mathematical structures that we use throughout the whole chapter. Then,
Section [2:2] briefly mentions a related concept to sets—sequences. Section [2.3] introduces
so-called relations, which represent a formalization of rules of finite automata. After that,
in Section we take a look on functions, which are special relations that can be used
to model deterministic versions of finite automata. Finally, the chapter is concluded by
Section where we put all the pieces together and obtain a formal definition of a finite
automaton.

2.1 Sets 8

2.1 Sets

From the informal description of a finite automaton given in the introduction to the
present chapter, we see that a finite automaton is composed of several objects. These
objects are states, rules, and input symbols. From them, let us focus on states. First of
all, they are labeled by a label by which we may distinguish them. Therefore, if you are
given two states, you can immediately tell whether these two sets are, in fact, identical,
or they are two distinct states. Furthermore, if you have a finite automaton, you may
clearly say which states belong to the automaton and which states do not. This is the
first important property. The second property is that the order of states does not matter.
Indeed, the transition diagram can be drawn in many different ways and it does not make
much sense of saying that one states is greater than some other state. When formalizing
states, we would like to have a mathematical structure that can capture both of these
properties. This brings us to sets.

What Is a Set?

A set is a collection of distinct objectdT]

Example 2.1. Examples of sets:

e Set V of three basic colors: V = {red, green, blue}.
e Set A containing four arrows: A = {1,+,], —}.

For each object, you can tell whether it belongs to the set or not, and that is the only
property of sets. Therefore, sets are without any other structure than membership. If we
have a set, we can only ask if an object is a member of (i.e. is present in) the set or not.

Note that this has the following two severe implications:

1. As the membership can be only true of false, an object cannot be contained in a set
multiple times.
2. Objects in a set have no implicit ordering.

Example 2.2. A consequence of these implications is that the sets {1,2,3}, {1,1,2, 3},
and {2, 3,1} are all equal. In fact, these are just three different ways to describe a single
set.

As you have already noticed, sets are conventionally denoted with capital letters,
like P, @, and R, or by other symbols, as we will see next. The members of a set are
customarily called elements of the set. The fact that some object = is an element of a
set P is written as @ € P; the converse situation, where z is not an element of P, is
written as z ¢ P.

! In fact, there are many definitions of sets in mathematics, and each definition have its pros
and cons. However, in our case, this simple and intuitive definition (also called naive set
theory) will be satisfactory, as we will not use it for the problematic cases.

2.1 Sets 9

Example 2.3. Consider the set of all integers, which is usually denoted by Zﬂ The
objects —5, 0, 12456 are all elements of Z while the objects 3.25, car, and & are not

elements of this set. Using the notation utilizing € and ¢, we may write, for example,
—5€Zand & ¢ Z.

If you come from a programming background, you can think of sets as of arrays of
boolean flags. Each object has its own flag in this array, and this flag says whether the
object is a member of this set or not. This analogy reflects the boolean character of
membership.

How To Describe a Set?

The first, obvious way to describe a set is to use a natural language to specify all the
requirements imposed on the set.

Example 2.4. To define that Z is the set of all integers, we may write: “Let Z be the
set of all integers.” Or, as another example, we may say: “Let N be the set of states in
Europe whose names do not start with F.” The latter example, of course, assumes that
we agree which states are part of Europe and which are not.

At first, the usual mathematical wording can sound a little bit strange: How can we
say “Let N be the set of states in Europe.”? What if the set of all states in Europe
is A instead of N7 Or, what if N is already some other set, like the set of all natural
numbers? In this context, the word “let” is used more like in the sense “Let us choose N
as a temporary name of the set of states in Europe.”. The reason is that we need a short
name for the set, so we do not have to write “the set of states in Europe” each time we
want to say something about it.

The second way of describing a set is already very well known to you. It consists
of enumerating all the elements of the set as a comma-separated list enclosed in curly
brackets.

Example 2.5. To define a set) consisting of numbers 1 through 5, we may write
Q = {1a2737475}
As another example, the set P of all playing card suits may be defined as

P = {*a@a‘)v}

2 This symbol is called a blackboard bold Z, where Z stands for Zahlen (German for numbers).

2.1 Sets 10

As we have noted at the beginning of the chapter, the order in which the elements of
a set are listed is irrelevant. As we will see later, when we need an ordered collection, we
can use a sequence or tuple instead of a set.

Sometimes, there are just too many elements to list them all. Thus, when the meaning
is clear, we may use three dots (the symbol “...” also called an ellipsis) to abbreviate
the definition.

Example 2.6. The set R consisting of numbers between 1 and 100 may be defined as
R={1,2,...,100}

As another example, {a,b,...,z} stands for all the lower-case letters of the English
alphabet.

The last way of specifying a set is by giving a property that all its elements satisfy.
This specification is of the form

Q= {x : some property that = has to satisfy}

As usual, we first put the name of the set, then the equality sign, and after that the
definition of the set. The definition is composed by giving the name of a variable (x in
our case) that will be used in the specification of the property, then a delimiter (usually
a colon), and after that, we prescribe the property.

Example 2.7. The set of all natural numbers N may be written as

Nz{x:zeZ,xZO}

The comma in the above example reads as and. All in all, the above definition of N
can be read in the following way: “The set N is defined as a set of all xs such that x is
an element of Z and, at the same time, x is greater or equal to zero.”

Sometimes, the symbol “|” is used instead of “”. Also, you may encounter a use of
the logical operators V (logical or) and A (logical and). The following definitions of N
are equivalent to the definition from the previous example:

Example 2.8. The set of all natural numbers may also be written as

N:{x|z€Z,xZO}

Notice that we have used the symbol “|” instead of “.”. Or, alternatively, by using the
logical operator “A”, we may write

N:{x:xEZ/\xZO}

2.1 Sets 11

Or, simply, just by writing it down in words

N:{xsuchthathZandmZO}

All of the mentioned approaches may be combined together. Although mathematics
use an artificial language that is more strict than a regular language, it is not so strict as
a programming language. The most important rule for writing mathematics is that each
sentence should have precisely one meaning and it should be exact and accurate.

What Relations Between Sets Are There?

Sets can be related to other sets in several ways. The most obvious one is called equality.
As its name suggests, two sets are equal if they contain precisely the same elements. We
write this by using the symbol “=", so, for example, if A and B are two equal sets, we

7

write this as A = B. If two sets are not equal, we write this by using “#” instead of “=".

Example 2.9. Let M and N be two sets, defined as M = {1,2,3} and
N = {:U 1<z < 3}

Then, M = N. Notice that these two sets are equal even though they are defined in a
different way. Indeed, as both definitions imply that the sets have the same elements, 1,
2, and 3, they are equal. In fact, we can think of N and M just as two different names
given to the same set.

Next, let P be a set defined as P = {1,2,3,4,5}. Then, N # P, which also implies
that M # P. Indeed, since M is just an another name of N and N # P, then M and P
cannot have the same elements.

The second relation is containment. If every element of a set A is also an element of
a set B, then we say that A is a subset of B, written as A C B.

Example 2.10. If A = {&,#} and B = {&,(},Q,@}, then A C B.

An interesting property to note is that, when we have some set A, then it is always
true that A C A. Even though it may seem strange, it actually fits the definition of a
subset quite nicely. Indeed, as every element of A is also an element of A, A C A.

However, what if we want to distinguish the situation when the sets are equal from
the situation where the second set contains also some other elements which are not in
the first set? To satisfy such a need, we will now define a new relation called proper
subset. In general, to introduce a new construct into a mathematical system, the notion
of formal definition (or just definition) is usually used. A definition is just a piece of text

2.1 Sets 12

exactly and unambiguously describing the behavior of our new construct. The wording
of a definition should be chosen carefully, as the main objective is to have just one single
way to interpret the text.

A definition is usually one of the most dense texts in mathematics. Even though a
lot of times it is just a single sentence consisting of mathematical symbols, the amount
of information encoded in this sentence can be written in a paragraph of regular text,
or even more. Definitions should be approached as a piece of source code in a special
“programming language” of mathematics—you have to think about every word and its
meaning in the context of the mathematical structure you are working with.

So, let us formally define the relation of a proper subset:

Definition 2.11. Let P and @ be two sets. If P C @ and P # @, then we say that P
is a proper subset of Q). We write this as P C Q.

Example 2.12. Consider the sets A and B from Example We have seen that
A C B. However, as A # B, we may also write A C B.

From the example above, we see that A C B says something more than A C B.
Indeed, the former says that (1) all elements of A are in B and (2) there are elements
in B that are not in A. The latter says only (1).

If we have good definitions of the basic constructs, lots of other notions can be defined
more easily by using such strong foundations. One example can be the definition of set
equality. We can us the subset relation to define the equality of two sets in an another
way:

Definition 2.13. Two sets P and @) are said to be equal, written as P = @, if P C @
and @ C P.

Let us stop now for a while and think about the above definition. If P C @, then
we know that all elements of P are in). Conversely, from @Q C P, we know that every
element of @ is in P. This, however, implies that both sets contain precisely the same
elements, which makes them equal. Thus, by using well-defined constructs, our definition
of equality has been shrunk and simplified from a paragraph of text into a single short
sentence.

2.1 Sets 13
Are There Any Special Types of Sets?

We have already seen many sets, but we have not discussed any natural way to create a
hierarchy from sets. Indeed, a set can be a member of other seff]

Example 2.14. Let us consider the set of all card suits: {&, o ¥ Q?}. Naturally, we can
have sets containing only the black suits, that is B; = {&}, By = {Q}, and B3 = {&7 Q}.
Finally, as these sets are also mathematical objects, we can put them together to form
an another set:

A={{&}, {0} {% a}}

However, please be careful—each of By, By, and Bj are elements of A, but they are not
subsets of A. Thus, you can write B; € A, but you cannot write By C A.

There exist a special, unique set, which is a subset of every other set—the empty set.
This is the set containing no elements. Usually, it is denoted by §). Such a set may arise
quite naturally, as can be seen in the following example.

Example 2.15. Define the set E by the following notation:
E:{x:mzo,m—i—l:x}

The set E is composed of numbers that are greater or equal to zero and, at the same
time, when we increment an element, we obtain the same element. After a little thinking,
we come to a conclusion that there is no such number that satisfies both conditions.
Therefore, E is, in fact, empty, which can be written as E = ().

The empty set has many interesting properties, some of which we mention next. First,
it is the only set that contains no elements. Indeed, all sets that differ from the empty
set have to contain at least one element. Second, the empty set is a subset of all sets.

We now move to another special type of a set. Consider a set, (). Depending on the
number of its elements, there may be many subsets of (). An interesting set is the set of
all subsets of @, defined next.

Definition 2.16. Let Q be a set. The power set of Q, denoted by 29, is the set of all
subsets of @, defined as

3 Nevertheless, we have to be careful with this property because in naive set theory, some
paradoxes can arise. One of the most famous example is the so-called Russell’s paradoz:
consider the set A = {z : ¢ x}. Having such set, we can ask whether A € A. However,
this question cannot be answered, as both possible answers lead to a logical contradiction. In
order to circumvent this paradox, a lot of different set theories have been proposed. One of
the most widely used theory is Zermelo-Fraenkel set theory.

2.1 Sets 14

29 ={P:PCQ}

Example 2.17. Consider the set A = {1,2,3}. Then, its power set is

24 = {0, {1}, {2}, {3}, {1,2},{2,3},{1,3},{1,2,3}}

An interesting fact to note is that for a set of n elements, its power set has precisely
2" elements. Therefore, for a three-element set, like the one in the example above, its
power set has eight elements.

A thought-provoking question is: What is the power set of the empty set? In symbols,
what elements are in the set 2?7 To answer this question, let us recall the definition of a
power set. For a set Q, 29 = {P : P C Q}. If we rewrite it by substituting) for Q, we
obtain

20 ={pP:PCO}

How many subsets does the empty set have? Exactly one: itself. Therefore, 2€ is composed
of precisely a single element: the empty set. In symbols,

2’ = {0}

It should be noted that {#} is not the same as §. Indeed, {}} is a set containing a single
element whereas () does not contain any elements. Do not intermix these two sets.

We now proceed to a classification of sets based on the number of their elements.
Before we delve into details, let us consider the following example.

Example 2.18. Let A, B, and C be three sets, defined as A =0, B = {1,2,3,4,5}, and
C ={x:2 €Z,z > 0}. Since A is the empty set, it does not contain any elements, and
so the number of its elements is 0. In B, there are five elements, 1 through 5. However,
how many elements are in C? The answer is: infinitely many. Indeed, C' is an example of
a so-called infinite set, discussed next.

Definition 2.19. Let P be a set. If there is an integer n such that P contains precisely
n elements, then P is a finite set; otherwise, P is an infinite set.

There are many examples of infinite sets in computer science—the set of all text files,
set of all source code files for a given programming language, set of all valid network
streams for given protocol, etc. Note that set of all source code files for some programming
language is, in fact, a proper subset of the set of all text files.

If you think of sets as of binary arrays with membership flags, it can be somewhat
difficult to imagine infinite arrays. However, to define an infinite set, you can create a

2.1 Sets 15

computer program accepting some input data as a member of the set, and rejecting all
other data. For example, to define the set of all valid Java programs, you can use the Java
compiler—a compiler always tells you whether the given source code file is a valid Java
program or not, and apparently, there is an infinite number of different Java programs
that can be created

For the definition of a finite automaton, we will use just finite sets (as a finite au-
tomaton has a finite number of states, input symbols and rules). However, infinite sets
will be useful later for defining all the possible move sequences of a finite automaton.

What Operations Can Be Performed Over Sets?

There exist many operations that can be done over sets. In this text, we mention only
the most commonly used ones.

In the first operation we are going to discuss, we take two existing sets and create a
new set from them, which will contain elements of both of these sets. In other words, we
unite the two sets into a single set.

Definition 2.20. Let P and @ be two sets. The union of P and @, denoted by P U @,
is defined as
PUQ:{x:xEPorZEQ}

The above definition reads as follows: “The union of P and @ is the set that contains
all such = that are elements of P or).” This implies that in the resulting set, we include
elements of both P and @, even if some object is an element of only one of these two sets.
Furthermore, since every object can be in a set at most once, if both P and @ contain
some same element, this element is included in P U @ only once. The following example
illustrates this operation on sets of card suits:

Example 2.21. Consider the sets A = {&, #} and B = {&, {}. Then,

e AUB={% 6,0}
AUA=AUD = {&, &}

Notice that the union of A with the empty set—as () does not contain any item, it
will not add anything to the union. If you think of sets as of boolean arrays, the union
operation is, in fact, equivalent to the binary or operation on two binary arrays. In this

4 One can argue that indeed there is an infinite number of programs, but the Java compiler
have to run on a computer, and a computer has only finite memory. Thus, it can accept only
finite number of programs up to some length. That can be true (at least until you upgrade
your hardware), but anyway, the existence of infinity is rather a metaphysical question fitting
more for philosophers than engineers. However, by actually thinking about an infinite inputs,
an engineer can create much more elegant and efficient solutions that scale well to larger and
larger architectures.

2.1 Sets 16

analogy, you can see that the resulting unified set cannot have two instances of a single
object. Furthermore, during a union, there cannot arise any new object that is not in
one of the two sets that are being united.

The second operation, called intersection, also constructs a new set from two existing
sets. However, contrary to set union, it includes only the elements that are in both sets.

Definition 2.22. Let P and @ be two sets. The intersection of P and @, denoted
by PN Q, is defined as
PﬂQz{x:xEPandeQ}

The above definition reads as follows: “The intersection of P and @ is the set that
contains all such x that are elements of both P and @Q.” Therefore, if there is an element
that is in only one of these two sets, it is not included into the resulting set. The following
example illustrates this operation on sets of card suits:

Example 2.23. Let A = {&, 8}, B = {&,}, and C = {9, $}. Then,

o ANB={&};

e BNC={4}

° AQAZ{&,Q};

e ANC=AN0=0.

If you think of sets as of boolean arrays, the intersection operation is, in fact, equiv-
alent to the binary and operation on two binary arrays.

The last operation we are going to discuss differs from both union and intersection—it
is an operation over a single set rather than over two sets. Let P be a set. We might
want to get objects which are not in P, which is precisely what the next operation does.
However, to make this operation meaningful, we need to know what is the universe of all
objects. The universe is usually a big superset of all the object we want to consider. If
we are working with natural numbers, our universe will not contain negative numbers or
fractions. On the other hand, if we are working with source codes of various programming
languages, we would probably choose the set of all text files as our universe.

When we have our favourite universe chosen, we can define the complement operator
as follows:

Definition 2.24. Let P a set, and U be the universe of all objects. Then, the complement
of P, denoted by P, is defined as

P={z:z€eU,x¢ P}

The above definition reads as follows: “The complement of P is the set that contains
all such x that are elements of U, but, at the same time, are not elements of P.” Therefore,

2.1 Sets 17
if there is an element that is in the universe but not in P, it will be included in the

resulting set. The following example illustrates this operation on sets of card suits:

Example 2.25. Set the universe to U = {&, #, O,) and consider the set A = {&, &}
Then,

O g:{@aﬁ},
0 =TU;
U=0.

Once again, if you think of sets as of boolean arrays, the complement operation is
equivalent to binary negation.

Towards Defining a Finite Automaton

Now, we know several things about sets, so we can try to define at least some parts of a
finite automaton. Recall that a finite automaton consist of the following parts:

e states,
e the starting state,
e final states,

e input symbols, and
e transition rules.

As sets are, in fact, just collections of objects, we can create the set of all states (we
will denote it by @ for future reference), set of final states (denoted by F'), set of input
symbols (denoted by ZED and set of transition rules (denoted by R). The starting state
(denoted by s) will be just a designated element of the set of states—that is, s € Q—and
possibly also an element of the set of final states. Furthermore, the final states have to
form a subset of all states, that is, F' C (). This covers the major part of our automaton,
but two essential parts are missing:

1. The states and input symbols can be just simple objects, but the transition rules
have to be more complex objects representing the relation between two states and
one optional input symbol. Furthermore, there is initial start state and the ending
state for each transition, so we cannot use the simple notion of an unordered set.

2. The automaton has to be defined as a complete object, not just a collection of some
sets. Therefore, we could try to define it as a set A = {Q, X, R, s, F'}. However, what if
all the states are final states? That is, what if F' = Q7 Then, as a single object cannot
be included in the set more than once, {Q, X, R, s, F} ={Q, X, R,s} = {X,R,s, F'},
which can cause us some confusion and troubles. Furthermore, it would be practical
to have some ordering on the components of a finite automaton so we know that the
first component defines states, the second component defines input symbols, and so
on.

5 ¥ is a Greek letter called sigma and it is usually used to denote the input alphabet in formal
language theory.

2.2 Sequences 18

Thus, in order to fully and conveniently define finite automata, we need to have
another, more complex mathematical structure—a sequence.

2.2 Sequences

In the previous section, we have discussed sets, which are collections of objects, where
their order does not matter and every object can be included at most once. However,
sometimes it is handy to have a mathematical formalism in which we may specify order
and include several instances of single object. This brings us to sequences.

A sequence is a list of objects. Contrary to a set, a sequence can contain an object
more than once and the objects appear in a certain order. By analogy with a set, objects
that appear in a sequence are called elements of the sequence. Elements in sequences
are usually separated by a comma. Furthermore, to distinguish sequences from sets, we
enclose all the elements of a sequence in the round brackets—symbols “(” and)”—
instead of curly brackets.

Example 2.26. A sequence of the numbers for five consecutive dice rolls:
R=(1,3,2,6,6)
A sequence of all the letters in the word sequence:
L= (s,e,q,u,e,n,c,e)
A different sequence containing the same letters, this time in an alphabetic order:

A= (c,eee,n,q,s,u)

In the previous example, note the following important points:

1. The elements of a sequence are enclosed by round brackets. Thus, we can easily
differentiate between sets and sequences.

2. A sequence can contain several occurrences of a single object—two instances of the
number 6 in the first sequence, or three instances of the letter e in second and third
sequence.

3. Even though L and A contain the same objects, A # L. In other words, the order of
the objects in a sequence does matter.

As sets, sequences can be either finite or infinite. However, in this text, we will use
only finite sequences. Infinite sequences are often used in terms of mathematical series [1].

Example 2.27. The Fibonacci sequence, where each member equals to the sum of its
two previous members, is one of the most known infinite number sequence:

2.2 Sequences 19

F=(0,1,1,2,3,58,13,21,34,...)

Sequences can be infinite in both directions. For example, the sequence of even numbers
ordered by value can be written as

E=(..,—4,-20,724,68,10,...)

Finite sequences are also called tuples. More specifically, sequences of two, three, four,
five, six, and seven elements are called pairs, triplets, quadruples, quintuples, sextuples,
and septuples, respectively.

Example 2.28. The coordinates of a point in an n-dimensional space can be represented
as n-tuples. We can use pairs such as (3,5), (—10,12), or (1.23, —4.8) for two dimensional
points, or triplets as (1,—2,3) or (99.76,0.593,2.67) for points in a three dimensional
space.

Furthermore, sequences can contain other sequences in a similar fashion to sets.

Example 2.29. A sequence of the cards dealt during the blackjack game last night:
G = ((6,9). (3.4). (4,9),(9.4))
A sequence of the points you need to cross to draw a simple house in a single line:
P=((-1,-1),(-1,1),(1,1),(1,-1),(-1,1),(0,2),(1,1),(-1,-1), (1, -1))

Note that both of these examples consist of sequences of tuples.

Now that we have a little bit stronger tool to work with, we can continue in the formal
definition of a finite automaton. Recall that we have defined the set of all states @, set
of inputs X, set of rules R, starting state s, and set of final states F'. However, we had
encountered the following two problems:

1. transition rules need to have start and end;
2. the automaton has to be defined as a complete object even if F = Q.

The second problem can be easily fixed by defining the finite automaton as a quintuple
M = (Q,~X,R,s, F). Thus, even if Q = F, the automaton still have the same form of a
quintuple with each component always on the same place.

The problem number one can be also solved by sequences. Each rule can be a triplet
(p,a,q), where p is the initial state of the transition, a is some input, and ¢ is the
ending state of the transition. Furthermore, recall that some transitions do not have a
corresponding input symbol. Therefore, we have to devise a new, special symbol denoting

2.3 Relations 20

the “no-input” property of these transitions. In formal language theory, the symbol € (a
Greek letter called epsilon, used as an abbreviation for the word empty) is used in these
kind of situations.

However, as we also want explore the various computation capabilities of finite au-
tomata, we should go even deeper down the rabbit hole of mathematical models. The
transition rules are not only some ordinary sequences. In fact, they are very special se-
quences with constraints—both the starting and ending element of a rule need to be
from the set of states, and the input element need to be from the set of inputs X' (or ¢).
Furthermore, we want to explore the computation process of different input sequences
by chaining the transitions one after another. However, not all the transitions can follow
each other. Thus, we need to consider the relations between inputs and states in the
transition rules. And, as you have already guessed, there is an “upgraded” version of a
sequence, called relation, which we can use exactly for this purpose.

2.3 Relations

In mathematics and its applications, we often want to specify relationships between
objects. For example, consider the greater than relation over integers. This relation is
usually denoted by the symbol “>”. From primary school, we know that the numbers 9
and 2 (in this order) are related by this relation while 5 and 7 (in this order) are not
related by >. This fact is usually written as 9 > 2 and 5 ¥ 7. Notice that the order of
the two numbers is important. Indeed, 9 > 2, but 2 % 9.

In this section, we are going to talk about such relations between objects. You will
see how to define the term relation mathematically, how to specify your own relations,
and how to use them.

Before we start with the definition of a relation, we will need the concept of the
Cartesian product of two sets. The Cartesian product of two sets, P and @), is the set of
all pairs (z,y) such that z is an element of P and y is an element of Q.

Definition 2.30. The Cartesian product of two sets, P and @), denoted by P X @, is
defined as

PXQ:{(w,y):xePandyeQ}

7

In the above definition, the symbol “x” read as “times”. Note that the pairs (z,y)
are, in fact, the special sequences of two objects called tuples (or, in this case, pairs).

Example 2.31. Consider the two sets A = {1,2} and B = {&, ,#,Q0}. Then, their
Cartesian product is

AxB={(1,&),(1,0),(1,4),(1,90),
(2,%),(2,0),(2,8),(2,9)}

As you can see, we have included all possible combinations of 1 and 2 with &, , #,
and Q.

2.3 Relations 21

An interesting fact about the Cartesian product is that if both sets P and @ are finite
(they have a finite number of elements), then their Cartesian product is also a finite set
with mn elements, where m is the number of elements of P and n is the number of
elements of Q.

Example 2.32. Consider the two sets A and B from Example and their Cartesian
product. The set A has two elements while B has four elements. Since both of these sets
are finite, their Cartesian product should have 2 - 4 = 8 elements. And, by counting the
number of elements of A x B in Example [2.31] we see that we have computed the number
of elements correctly.

It is not necessary for the two sets in Definition [2.30] to be different. Indeed, we may
compute the Cartesian product of a set with itself, like in the following example.

Example 2.33. Let @ = {1,2,3} be a set. Then, the Cartesian product @ x @ has the
following 3 - 3 = 9 elements:

QxQ=1{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

It is also possible to do the Cartesian product of infinite sets or even a finite set with
an infinite set, as we will see in the next two examples. When one of the sets is infinite,
the resulting Cartesian product is also always infinite.

Example 2.34. Let P be a set defined as P = {4+, —}. Then, the Cartesian product
of P with N (the set of all natural numbers) is denoted by P x N and contains an infinite
number of pairs. Always, however, the first item in every pair is either + or — and the
second one is a number from N. Since N is an infinite set, the Cartesian product is also
an infinite set.

Example 2.35. Consider the set of all natural numbers N. The Cartesian product of N
with itself—that is, N x N—has an infinite number of pairs of numbers. If you take any
two numbers ¢ and j, then the pair (4,) is in N x N.

Now, after we have throughly explored the notion of the Cartesian product of two
sets, we are ready to define mathematical relations formally. Informally, a relation is a
set of pairs from the Cartesian product of two sets. That is, given two sets P and @, a
relation is a subset of their Cartesian product:

2.3 Relations 22

Definition 2.36. A relation R from a set P to a set @ is defined as

RCPxQ

Example 2.37. Let us consider four persons: Jane, Paul, Don, and Elizabeth. Jane is
16 years old, Paul is 32 years old, and both Don and Elizabeth are 22 years old. We want
to specify this age relation mathematically. To do this, we create a set

P= {Jane, Paul, Don, Elizabeth}
and define the relation age C P x N as follows:
age = {(Jane, 16), (Paul, 32), (Don, 22), (Elizabeth, 22) }

In this way, we have formally specified the relation between the four persons and their
age.

The fact that two objects z and y are in a relation R is denoted by (z,y) € R.
Nevertheless, to improve readability, it is common to use the infix notation xRy. Indeed,
you have probably almost never seen the notation (6,3) €>; rather, what you have seen
is 6 > 3, which is of the infix form.

Since a relation is a set, all common properties and operations over sets apply to
relations as well. As a specific example, if a relation has a finite number of elements, it
is a finite relation; otherwise, it is an infinite relation.

Example 2.38. The relation from Example [2.37] is finite while the mathematical rela-
tion > over integers is infinite.

In the case we have the relation over the Cartesian product of a single set—that is,
over A x A—instead of saying “relation from A to A”, we may simply say “relation over
A”.

Sometimes, we need to relate more than two objects. Therefore, it would be handy to
extend the relation to more sets. Let us begin by extending the definition of Cartesian
product to n sets as follows:

Definition 2.39. The Cartesian product of n sets, P, through P,, where n > 1, is
denoted by
P x Py x---x P,

and defined as

2.4 Functions 23

P1><P2><~~><Pn:{(x1,:z:2,...,xn):mlePl,xQEPg,...,anPn}

Now, we can define an n-ary relation as a subset of the above-defined n-ary Cartesian
product.

Definition 2.40. For n > 1, an n-ary relation R over sets Py, Py, ..., P, is defined as

RCPxP,x---xP,

For relations between two objects, we use the term binary relation. When we are
dealing with three components, we may use the term ternary relation. Ternary relations
will be useful for defining the transition rules of a finite automaton, as these rules are
composed of three objects: initial state, input symbol, and the ending state. Therefore,
we will define the set of transition rules as a subset of @ x (¥ U {e}) x Q.

However, before we delve into the domain of finite automata, let us introduce one more
special type of a relation called function. The reason is that functions are, in fact, one of
the hottest candidate for the most important concept in mathematics. Furthermore, as
you will see, they will be useful for defining a special variant of a finite automaton.

2.4 Functions

Functions are just special relations with two restrictions. The main idea of a function is
that one object can be related just to a single another object. This can be convenient
in many situations. For example, consider the age relation from Example From a
purely mathematical viewpoint, the following relation, age’ (read “age prime”), is valid:

age’ = {(Jane, 16), (Jane, 20), (Don, 22) }

In this relation, Jane is associated with the ages 16 and 20, and Paul and Elizabeth are
not associated to any age. In our understanding of the notion of an age, a person’s age is
unique and all people have some age. From this viewpoint, the age’ relation is not valid,
even though it is mathematically correct. What we want is to specify that for two sets,
P and @, the relation R C P x @ should satisfy the following two properties:

(1) Uniqueness. For every x € P, there is at most one y € @ such that (z,y) € R. Recall
that xRy means that (z,y) € R.
(2) Totality. For every x € P, there exists y € Q such that (x,y) € R.

This brings us to functions, as these two properties are exactly the restrictions we need
to impose on a relation in order to call it a function.

2.4 Functions 24

Definition 2.41. Let P and @ be two sets. A function f from P to @, is a relation
from P to @ such that for every x € P, there is precisely one y € @ such that (z,y) € f.

Based on the above definition, we see that a function is a special type of a relation.
Therefore, all functions are relations, but some relations are not functions (as we have
seen in the introduction to this section).

Example 2.42. Consider the relation age from Example [2:37] over the sets
P = {Jane, Paul, Don, Elizabeth}
and the set of all natural numbers N:
age = {(Jane, 16), (Paul, 32), (Don, 22), (Elizabeth, 22) }

Clearly, as each name have ezactly one corresponding number, it is a function (note that
even though each name has to have exactly one value assigned to it, a single value can
be assigned to multiple names, as in the case of the value 22, which is assigned to both
Don and Elizabeth).

On the other hand, if you consider the relation

agez = {(Jane, 16), (Jane, 20), (Paul, 32), (Don, 22), (Elizabeth, 22) }

you can see that as Jane has two corresponding values, 16 and 20, attached to it, it is
not a function. Likewise, the relation

ages = {(Jane, 16), (Paul, 32), (Elizabeth, 22) }

is not a function over P XN because even though it does not have multiple values attached
to some name, it is not total. Indeed, Don has no corresponding value attached to itself.

In terms of functions, instead of (x,y) € f, we usually write f(z) = y. This means
that the function f assigns y to z. The reason why we may simply write f(z) = y instead
of (x,y) € f follows from the uniqueness and totality properties of functions.

Example 2.43. Consider for one more time the relation age from Example By
using the new notation, we can define age in the following way:

age(Jane) = 16, age(Paul) = 32, age(Don) = 22, age(Elizabeth) = 22

Now we know all mathematical tools that we need in order to fully formalize the
concept of a finite automaton and its computation process.

2.5 Finite Automaton 25

2.5 Finite Automaton

In this section, we will put together everything we have learned in the previous four sec-
tions concerning sets, relations, sequences, and functions. Indeed, finally, we will present
a complete formal definition of a finite automaton.

For the sake of compactness, we will review our previous argumentations and discus-

sions about what do we need and what mathematical concepts we should use to model
certain features.

States. As its name suggests, a finite automaton has a finite number of states. As
states are not required to be ordered and a single state may appear only once in the
automaton, an appropriate model is a set. Furthermore, as there has to be only a
finite number of states, this set has to be finite.

Inputs. Another component of a finite automaton to be specified are inputs. We will
model them by analogy with states—that is, we use a finite set.

Transition rules. A finite automaton has a finite number of transition rules, which take
it from a state by optionally reading an input symbol into another state. Therefore,
we see that states and input symbols are in a relation, which will be a suitable
mathematical concept do model rules. Indeed, we may use a relation which relates
two states with an input symbol. Furthermore, we have to use the unique non-input
symbol € in rules with no input symbol.

Start state. Every finite automaton has a specified start state, from which it starts
its computation. The start state will be a designated element of the set of states.
Final states. There also have to be some designated states in which the automaton
can finish its computation. We will describe them as a subset of the set of states.

Based on the above observations, we see that a finite automaton should have five

components. To put all of them together, we will use a sequence—more specifically, a
quintuple (recall that a quintuple is a sequence having five elements).

Now, we are ready to define a finite automaton formally.

Definition 2.44. A finite automaton is a quintuple

M= (Q,X,R,s,F)

where

Q is a finite set of states,

X is a finite set of input symbols,

R C Q@ x (XU{e}) x Q is a finite relation, called the set of rules,
s € @ is the start state, and

F C Q@ is a set of final states.

Let us go over the definition and make several notes. First of all, we have defined a

finite automaton to be a quintuple rather that a five-element set. Recall that the reason
behind this choice is twofold:

2.5 Finite Automaton 26

1. In a sequence, the meaning of the components is prescribed by their order. There-
fore, when we simultaneously discuss two finite automata, we may write just M =
(Q,X,R,s,F) and H = (O,T, P,p, G) without any need to say that O is the set of
states of H, T is the set of inputs of H, etc.

2. A quintuple stays a quintuple even if several elements are the same. For example,
when a finite automaton has (Q = F', which means that all its states are final, such a
finite automaton is still a quintuple. If we defined it as a five-object set, we would end
up with a four-object set because in a set, there cannot be more than one occurrence
of the same object. In our case, the same objects are (Q and F'.

The first and second component are a finite set of states and a finite set of input symbols.
The necessity to have both of these sets finite stems from the nature of a finite automaton.

Rules are modelled by a relation R C Q x (X U {e}) x Q. First, note that we are
using the € symbol in addition to input symbols. Second, members of R are referred to as
rules, and instead of (p, a,q) € R, we will write pa — ¢. The reason behind this different
syntax is that it makes the meaning of the rule more clear and convenient. A rule pa — ¢
denotes the fact that when the automaton is in the state p and the current input is a, it
can move to the state gq. Of course, you may write (p,a,q), but the simplified notation
is more clear. Furthermore, @ may be €, meaning that this rule is applicable irrespective
of the current input symbol. In such a case, we may write just p — r.

Finally, the start state is a designed state of @, and the set of final states is some
subset of Q.

Example 2.45. Recall the model of a coke-vending machine from Figure 2.1 on page 7]
which is for convenience displayed below.

(ret:3) I

Armed with the definition of a finite automaton, we will now define the underlying
finite automaton behind this machine formally. Let M = (Q, X, R, (0), F) be a finite
automaton, where

Note that we use the angle brackets “(” and “)” to distinguish between states and inputs
in order to improve readability.

2.5 Finite Automaton 27

We close this chapter by discussing a variant of a finite automaton. From a practical
viewpoint, a general finite automaton has the following two disadvantages, both stemming
from its non-deterministic nature:

(1) When there are two rules pa — ¢1 and pa — g2 with distinct ¢; and g9, by reading a,
which of these rules should the automaton choose?

(2) When there are two rules pa — ¢; and pe — ¢ and the current input symbol is a,
should the automaton read a and move to ¢; by using the first rule or not reading
anything and move to gz by using the second rule?

To make finite automata more applicable in practice, we would like them to be de-
terministic. That is, we do not want any e-rules, which are rules of the form pe — ¢,
and from a state, with every input symbol, there should be at most one rule which can
take us to the next state by reading the input symbol. This brings us to the following
definition of a deterministic finite automaton, which satisfy the properties (1) and (2)
above.

Definition 2.46. Let M = Q, X, R, s, F) be a finite automaton. M is a deterministic
finite automaton if R is a function from @ x X to Q.

That is it. By utilizing the notion of a function, we were able to create a succinct
definition of a deterministic finite automaton. For each combination of state and input
symbol, we know exactly whether the automaton will stop, or what will be the next
configuration.

Example 2.47. Consider the following finite automaton:
M= (Q,X,R,s,F)

where Q = {s, f}, ¥ = {a,b,c}, R = {sa — s,sb — f, fc — f}, and F = {f}. Note that
for each rule, the combination of a state and input has at most one resulting state, and
there are no e-rules. Thus, M is a deterministic finite automaton.

3

Defining Computation and Accepted Language

In the previous chapter, we have successfully defined the notion of a finite automaton.
To do this, recall that we had to explain the basics behind the underlying mathematical
concepts, such as sets, sequences, relations, and functions. In this chapter, we continue
with the investigation of finite automata by defining their computation and accepted
language. We begin by giving you a rough idea about these terms.

As you may know, a finite automaton works as follows. It starts from the start state
and, by reading the inputs from the environment, it uses its rules to change states. Once
it appears in a final state and there are no more input symbols, we say that it successfully
finishes its computation. Therefore, the term computation means reading input symbols
from the environment and accordingly changing states.

The environment may produce many different sequences of symbols. In fact, such
sequences may be composed of an arbitrary number of characters, all of which are from
the set of input symbols. If we only consider sequences of length 5 and there are 2
different input symbols, by using high-school mathematics, we may compute that there
exist 25 = 32 different sequences of length 5. In formal language theory, sequences of
symbols from the environment are usually represented by strings, which are, in fact,
just finite sequences. As you may recall from your formal language theory class, if we
talk about strings, then instead of (a, b, ¢, d), we write just abcd—that is, we completely
leave out the brackets and commas. In the remainder of this text, the inputs of a finite
automaton are always assumed to be given in the form of strings. On the other hand, in
some applications—for example, when using a finite automaton to analyze packets from
a network stream—you do not know the complete input string beforehand. However, its
not a problem for our model because a finite automaton reads the input sequentially, one
symbol at a time, and it does not do any jumps.

Generally, a finite automaton may be given a large variety of input strings. With
some of them, upon reading them all, it may enter a final state. However, with the rest
of them, it either ends up in a non-final state or may not even be able to read them
completely (it may get “stuck”). We are particularly interested in strings that will lead
the automaton from the start state into a final states. Indeed, the set of all such strings
will form the accepted language.

The present chapter is organized as follows. First, in Section [3.1] we formalize the
notion of a computation performed by a finite automaton. Then, based on this formaliza-

3.1 Computation 29

tion, we define the language accepted by a finite automaton. Finally, Section [3.3]discusses
so-called closures, which underly the definition a computation.

3.1 Computation

We begin by defining a computation. Recall that from the informal description given in
the introduction to this chapter, it is a process of reading input symbols and changing
states. Consider a finite automaton M in its start state, and a string w made of input
symbols. Then, if there is a rule sa — p, where a is the leftmost symbol of w (or the empty
string) and p is some state, then M may read a and go to p. Thus, it ends in p and the
remaining input string is x, where w = ax; informally, x is the unread part of the string.
Now, what if someone asks us to give an instantaneous description of the computation
process? An instantaneous description is information that fully defines the current state
of computation. Of course, the instantaneous description of M at the beginning of the
current computation is s with w because M is in the start state and nothing has been
read. However, what about the situation after a has been read? Well, we can remember
all the already accessed states (in our case, s and p), all the already read symbols (a in
our case), and the unread part of the input string (x in our case). However, notice that
the information about the already accessed states and the read symbols is of no use in
further computation. Indeed, what matters is the current state and the unread part of
the string because old states and read symbols cannot affect the rest of the computation
in any way. So, after a has been read, it suffices to remember just the current state, p,
and the unread part of the input string, x. This brings us to the notion of a configuration.

Before giving a formal definition of a configuration, we first try to see what we can
use to define it. Consider a finite automaton, M = (Q, X, R, s, F'). States are taken from
the set of states). From what state do we take strings? The set of inputs X' does not
suffice because it contains only symbols so no string longer than a single symbol can be
created in this way. If you remember the basics of formal language theory, you should
know the answer: from X*. Recall that X* denotes the set of all strings over the symbols
in Y. So, to define a configuration, we may use the sets @ and X*. There are two ways
of joining these two sets together, (1) and (2), discussed next.

(1) As a configuration, we may consider a pair (p,), where p € @ is the current state and
x € X* is the unread part of the input string. Therefore, the set of all configurations
will be Q x X*.

(2) A configuration will be a single string of the form px, where p and x are defined as
in the above case. Then, the set of all configurations will be QX* (a concatenation
of @ with X*).

Both of these two approaches are used in books. We have chosen to follow the first
approach, so a configuration will be a pair, not a single string. The reason for this
choice is somewhat better readability of the text. However, it should be noted that both
approaches are equivalent.

We proceed to a formal definition of a configuration.

3.1 Computation 30

Definition 3.1. Let M = (Q, X, R, s, F') be a finite automaton. A configuration of M
is any pair from @ x X*.

Example 3.2. Consider the finite automaton M from Example whose definition
is for convenience repeated here—that is,

M= (Q727R737F)

where Q = {s, f}, X = {a,b,¢}, R = {sa — s,sb — f, fc — [}, and F = {f}. Then,
examples of configurations are (s, abc), (p, ccbd), and (f,€). Notice that the unread part
of the input string can be empty, like in the case of (f,¢).

Alright, so now we know what is a configuration and we can talk about a computation.
Basically, a computation is a process of movement from one configuration into another
one. How to make a single move? By using a rule of the automaton. For example, let us say
that we are in a configuration (p, az), where p is the current state and ax is the unread
part of the input, and pa — ¢ be a rule which, by reading a, ends up in the state q.
Therefore, by using this rule, we may move from (p,az) into the configuration (g, x).
Thus, in order to explore the possible computations of a finite automaton, we would like
to connect these two configurations together. As one of the best suited mathematical
tool for connecting two object is a relation, we use it for this purpose. This connection
is called a move and it is defined next.

Definition 3.3. Let M = (Q, X, R, s, F') be a finite automaton. The direct move relation
over @ x X* symbolically denoted by tpy, is defined as follows: (p,ax) by (¢,) in M
if and only if pa — g € R and =z € X*.

Let us examine the definition more thoroughly. The first thing to realize is that the
move relation depends on the specific automaton we are exploring. For the purpose of
the definition, we will call this automaton M and we will also name its components.

Then, we chose the name and the symbol for the relation—in our case, it is a “direct
move relation” and “Fj;” respectively—as well as specify the set over which the relation
is defined—in our case, it is the set of all configurations. Observe that the naming of the
automaton’s components in the first part of the definition will allow us to conveniently
denote the set of all configurations simply as @ x X*. Recall that if we say that a
relation is over Q X X*, it means that the relation is from @ x X* to) x X*—that is,
FarC(Q x X*) x (Q x X7*).

Finally, we need to choose which pair will be in the relation, and which pair will be
not. For this, we want to use the rules of the automaton—we want to connect only such
configurations for which there is a valid transition rule. Thus, (p, az) will be connected
with (g, z) if and only if there is a transition from the state p to the state ¢ with a as the

3.1 Computation 31

input symbols—pa — ¢ € R. If we would end the definition right there, there could be a
confusion over z—is x meant to denote a symbol or a string? As we need the definition
to have only one possible interpretation, we need to specify that = can be any string of
input symbols, thus z € X*.

Note that there are many ways of defining this relation. An alternative definition
(with the same meaning) using shorter wording is presented below:

Definition 3.4. Let M = (Q, X, R, s, F') be a finite automaton. The direct move relation
over (@ x X*), symbolically denoted by Fjy, is defined as follows:

Fu= {((p,az),(¢q,2)) : pa = q € R,z € ¥*}

Examples of some direct moves follows.

Example 3.5. Consider the finite automaton M from Example [3.2] Then, for example,
(s,abc) Far (s,bc) by using the rule sa — s, (s,b¢) Far (f,¢) by the rule sb — f, and
(f,¢) Far (f,€) by using the rule fec — f.

Note that these moves can in fact follow one another. This brings us to the com-
putation process of a finite automaton. Basically, a computation is a sequence of direct
moves. So, when we start from a configuration (p,), perform several moves by using the
direct move relation, and end up in a configuration (g, y), then this is a computation.

If we start in a configuration ¢; and we know that ¢ Fps ca, o Fas 3, and ¢35 Faf cq,
we can simply chain the adjacent moves together by writing ¢ Fas ¢ bFas c3 b cq. As
you can see, it would be convenient for us to describe all the possible configurations that
can be reached from c;. Moreover, we want to include ¢ itself, as when the automaton
is in ¢q, c; is already “reached”.

In order to do so effectively, we can extend our direct move relation for exactly this
purpose. Thus, we will create a new relation based on the old one, where we will add all
the successors of a configuration to the new relation (not just the direct, adjacent one).
A formal definition of this idea follows.

Definition 3.6. Let M = (Q, X, R, s, F') be a finite automaton. If

cibymeaby b en

where ¢; is a configuration of M for 1 < ¢ < n and n > 1, then we write ¢; F}; ¢, (a
computation).

Observe how we have extended the old relation to form the new relation with a
similar symbol (F3},). Also, note that each ¢; can be any valid configuration—that is,
c; € QQ x X*—as long as there is a valid direct move between them.

3.2 Accepted Language 32

The last thing to note is that by defining n > 1, we are also including the special
case of n = 1. Let us substitute this special case in the definition of ¢; 3}, ¢, resulting
in ¢; Fj; c1. Thus, we have defined the relation of the configuration with itself, which
is exactly what we wanted—c; can be indeed reached from c;, as it is already reached
without making any move.

You will see another, much more simpler definition of a computation in Section [3.3
where we will discuss so-called closures. Until then, we will use the above definition.

Example 3.7. Consider the finite automaton M from Example [3.2] Then, for example,
(s,abe) iy (f,)

by using the rules sa — s, sb — f, and fc — f, but also
(s,abc) iy (s, abe)

by using no rules.

With a full understanding of what a computation means, we may proceed to the
definition of a language accepted by a finite automaton.

3.2 Accepted Language

As we have said earlier, we are particularly interested in the strings of input symbols
that bring the automaton to a final state. A set of all such strings is called the accepted
language of the automaton, and we are now going to define this notion formally.

Let M = (Q,X,R,s,F) be a finite automaton. We already know that the start
configuration is of the form (s, w), where w is the input string from X*. Then, to read w
and end up in a final state, M has to use its rules. Therefore, it has to pass several
configurations until it reaches a configuration of the form (f,¢), where f is a final state
from F. As we have seen in the previous section, such a pass over configurations can
be expressed by using 3,. Based on these observations, we may define the accepted
language in the following way.

Definition 3.8. Let M = (Q, X, R, s, F') be a finite automaton. The accepted language
by M is denoted by L(M) and defined as

L(M)={w:we X* (s,w) 3 (f,e) with f € F}

The above definition reads as follows: “The accepted language of a finite automaton M
is denoted by L(M), which is the set of all w from X* that satisfy the condition that
from the starting configuration (s, w), M can make a sequence of moves ending in some
final state f with all of the input being completely read.”

3.3 Closures 33

Example 3.9. Consider the finite automaton M from Example By inspecting its
set of rules and the way they can be used during a computation, we immediately see that
the accepted language is composed of strings which start with an arbitrary number of as,
followed by a single occurrence of b, and ended by an arbitrary number of cs. By using
the standard notion involving operations over languages, we may state that the language

accepted by M is
L(M) = {a}*{b}{c}"

We are going to move to the final section of this chapter, where we see a simpler
definition of a computation that is based on so-called relational closures.

3.3 Closures

In Section[2.3] we have discussed relations, which allow us to specify relationships between
mathematical objects. Apart from the basics behind relations, there exist many special
types of relations. We have seen one example of a special type of a relation in Section
called functions. In this section, we will see another two special types of relations. Our
goal is to define computation of a finite automaton in a more concise way than provided
by Definition [3.6]

Consider a set, @), and a relation over @), R C @ X Q. In general, there may be some
elements which are related to itself, and there may be elements which are not related to
itself. In symbols, there may exists a € @ such that aRa but there also may be some
b € @ such that bRb does not hold. The first special type of a relation is a relation in
which every element is related to itself.

Definition 3.10. Let @ be a set and R C @Q x @ be a relation over Q. If aRa for every
a € R, then R is a reflerive relation.

Example 3.11. Consider the standard relation > on integers. Obviously, if we take any
integer ¢, then ¢ > 4. For example, 6 > 6. Therefore, we see that the relation > is reflexive.

As an example of a relation that is not reflexive, consider the relation > on integers.
Indeed, i # i for every integer ¢. For example, 6 }# 6.

Considering finite automata, is the direct move relation reflexive? The next example
gives the answer.

Example 3.12. Let M = (Q, X, R, s, F') be a finite automaton. We were asked whether
the relation of a direct move -y, is reflexive or not. How should we approach this question?

3.3 Closures 34

Well, by looking at the definition of a reflexive relation. It says that in a reflexive relation,
every element is related to itself. What are the elements of ,,? Configurations. Therefore,
consider any configuration (p,w), where p € Q and w € X*. Does it hold that (p,w) Fas
(p,w)? Well, that depends whether R contains the rule pe — p. If so, then (p,w) s
(p, w) holds; otherwise, it does not hold. Therefore, only automata with the rule pe — p
for every state p € @ have reflexive direct move relation. Thus, generally, the relation of
a direct move can be reflexive, but not in all cases.

The second special type of a relation will be required to satisfy a different property,
called the transitive property. This is the requirement that whenever an element a is
related to an element b, and b is in turn related to an element ¢, then a is also related
to c.

Definition 3.13. Let @ be a set and R C @ x @ be a relation over Q. If every a,b,c € @
satisfy that if a Rb and bRc imply that aRc, then R is a transitive relation.

Example 3.14. Once again, consider the standard relation > on integers. We have seen

that it is a reflexive relation. Is it also transitive? If it is, then for every integers 1, j, k, if

1> 7 and j > k, then ¢ > k. This is true. For example, 6 > 4 and 4 > 3, and 6 > 3.
What is an example of a relation that is not transitive? Consider the set of persons

P= {Diana, Sarah, Elinor}

and the relation
mother = {(Diana, Sarah), (Sarah, Elinor) }

The meaning of this relation is that Diana is the mother of Sarah and Sarah is the mother
of Elinor. This relation is clearly not transitive because even though Diana is the mother
of Sarah and Sarah is the mother of Elinor, it is not true that Diana is the mother of
Elinor.

By analogy with the question whether the direct move relation of finite automata is
reflexive, we will now check whether it is transitive.

Example 3.15. Consider any finite automaton M = (Q, X, R, s, F'). The question is: is
the direct move relation Fj; transitive? To answer the question, recall what a relation
has to satisfy to be transitive. Have you recalled that? If so, then consider (p, z) Fas (¢,)
and (q,x) Fas (1, 2), where p,q,r7 € Q and z,y, 2z € X*. Does (p,z) Fas (r, z) hold? Well,
just like in Example it depends on whether there is a rule which takes M from (p, x)
into (r, z). Therefore, we see that the direct move relation is generally not transitive.

3.3 Closures 35

Therefore, we see that, generally, the direct move relation is neither reflexive nor tran-
sitive. A question you may now ask is that if we are given a relation, that is not reflexive
and transitive, can we make such a relation reflexive and transitive? The answer is yes,
by computing the so-called reflexive and transitive closure of the relation. Informally,
what we will do is that we are going to add elements to the original relation until it is
both reflexive and transitive.

Definition 3.16. Let @ be a set and R C @ X @ be a relation over Q). The reflexive and
transitive closure of R is denoted by R* and it is the relation with the following three
properties:

(i) Reflezivity and transitivity: R* is both reflexive and transitive.
(ii) Containment: R C R*
(i) Minimality: There is no other reflexive and transitive relation relation Ry such that
Ry C R* satisfies (i) and (ii).

Let us go over this slightly more complicated definition. We begin with a relation R C
@ x @ with no imposed requirements. Its transitive and reflexive closure, R*, has to satisfy
the three properties (i) through (iii). The first property says that the closure has to be
both reflexive and transitive. The second property requires R* to contain all the elements
of R. Of course, there may more elements. The third condition then requires that R* is the
minimal relation, in the sense that there is no other transitive and reflexive relation Ro
that is strictly smaller than R* and satisfies the first two conditions. The third condition
ensures that we add just the items we really need, and not add some items which are not
necessary.

Example 3.17. Consider the following set of cities
C = {Prague,Viennm New York, Ottawa}
and a relation that says you can get from a city to another one by taking a direct flight:
F = {(Prague, Vienna), (Vienna, New York), (New York, Ottawa) }

For simplicity, we assume that there is no way back—that is, even though you can fly
from Prague to Vienna, there is no direct flight from Vienna back to Prague.

In what follows, we will now construct a reflexive and transitive closure of F', which
will be denoted by F*. While F' means that you can take a single flight from a city to
another city, F* means that you can get from a city to another city by taking as many
flights as needed. This is the general meaning of the reflexive and transitive closure.

Alright, so what should we do? First, to satisfy (ii), we include all elements of F'
into F™*:

F*=F
Therefore, we have covered the possibility of getting into a city by taking a single direct
flight. The next step is to make F* reflexive. To this end, we extend it in the following
way:

3.3 Closures 36

F* = F* U {(Prague, Prague), (Vienna, Vienna),
(New York, New York), (Ottawa, Ottawa) }

Even though it may seems strange, this extension of F* says that when your are in a
city X, then you do not have to take any flights to get into X. This makes sense, right?
Now, F™* is reflexive and satisfies (ii) and a half of (i).

To complete the second half of (i), we have to make F* transitive:

F*=F*U {(Prague, New York), (Prague, Ottawa), (Vienna, Ottawa)}

After this extension, we see, for example, that we may fly from Prague into Ottawa—that
is,

Prague F* Ottawa

Observe that Prague F' Ottawa does not hold because there is no direct flight from Prague
to Ottawa.

We have promised to give you a very concise and simple definition of computation—
that is, the definition of I}, for a finite automaton M. We keep our promise. As its
denotation suggests, -3, is simply the transitive and reflexive closure of t-5,. Indeed, if
you recall the previous definition of },, for convenience displayed below, you can see it
is similar to the definition of the reflexive and transitive closure:

Definition 3.18. Let M = (Q, X, R, s, F') be a finite automaton. If
cabmeaby - bFuen

where ¢; is a configuration of M for 1 < ¢ < n and n > 1, then we write ¢1 F3; ¢, (a
computation).

The transitive property follows from the chain of configurations c¢; to ¢,. The reflexive
property follows from the special case of n = 1, where, by substituing n = 1 to ¢; k3, ¢y,
we get ¢1 Fj cr.

4

Mathematical Statements and Their Proofs

Throughout your studies, you have almost certainly encountered mathematical sentences
called theorems, followed by a reasoning showing that what is written in the theorem is
true. A usual reaction of a student is slight confusion, but in some (and we hope rare)
cases, it can be even immense fear, followed by depression. People fear what they do not
know. To help you overcome this confusion and potential fear, this four-section chapter
explains the basics of mathematical statements and their proofs. The goal is to give you a
gentle introduction into these crucial areas of mathematics. Several worked-out examples
will help us to get you feel comfortable when encountering mathematical statements in
the future.

Before we start, let us talk about mathematical statements and their proofs from a
general viewpoint. From the previous chapters, you should already know that in math,
whenever you want to rigorously talk about something, you have to first formally define
it. Recall that the goal is to be as precise as possible, leaving any ambiguity or doubt
behind. For this purpose, a definition is used. You have already seen several examples of
a definition.

After you have defined what you need, you may start reasoning about the introduced
notions. For example, after you define set union, intersection, and complement (see Sec-
tion , you may start wondering if there is a relation between these three operations.
A relation that is not explicitly defined, but rather emerges from the definitions. And,
if you do some thinking, or search the books or wikipedia, you will see that they are
connected by so-called De Morgan’s laws [2]. One of these laws says that complementing
a union of two sets is the same as complementing both of them separately and then
taking their intersection. In symbols, for two sets P and (), it holds that

PUQ=PNQ

Note that the definition of union, intersection, and complement does not mention any
such law explicitly. However, the definition implies some facts, and these imply other
facts, and so on until we arrive at De Morgan’s laws.

This brings us to the first new notion that you will learn in this chapter—a theorem. It
is a written mathematical statement that is true and has been proved. To prove something
means writing its proof. A proof is is a convincing demonstration that some mathematical

4.1 Why is Proving so Important? 38

statement is necessarily true. De Morgan’s laws can be written as a theorem and formally
proved from the definition of union, intersection and complement.

The present chapter is organized as follows. First, Section [4.I]begins by giving reasons
why is proving important. Even though proofs can be fun to discover and/or construct,
students sometimes tend to perceive proofs as a necessary evil. However, you will see
that there is more behind proofs that it may seem. Then, Section talks about the
general layout of mathematical statements and their types. You will learn how to write
theorems and what are the differences between a theorem, lemma, and corollary. After
that, in Section you will see that there are several types of proofs and learn how
to write each of them. Finally, Section presents several examples of mathematical
statements and their proofs from the theory of formal languages. Since this text is focused
on the rudiments of formal language theory, mathematical principles are best to be shown
applied in this particular area.

4.1 Why is Proving so Important?

You may wonder: “Why do we need proofs? What makes proving something we cannot
live without?” In this section, we try to answer these questions by giving several reasons
for proving.

I. Proofs assure us that what we do is right. Everyone makes mistakes. We are just
humans. Proving means checking that our reasoning is correct. In math, we have
got a huge advantage over, say, other sciences like physics. The advantage is that
in mathematics, we make the rules, so we can prove that what we do is absolutely
true. On the other hand, in physics, after doing a sufficient number of experiments,
you may say that when you drop an apple, it will always fall down. However, you
can never be certain, even though this may sound unimaginabldﬂ In mathematics,
however, a correct proof is something you can count on. Given this opportunity, we
should embrace it and prove our results.

II. Proofs convince people. Some mathematical statements are obvious so the majority
of people believe them without thinking twice. Probably no one will disagree that
a(b+c) is the same as ab+ ac. On the other hand, there are statements which are not
so apparent. As an example, consider the statement that there are infinitely many
prime numbers. Without proving such a statement, you may be in doubt whether, by
a chance, there is a prime that is greater than all the other primes. Why not, right?
We are going to prove this statement later in this chapter so you can believe it and
sleep well at night.

This brings us to another way how to put it: proving is believing. When someone
tells you not to drink milk, you would like some arguments why you should not do

! One of the most used argument against definitive knowledge is called a black swan argument,
introduced by one of the greatest philosophers of science and theory of knowledge, Karl
Popper: No matter how many white swans you see, you cannot be certain that all swans are
white. And indeed, before the discovery of Australia, people in the old world believed that
all swans are white. This statement, confirmed by a vast number of empirical observations,
was invalidated by an observation of black swans living in Australia and New Zealand.

4.2 Layout and Types of Mathematical Statements 39

that. The same situation is with mathematical statements. Indeed, one needs a proof,
which is an argument why that statement holds true.

III. Proofs save time and money. Lets say that your employer wants you to develop a

method of solving a certain problem. For example, he or she may want you to write
a program which can separate code from data in binary executable files (this would
be really useful in disassembling and reverse compilation). If you are knowledgeable,
you may immediately see that putting effort into writing such a program is a waste
of time. Indeed, such a program could then be used to solve the so-called halting
problem, a problem that has been proved to be unsolvable [5].
As another example, imagine you are writing database software for storing indexing
a huge amount of data (for example, to index the Internet). Before your company
spend billions of dollars for hardware, you want to be sure that your software solution
(not yet tested on this huge amount of data) will scale well. A mathematical proof
(in the area of time and space complexity) is the best way to ensure the validity of
your solution and choice of hardware before spending a large amount of (potentially
wasted) money.

IV. Proving is learning. When you were in high school, you typically learned by examples.

Sometimes, however, examples may be insufficient or even misleading. When you
want to fully understand how something works, reading proofs and writing them is
the best way. Theorems just state what holds true. Proofs, on the other hand, show
why is something true.
Furthermore, by proving, you learn how to reason carefully. This comes handy in
many real-life areas. For example, when debating, you may find out that the argu-
ments your opponent use are flawed. Careful reasoning becomes handy also in your
programming practice because you want your programs to be correct. Testing may
assist you, but its usability is limited (as you may know, by performing tests, you
cannot prove that a program is correct [§]). Careful programming is the very first
step towards correct programs.

V. Last, but certainly not least, proofs are fun :-). This particular reason may sound
weird to you, but writing a proof is like solving a logical puzzle. Once you know
the rules, you can focus on combining the different possibilities and discovering the
solution. The situation in mathematics with proofs is analogous—once you know
the basics, you may daringly start to tackle various mathematical problems. What a
lovely way to spend an evening :-).

4.2 Layout and Types of Mathematical Statements

In mathematics, there exist several types of statements. You probably have already heard
of things like theorems, lemmas, and axioms. After reading this section, you will under-
stand what all of these mathematical statements mean, how to read them, and how to
use them.

4.2.1 General Layout of a Statement

A general layout of a mathematical statement, including its proof, is the following:

4.2 Layout and Types of Mathematical Statements 40

Statement 4.1. Formal wording of the statement.

Proof. Argumentation that the statement is true. O

As you can see, we begin by saying that we are going to state a statement. This can
be either a theorem, lemma, or any other type of a mathematical statement, discussed
later in this section. We usually number statements for better reference. Indeed, when
referring to a statement, it suffices to write “Statement [£.1]".

Then, we write down the statement. For example, the wording can be “FEvery integer
can be written as a sum of two integers”. Traditionally, statements are written in italics
so we can distinguish what is a part of the theorem and what is not.

If the statement is not adopted from other sources, like a book or a journal paper,
we should include its proof. A proof usually starts with the word Proof, followed by
a reasoning why it is true, and ends with the so-called Q.E.D symbol “[0”. Q.E.D is
an acronym of the Latin phrase quod erat demonstrandum, meaning which had to be
demonstrated. A yet other use of this symbol is that it clearly says where the proof ends
so the text that follows it cannot be falsely mistaken as a part of the proof.

4.2.2 The Basics: Theorem, Lemma, and Corollary

We begin our tour around the types of mathematical statements by a note. Even though
we will talk about theorems, lemmas, and corollaries, the distinction between them is
purely subjective, and when comes to importance, all of them have the same weight.
Therefore, as a rule of thumb, if you find yourself unsure what type of a statement you
should use when writing mathematical text, use simply a theorem. That being said, let
the tour begin.

A theorem is the most basic type of a statement that is proved using rigorous math-
ematical reasoning. Usually, theorems are regarded as the most important results. An
example of some well-known theorems is the Pythagorean theorem [6], formally stated
next.

Theorem 4.1. For a right triangle with legs a and b and hypotenuse ¢, a® + b*> = c2.

As another example, consider the following theorem from automata theory.

Theorem 4.2. For every finite automaton, there is an equivalent reqular expression and
vice versa.

A lemma is a minor result whose purpose is to help in proving a theorem. For example,
to prove Theorem [{.2] above, we may first prove the following two lemmas, and then say
that the theorem follows from them.

4.2 Layout and Types of Mathematical Statements 41

Lemma 4.1. For every finite automaton, there is an equivalent reqular expression.

Lemma 4.2. For every regular expression, there is an equivalent finite automaton.

Lemmas are usually used for decomposing a complex proof to smaller subparts. If
you come from a programming background, you can think of lemmas as some sort of
mathematical equivalent to functions and procedures in programming languages. Hence,
a lemma is usually used as a stepping stone to a theorem.

However, on the other hand, taking the note from the beginning of this section in
account, it should not surprise you that some of the most powerful statements in mathe-
matics are known as lemmas, including Zorn’s Lemma [I1], Bézout’s Lemma [I], Gauss’
Lemma [4], and many others. They are known as lemmas because they are usually used
as mathematical tools for proving other results.

Sometimes, the proof of a theorem can have some unexpected consequences. Thus, by
proving the theorem, we also obtain some other, originally unintended, results. A result
of this kind is called a corollary. We then often say that “from Theorem X, we obtain
the following corollary”. As an example, consider Theorem From this theorem, we
immediately obtain the following corollary.

Corollary 4.1. Finite automata and reqular expressions define the same family of lan-
guages.

Corollaries may also have proofs. In such cases, these proofs are usually very short.

4.2.3 Where Everything Starts: Axiom

When learning about mathematical statements, students usually wonder about the fol-
lowing question. To prove a theorem, we have to use previously established results, such
as other theorems. However, if this is true, how the very first theorem has been proved?
The answer is that these “first theorems” were not proved. Instead, we find it reason-
able enough to assume them to be true in the particular environment (domain) we are
analysing. We do this assumption in order to simplify the environment as much as pos-
sible.

Example 4.1. For example, in order to estimate the travelling time of a car from one
city to another, it is enough for us to assume the laws of Newtonian physics. However, in
order to get any meaningful estimate for the travelling time of a space rocket from Earth
to Mars, we have to assume the more complex theory of relativity.

4.2 Layout and Types of Mathematical Statements 42

In mathematics, the theorems assumed to be true are called azioms, and they are the
starting point of reasoning. All the other theorems are just consequences of the axioms.
One can say that mathematics is a big game of what-ifs—we ask what would be the
consequences (that is, what theorems would be true) if the given axioms were true. In
mathematical text, axioms are usually given in the form of a definition.

As an example, consider Euclidean geometry, which you have already encountered in
high school. It is based on the following five axioms [3]:

1. A straight line may be drawn from any given point to any other.

2. A straight line may be extended to any finite length.

3. A circle may be described with any given point as its center and any distance as its
radius.

4. All right angles are congruent.

5. (The parallel postulate.) If a straight line intersects two other straight lines, and so
makes the two interior angles on one side of it together less than two right angles,
then the other straight lines will meet at a point if extended far enough on the side
on which the angles are less than two right angles.

As the last axiom can be somewhat tedious to decode (remember, that reading math-
ematics is like reading a source code of a program—one have to think about each word
and each line), an intuitive explanation is presented in Figure

line 1 line 2
a b
If: a+ b<180°

Then: line 1 and line 2 will intersect
Fig. 4.1. The parallel postulate: If the sum of the angles is less than 180°, the lines will intersect.

These axioms formally describe our intuition about the geometry on a flat plane,
such as paper. One of the consequences of these axioms is that the sum of the angles of
a triangle is always 180°.

On the other hand, if we drop some of the axioms and add some other axioms, we
can end up with a non-Euclidean geometry, where the sum of the angles of a triangle is
not always 180°. For example, consider a geometry on the surface of a sphere, as seen in

Figure

4.2 Layout and Types of Mathematical Statements 43

Fig. 4.2. An example of spherical geometry [9], where only some of the Euclidean postulates
hold.The sum of the angles of a triangle in such a geometry is not always 180°. These kind of
models are used, for example, in airplane navigation.

4.2.4 Summary

In this section, we have learned that there are several types of mathematical statements.
Table summarizes these types, including short notes on their usage. The table may
be used as a quick reference.

’Type of a statement\Usage ‘

Theorem You want to write a statement that you prove on the
basis of previously established results. As a rule of
thumb, if you do not know what type of a statement
you should use, use a theorem.

Lemma You want to divide a proof of a theorem into several
parts, where each part is a lemma. It is usually used
as a stepping stone to a theorem. There is no formal
distinction between a lemma and a theorem.
Corollary You want to write a statement that follows readily
from a previous statement. There is no formal dis-
tinction between a theorem, lemma, and corollary.
Use of a corollary is plainly subjective.

Axiom A mathematical statement that serves as a starting
point from which other statements are derived. You
do not usually write these—they are given.

Table 4.1. Summary of mathematical statements and their usage.

4.3 Types of Mathematical Proofs 44

4.3 Types of Mathematical Proofs

Even though each proof in mathematics is, in a sense, unique, they share some common
patterns. The key pattern is the form of the proof and the way it achieves its goal—show
that a given mathematical statement is correct. Based on this form, we may distinguish
three basic proof techniques (also called types of proofs): a direct proof, a proof by con-
tradiction, and a proof by induction. All of them are described in detail in the subsequent
sections. More specifically, Section [£.3.1] discusses direct proofs, Section [£:3.2] describes
proofs by contradiction and, finally, Section [4.3.3] presents proofs by induction. Although
these are the most basic and maybe one of the most common used proof techniques,
there are a lot more types of proofs.

If you come from a programming background, you can think of these techniques as
some sort of mathematical equivalents to a design patterns. They serve like some kind
of a template, so you do not have to adhere to them strictly. Furthermore, you can mix
them in various ways or use one technique inside the other.

Throughout this section, all types of proofs are first demonstrated on rather simple
mathematical theorems. Proofs from formal language theory are then given in Section [£.4]
The reason is that we believe the reader should first understand the basic principles
underlying these types of proofs, and then see their application in the studied area. In
our case, the area is is the theory of formal languages.

4.3.1 Direct Proof

A direct proof is the most basic type of a proof. In a direct proof, we show that a
statement is true by combining known facts. For example, consider a situation where we
have to prove that Carl will be fired from a fictional company. Furthermore, we know
the following two facts:

(1) If someone does not do their job, they will be fired.
(2) Carl does not do his job.

Notice, that these “facts” are in fact just a postulated axioms—the idealistic simplified
version of the real life, where it is not always that easy to get fired. However, as we have
our axioms as the basis for logical reasoning, we can now make some logical consequences
from these axioms:

e By (2), we know that Carl does not do his job.
e From (1), we know that such a person will be fired.
e Hence, we have that Carl will be fired.

Next, we give a less trivial demonstration of a direct proof. Recall that an integer is
even if it is divisible by 2 without a remainder. For example, the numbers 2, 4, 100 are
all even. The following example can be really simple for some students, but you will see
that giving a formal proof of an obvious statements is not always easy.

Theorem 4.3. The sum of two even integers is itself an even integer.

4.3 Types of Mathematical Proofs 45

Before proving the theorem, let us first think about the proof. We have to start with
what we have. What do we have, exactly? Well, we have two even integers, a and b. Now,
what are we supposed to prove? We have to prove that a + b is an even integer. How
should we prove it? We need to evaluate the properties of even numbers, and take them
into consideration. One such a property is that since a and b are both even, we can divide
them by 2 without a remainder. Thus, we can rewrite them in a form such that when we
add them, we obtain an even number. All right, let us prove it.

Proof. Let a and b be two even integers. Since they are even, they can be written in the
forms a = 2z and b = 2y for some integers = and y, respectively. Then, a + b can be
written in the form 2z + 2y, resulting in the following equation:

a+b=2x+2y=2(zx+y)

From this, we see that a + b is divisible by 2. Hence, a + b is an even integer, and the
theorem holds. O

The most difficult part of a proof to figure out is the reasoning. Sometimes, you have
a large number of possibilities you have to explore, and most of these possibilities lead
nowhere. Other times, you just happen to have an insight and see the right path from
the beginning. Unfortunately, there is no textbook that would enable you to prove all
theorems. Therefore, in a sense, mathematics is art—an art of proving theorems.

4.3.2 Proof by Contradiction

A proof by contradiction, also known by its Latin name reductio ad impossibilem, can
be somewhat unintuitive at the first look, but after a brief study, you will see that it
is simple and elegant. This proof technique is based on the following two basic rules of
mathematical logic:

1. Any mathematical statement is either true or false.
2. If a statement is true, its negation is false.

A proof by contradiction works as follows:
To prove that a statement A holds, we start by assuming that A does not hold.

This is the unintuitive part of the proof—it starts by our insight into the problem. From
this insight, we can guess that the statement A is true. However, unfortunately, we are
not able prove it directly. Thus, we assume that A does not hold, but only because we
will explore the consequences of that assumption, hoping that we will arrive to some
contradiction. The basic idea behind this is that by negating the original A, it is now
much easier for us to create a logical argumentation. Therefore, we combine some known
facts, just like in a direct proof, which finally results into a contradiction, like 1 = 2, or
a contradiction on the initial assumption.

However, this contradiction proves our assumption of “A does not hold” to be com-
pletely false! Therefore, by the second rule of mathematical logic, the statement “A does
hold” have to be true.

We proceed by giving an example. Consider the following proof of the statement
that there is an infinite number of primes. Recall that a prime number is a natural

4.3 Types of Mathematical Proofs 46

number greater than 1 that has no positive divisors other than 1 and itself. Notice that
by definition, 2 is a prime, which is also the only even prime number. For example, the
numbers 2, 3, 5, 17 are all primes.

Theorem 4.4. There are infinitely many primes.

Note that as we want to prove that there are infinitely many primes, we cannot list
them all to prove the theorem. Also, although prime numbers have a lot of properties,
these properties are complex and not so easy to work with. However, if we negate the
theorem, we will end up with the statement “There is a finite number of primes”. It is
much easier for us to work with this statement—we may try to find the largest prime
number. Of course, as we believe that there really is an infinite number of primes, there
is no largest prime number, so we hope to obtain some contradiction.

Proof. To obtain a contradiction, we will assume that there exist only finitely many
prime numbers
p1<p2<---<Dpn

Let ¢ = p1p2 -+ - pn + 1 be the product of py, p2, ..., pn plus one. Like any other natural
number, ¢ is divisible by at least one prime number (it is possible that ¢ itself is a
prime). However, none of the primes p1, pa, . .., p, divides g without a remainder because
dividing g by any of them leaves a remainder 1. Therefore, there has to exist a yet other
prime number than pq, po, ..., Py, which is a contradiction with the initial assumption.
Therefore, there are infinitely many primes. 0

As yet another example, consider the following proof of the statement that the square
root of 2 is not rational. Recall that a number is rational if it can be written in the form 3,
where a and b are two integers such that a does not divide b and vice versa.

The first thing we need to do is to realize that irrational numbers are more complex
then rational numbers. Therefore, it would be more convenient for us to negate the
statement, claiming that /2 is rational, and then work with the properties of rational
numbers to find some contradiction. So, lets look at some interesting properties:

1. Each rational number can be expressed as 7, where a and b are the smallest possible
numbers. For example, the fractions %, %, and % can be all written as %
2. Thus, a and b cannot be both even because then we could divide them by 2 and get
smaller numbers.
. If z = g, then 2% = ¢2.
4. If is even, then z? is also even; if x is odd, then z2 is also odd.

w

Now, we can combine these properties to obtain a contradiction. So, let us write it
down in a formal manner.

Theorem 4.5. \/5 18 mot rational.

4.3 Types of Mathematical Proofs 47

Proof. To obtain a contradiction, assume that V/2 is a rational number. Since it is ratio-
nal, it can be expressed as ¢, where a and b are the smallest possible integers (recall the
first property). Then, at least one of them has to be odd (recall the second property).
However, if ¢ = /2, then ($)? = (v/2)? (recall the third property)—that is ‘Z—j =2, s0
a? = 2b°. Therefore, a® has to be even. Since the square of an odd number is odd (recall
the fourth property), we have that a is even. This means that b has to be odd (recall the
second property: one of them has to be odd).

So, we have that a is even—that is, a = 2z for some integer x. This implies that a?
is a multiple of 4—that is, a2 = 422. Together with the equality a® = 2b%, we have that
2% = 422, which means that 2b2 is a multiple of 4. Therefore, b> = 222, so b? is even
and, therefore, b has to be also even (recall the fourth property).

Hence, b is both odd and even at the same—a contradiction. Therefore, the initial
assumption that v/b is rational, has to be false. O

4.3.3 Proof by Induction

A proof by induction is typically used to prove that a statement holds for all natural num-
bers. As there are infinitely many natural numbers, we cannot prove some statement A
for all of them just by taking one after another. Every proof has to have a finite number
of steps! However, fortunately, natural numbers have one very strong property—each
number has a successor (by a successor, we mean the next number: 1 is the successor
of 0, 2 is the successor of 1, 3 is the successor of 2, etc.). And, beginning at zero, by
following the line of successors, we can get to any number.

We can use this property for our proof—first, we prove the statement A for 0, and
then we show that the truth value of A is spreading through its successors. That is, if A
holds for 0, it has to hold also for 1. However, now, as A holds for 1, it has to hold also
for the successor of 1—that is 2. So it holds for 3, and then for 4 and so on.

To prove that A holds for all natural numbers, it is sufficient to prove two things:
to show the spreading nature of the statement A, and to show the starting point of the
spreading (usually the number 0). Formally, we need to prove the following mathematical
statements:

1. A holds for 0 (the starting point, called basis).
2. If A holds for n, then it also holds for n 4+ 1 (the spreading nature, called induction

step).

It is important to note that the induction step does not tell us whether A holds for n
or not. It just tells us what would happen if A would be true for n. It is truly proving
just the capability of A to spread, and it needs the basis to actually spread through the
natural numbers. Indeed, since the statement holds for 0, then by using the second step,
we know it also holds for 1. Using the second step again, we see that it holds for 2, and
so on, ad infinitum.

Before delving into more details, let us give a simple example of mathematical induc-
tion in practice. For every natural number n, let S(n) denote the sum of all the numbers

0,1, 2, ..., n. In symbols,
S(n) = Z i

0<i<n

4.3 Types of Mathematical Proofs 48

Theorem 4.6. S(n) = @

Proof. We prove this theorem by induction.

Basis: We show that the statement holds for 0. This means we have to prove that

0(0+1)

0=—">

Since the right-hand side can be simplified to 0, we have that 0 = 0, so the basis holds.

Induction Step: In the induction step, we have to show that if the statement holds
for S(n), then it holds for S(n 4 1). To this end, assume that it holds for S(n)—that
is, we ask the question “What would happen if it holds for n?” in a mathematical way.
Then, to prove that it holds for S(n + 1), we have to prove that

(n+1)((n+1)+1)
2

O+1+24--+n)+(n+1)=

By using the assumption that S(n) is true, the left-hand side of the equation can be

rewritten to
n(n+1)

2
This expression then can be rewritten in the following way:

+(n+1)

nn+1)
2

n(n+1)+2(n+1)
2
n?+n+2n+2
2
_ (n+1)(n+2)
B 2
(n+1)((n+1)4+1)
2

+(n+1) =

This implies that S(n + 1) holds. Since we have proved both the basis and the induction
step, by the principle of induction, the theorem holds. O

As you can see from the previous example, to prove the induction step, we used the
assumption that the statement holds for S(n). This is typical for induction proofs. This
assumption is used purely in the “what-if” manner—if the theorem holds for n, would
it hold also for n + 1?7 Notice that if we did not use this assumption, it would have been
difficult to complete the induction step. Try it by yourself to see the difficulty.

Usually, the induction basis is proved for 0. However, the induction proof works even
if we start from a different number. For example, in some situations, the statement does
not hold for some small numbers, like 0, 1, and 2. In such a case, we may start by proving
the basis for 3, and then continue as we are used to.

4.4 Examples from Formal Language Theory 49

When advantageous, we may use a proof by induction inside of a direct proof or
a proof by contradiction. Some people do not even recognize proof by induction as a
separate type of a proof—they put it into the category of direct proofs.

You can also note that the induction proof really needs just the successor property.
Thus, it can be used on any mathematical structure satisfying this property, not just
natural numbers. Examples of mathematical structures with successor property include
trees or graphs, which are widely used in computer science.

4.4 Examples from Formal Language Theory

In this section, we give many examples of theorems in formal language theory, including
their detailed proofs. The goal of the section is twofold. First, you will see how mathe-
matical statements are used to state things formally. Second, you can follow the train of
thoughts leading from the statement’s wording to its complete proof.

Since the reader of this document is assumed to either be a student in some course
dealing with formal language theory or to be interested in this area, mathematical prin-
ciples are best to be shown applied in this particular area. If you are not familiar with
some of the notions we use throughout this section, we kindly refer you to [18].

4.4.1 Concatenation of Languages

First, we consider languages and operations over them. Recall that a language is a set
of strings. Since every language is a set, all common operations over sets apply also
to languages. There are also some special operations that apply only to languages. For
example, consider concatenation. Recall that when concatenating two strings = and y,
we obtain a new string xy. Furthermore, when we concatenate two languages, L; and
Lo, we obtain a new language, where we concatenate each string of L; with each string
of Ls. In symbols,
LiLy = {xy rxely,ye Lg}

The above symbolic definition of a concatenation of two languages reads as follows.
“L1Ly” denotes the concatenation of Ly and Ls. “Lj Lo =" means that we are going to
write what the concatenation equals to. Finally, the right-hand side of the equation says
that this concatenation is composed of strings of the form xy, where x is a string from L,
and y is a string from L. Furthermore, the definition says that we need to include all
strings that satisfy the property of x € Lo and y € Lo.

Also, we have to recall the notion of the empty string, which is denoted by . This is
a special string with no symbols. What makes it special? There is no other string with
this property. Indeed, if you take any other string, it has to contain at least one symbol.

Our task will be to prove that when concatenating the language containing just the
empty string to any other language L, we obtain precisely L. Furthermore, we will prove
that it does not matter whether we concatenate the language containing just the empty
string to L from the left or from the right.

Since the above description is rather informal, and mathematical statements are a
formal business, we first have to try to write down what we are about to prove mathemat-
ically. Lets do it. The empty string is denoted by e. Therefore, the language containing

4.4 Examples from Formal Language Theory 50

just the empty string is denoted by {¢}. A concatenation of this language to a language L
is denoted by L{e}. The task assignment says that this concatenation should be equal
to L. This can be written as L{e} = L. Finally, since it should not matter if we concate-
nate L to {e} or vice versa, we can write L{e} = {e}L = L. This gives use the following
wording of the theorem we will prove.

Theorem 4.7. For every language L, L{e} = {e}L = L.

Before delving into a formal proof, let us stop for a second and think about it. How
to prove this theorem? Well, the easiest way would be to divide it into two steps. First,
we prove that L{e} = L, and then we prove that {¢}L = L. Then, since L{e} = L and
{e}L =L, L{e} = L = {e} L, which is the same as L{e} = {e} L = L. Nice. Now we have
a way of proving the statement.

Since we are going to split the proof into two parts, this is a typical situation which
calls for using a stepping stone. Can you guess what the stepping stone will be? Yes, we
will use a lemma. From Section [£:2.2] we know that a lemma is a proven statement which
is used to prove a larger result rather than as a statement of interest by itself. We can
divide the theorem into two lemmas, prove each of them separately, and then put them
together to prove the theorem. In this way, we will be doing a single step at a time, thus
we can always focus on a single thing.

Let us start with the first lemma.

Lemma 4.3. For every language L, L{c} = L.

Proof. Where should we start? Well, it is best to start from the beginning, which means
that we start with a language L. So, let L be a language. Now, we have to prove that
L{e} = L. The right-hand side cannot be simplified, so we should take a look at the
left-hand side. To step forward, we can try to rewrite the left-hand side according to the
definition of a concatenation, which is

L{e} ={ay:z € Lyc{c}}

Since there is only a single string in {e}, we can rewrite the new right-hand side in the
following way:
{zy:zveLye{c}}={ac:vel}

By recalling that xze = z, we can simplify it as follows:
{xe:mEL}:{x:xeL}
Now, the right-hand side is only a fancy way to write L, so
{;v rx € L} =L

Since we have been rewriting L{c}, we have that L{e} = L. Hence, we are done, and the
lemma holds. O

4.4 Examples from Formal Language Theory 51

Let us move to the second lemma.

Lemma 4.4. For every language L, {e}L = L.

Proof. We can prove this lemma in an analogical way we have proved the first lemma.
Indeed, the only difference is that when simplifying the left-hand side, we put =z = ¢
instead of y = . To improve your proving skills, try to formulate the proof by yourself.

O

Now, we can put these two lemmas together to prove the theorem.

Theorem 4.8. For every language L, L{e} = {e}L = L.

Proof. This theorem follows directly from Lemmas [£.3]and [£.4] Indeed, from Lemma
we have that L{e} = L, and Lemma[£.4]implies that {¢} L = L. Hence, L{e} = L = {¢}L,
which is the same as L{e} = {¢}L = L. O

With regard to the terminology of Section [£.3] all the proofs above are examples of a
direct proof. Next, we turn our attention to a proof by contradiction.

4.4.2 Pumping Lemma

As you may know, a pumping lemma for regular languages states that if a language is
regular, then all sufficiently long strings can be “pumped” so that all of these “pumped”
strings belong to the language.

The basic idea behind this lemma is derived from the fact that there is a finite
automaton for each regular language. As a finite automaton has a finite number of states,
it has to loop for any accepted string that is long enough (in fact, longer than the number
of states). However, as there is a loop in the automaton, it can loop for any number of
times and accept even longer strings. This looping during accepting is equivalent with
“pumping” the corresponding part of the string.

Formally, the lemma can be stated in the following way:

Lemma 4.5. Let L be a reqular language. Then, there exists a constant k > 1 such that
if z € L and |z| > k, then there exist u,v,w such that z = wvw, and the following three
conditions are satisfied:

(1) v#e,

(2) |uv| <k, and
(8) for each m >0, wv™w € L.

4.4 Examples from Formal Language Theory 52

Let us try to read the wording of the lemma. It says that if we take any regular lan-
guage L, then there is definitely a positive constant &k such that if we take any string in the
language that is at least k symbols long, then we can decompose it into three substrings,
u, v, and w (the most important part for us is v because it can be pumped). Further-
more, the conditions (1) through (3) are satisfied. (1) says that the middle substring, v,
is non-empty. (2) says that the length of wv is at most k. Finally, (3) is the pumping
condition which tells us that if we take string where v is powered to any non-negative
integer, then such a string is also in the language.

The first question that students usually ask is: “What is the exact value of k7 107
2507” The answer is that it depends on the language (as it is usually the number of
states in its respective automatorEI). Moreover, as we will see, the exact value of k is
not important. What is important is that if a language is regular, there is always such a
constant.

Notice that if the language is not regular, then this lemma says nothing about it.
Indeed, the decomposition into uvw and the three conditions hold only if the language
is regular. Moreover, there are some non-regular languages which satisfy the lemma.
Therefore, by using this lemma, we can never prove that a language is regular. If we
want to prove that a language is regular, we construct a finite automaton that accepts
it, or a regular expression that defines it.

The pumping lemma is typically used to prove that a language is not regular by using
a proof by contradiction. This is the reason it is called lemma and not theorem—it is
primarily used as a tool in proofs. For example, take some language L which we believe is
not regular. To prove that, we will proceed as follows. First, to obtain a contradiction, we
will assume that L is regular. Then, by the pumping lemma, there exists a constant such
that for all sufficiently long strings, there is a decomposition satisfying (1) through (3).
We then show that for every sufficiently long string, such a decomposition does not exit.
This is, however, a contradiction with the pumping lemma, which says that it always has
to exist. Therefore, we obtain a contradiction with the assumption that L is regular, so,
by the principle of a proof by contradiction, L is not regular.

If you do not understand it right now, do not worry. We will now go through a
complete example. The assignment is to prove that the language containing strings having
the same number of as and bs is not regular, as stated by the following theorem.

Theorem 4.9. The language L = {a™b™ : n > 0} is not regular.

Before we go and prove the theorem, let us first think about the reason the language
is not regular. What does it mean when a language is not regular? It means that we
cannot construct a finite automaton that accepts it. If such an automaton did exist, how
would it work? We would have to remember how many as we have read so when we start
reading bs, we can check that their number matches. Where can we store the number?
The only way is to use states. So, we may create states denoting we have read a single a,
two as, and so on. However, as there is no limit on n, we would need an infinite number

2 There can be more than one automaton for every language. However, it is not important
which automaton we chose for k£ as long as the automaton accepts the language in question.

4.4 Examples from Formal Language Theory 53

of states. This conflicts with the definition of a finite automaton. Indeed, its names stems
from the fact that it has a finite number of states. Alright, let us quit talking and do
some proving.

Proof. We have to show that L from the theorem is not regular. We will proceed by
contradiction. To obtain a contradiction, we assume that L is regular. Then, by the
pumping lemma, there exists a constant k > 1 such that if z € L and |z| > k, then there
exist u, v, w such that z = uwvw, and the following three conditions are satisfied:

(1) v e,
(2) |uv| <k, and
(3) for each m > 0, uwv™w € L.

The first thing we have to handle is that we do not know the exact value of k. So, one
may ask: “How can we choose a string from L that is longer than k& when we do not know
the value of k?” Quite simply—we put z = a*b¥. From the definition of L, we know that
z belongs to L, and since k is greater or equal to 1, the length of z is certainly greater
than k. To be precise, |z| = 2k.

So, we have z whose length is greater than k. Now comes the tricky part. The pumping
lemma states that z can be decomposed so that (1) through (3) are satisfied. So, let
z = wvw such that (1) through (3) hold. By (1), v is non-empty. By (3), uv?w should
be in L. However, since z = a*b*, no matter what v is, if it appears twice, as in uv?w,
the resulting string cannot belong to L. Indeed, there are the following three possibilities
(depicted in Figure what v is:

(i) v contains just as. Then, in uv?w, there will be more as than bs, which violates the
definition of L.
(ii) v contains just bs. As in the previous case, in uv?w, there will be more bs than as,
so the string cannot be in L.
(iii) v begins with some as and ends with some bs. Then, however, in uv?w, we as are
intermixed with bs, which is also a violation of the definition of L.

case (iii)
I_I_|
aaa...aaabbb...bbb
case (i) case (ii)

Fig. 4.3. Three possible cases of dividing the string a"b" into three parts w, v, w. Only v is
depicted in the picture for each case as u is everything that precedes v, and w is everything that
follows after v.

Based on the previous argumentation, we see that no such decomposition is possible.
However, the pumping lemma tells us that it has to exist. This is the contradiction we
have been looking for. Therefore, the assumption that L is regular does not hold, and so
we have just proved that L is not a regular language. O

4.4 Examples from Formal Language Theory 54

Let us now go back to Section In there, we have learned that a corollary is a
mathematical statement that readily follows from a previous statement. To show this
applied in practice, consider the theorem we have just proved. It states that the language
L = {a™b" : n > 0} is not regular. What does it mean? We know that every regular
language can be accepted by a finite automaton. So, from the theorem, we see that there
cannot exist any finite automaton that accepts L. This can be stated as a corollary, as
it follows directly from the proof of the previous theorem and need no additional proof
or argumentation.

Corollary 4.2. There is no finite automaton that accepts L = {a™b"™ : n > 0}.

Since now, we have successfully used a lemma, a theorem, and now a corollary. In
terms of proofs, we have used a direct proof and a proof by contradiction. What leaves
is a proof by induction. This brings us to the next subsection.

4.4.3 Operations Over Strings

Consider strings. What is a string? A sequence of symbols. Therefore, every string can
be written in the form ajas - - - a,, where n > 1, and every q; is a symbol. The reversal of
such a string is obtained by writing the symbols in the reverse order. That is, the reversal
of ajas - - ay is apan,_1 - - - a1. For example, the reversal of the string abbed is debba. The
reversal of a string « will be denoted by rev(x).

When proving theorems, it is useful to know previously established theorems, which
you can use to simplify your proofs. You may find such theorems in books or journal
articles. We will use a theorem by ourselves in the following proof. The theorem we are
going to use states that when reversing a string, we obtain the same result as by splitting
it into two parts, reversing both of them, and concatenating them in a reverse order.

Theorem 4.10. Let u and w be two strings. Then, rev(uw) = rev(w)rev(u).

A yet other operation over strings is power. The power of a string z is defined as
follows. For 0, we define 2 = ¢. That is, 2 to the power of 0 equals the empty string.
Then, for n > 1, we just put £ = xzz™ . This is an example of a so-called recursive

definition. For example, z! = z, 22 = 222~ ! = 22! = zx, and

22 = 2237 = za? = 2x2? ! = xxat = 2z

Another theorem which we will need is the following one:

Theorem 4.11. Let x be a string and n be a natural number. Then, 2" = 2" 'x.

4.4 Examples from Formal Language Theory 55

Now that we are familiar with all the terminology, we can proceed to an example. In
this example, our task is to prove that given a string x, for every natural number n, it
does not matter if we first exponentiate = to n and then reverse it or vice versa. If we
rewrite this task by using symbols, we obtain the following equation:

rev(z™) = rev(x)"

Therefore, our task is to prove the following theorem.

Theorem 4.12. Let x be a string. Then, for every natural number n, rev(z™) = rev(x)".

Proof. Alright, so we have to start with a string. Let x be a string. Now, notice that
we cannot simply just choose some number and put it as the value of n because we are
required to prove it for every natural number. By recalling the contents of Section
for theorems ranging over natural numbers, a proof by induction is the choice we are
going to make.

Our proof will be done by induction on n, as this is the variable the theorem is ranging
over. We start with a basis. The first natural number is zero, which means we have to
prove that rev(z?) = rev(z)°. Since 2° = ¢ by the definition of power, the left-hand side
can be simplified to rev(e), which equals . Then, by using the same reasoning with the
definition of the zero power, the right-hand side of the equation can be simplified to e.
Indeed, as any string to the power of 0 is the empty string, it does not matter what =
actually is; the result will always be the empty string. So, we have that € = ¢, and the
basis holds.

Now the induction step. Recall that in the induction step, we have to prove that if
the statement holds for n, then it holds for n+ 1. To this end, assume that the statement
holds for n—that is, rev(a™) = rev(z)™. Then, to prove that it holds for n + 1, we have
to prove the following equation:

rev(z" ™) = rev(x)" !

In what follows, we have to somehow utilize the assumption that the statement holds
for n—that is, we assume that rev(z™) = rev(z)", and we are proving the statement
for n + 1. By Theorem rev(z"*1) can be rewritten to rev(z"z). Furthermore, by
the definition of the power operator, the right-hand side rev(z)"*! can be rewritten
to rev(z) rev(z)™. Hence, we now have that

rev(z"xz) = rev(x) rev(z)”

By using the induction assumption that rev(z™) = rev(x)™, we may rewrite rev(z) rev(x)"
to rev(z)rev(z™), so we end up with

rev(z"z) = rev(x) rev(z")

Now comes the right time to use the theorem we were talking about. Reconsider The-
orem By this theorem, when v = 2" and w = z, rev(z"z) can be rewritten to
rev(z) rev(z™), which results in

4.4 Examples from Formal Language Theory
rev(z)rev(z"™) = rev(z) rev(z")

As you can see, both sides of the above equation are the same. Hence, rev(z"*1)
rev(z)" 1, which completes the induction step, and the theorem holds.

56

5

Conclusion

The principle goal of this document was to give you a gentle introduction into the math-
ematical foundations of formal language theory. The secondary goals included a demon-
stration of the usefulness of mathematical notation and rigorous methods, notes on how
to read and write your of definitions and statements, and why are mathematical proofs
of major importance. In this concluding chapter, we very briefly review all that we have
talked about and give you some references for your further studies.

First, in the introductory Chapter [1} we have seen the reasons why mathematics
matters, why making abstractions by means of modelling may give use an advantage,
why to learn core topics before hot topics, and why you should be interested in the
subject of the present document.

After that, Chapter [2 provided the very basic mathematical notions that underly the
theory of formal languages. As a running example, we have selected one of the simplest
(but widely used) models—a finite automaton. In a step-by-step way, we have started with
defining states, input alphabets, and final states by utilizing sets. Then, as sets were not
enough or not very suitable to capture the remaining components of a finite automaton,
we have visited sequences and relations. By their means, we have seen how to define the
set of transition rules and the finite automaton itself—as a quintuple, consisting of a
finite set of states, a finite set of input symbols, a set of rules, a designated start state,
and a set of final states. Finally, we have mentioned functions, which provided us with a
tool to define the deterministic variant of a finite automaton in a rather straightforward
way. All in all, we have seen how all the pieces fit together in the formal definition of a
finite automaton.

Chapter |3| then continued the investigation of finite automata by formalizing their
process of computation and, most importantly, their accepted language. Recall that we
have based the definition of computation on the direct move relation, and then the ac-
cepted language has been defined so that it contains precisely the strings that lead the
finite automaton to a final state. After that, to provide a simpler definition of computa-
tion, we have studied closures. And indeed, we have seen that computation can be defined
straightforwardly as the reflexive and transitive closure of the direct move relation.

Finally, in Chapter 4] we have undergone a journey through the world of mathematical
statements and their proofs. Along the way, we have learned why such statements are
of importance for us, what types of them are there and how to read them, why proving

5 Conclusion 58

matters, and what basic types of proofs are there. In the end of the chapter, we have
seen several applications of mathematical statements and their proofs in terms of formal
language theory.

We hope that we have succeeded to fulfill all the goals and that it has been a pleas-
ant adventure for you. Nevertheless, keep in mind that we have covered just the very
fundamental basics of mathematical foundations of formal language theory. If you liked
this journey through the model-building aspects of mathematics, you can continue by
moving forward and starting reading mathematically oriented books or books on the
theory of formal languages. For a good, more detailed treatment of mathematical foun-
dations underlying formal language theory, consult [20]. Other suggested mathematically
oriented books include [I2HI5]. As good introductory books to formal language theory,
we recommend [I6HI9], 21].

Bibliography

10.

11.

12.

13.

14.

15.

16.
17.

18

Bézout’s identity [online]. Last update 2012-09-23. [cit. 2012-11-08]. Available on URL:
http://en.wikipedia.org/wiki/Bezouts_identity.

De morgan’s laws [online]. Last update 2012-10-21. [cit. 2012-11-09]. Available on URL:
http://en.wikipedia.org/wiki/De_Morgan_Laws!|

Five postulates of Euclidean geometry [online]. Last update 2012-08-09. [cit. 2012-10-
13]. Available on URL: http://en.wikibooks.org/wiki/Geometry/Five_Postulates_of_
Euclidean_Geometry.

. Gauss’ lemma [online]. Last update 2012-09-25. [cit. 2012-11-08]. Available on URL: http:
//en.wikipedia.org/wiki/Gauss’s_lemma_(number_theory)!

Halting problem [online]. Last update 2012-10-10. [cit. 2012-11-07]. Available on URL:
http://en.wikipedia.org/wiki/Halting_problem.

Pythagorean theorem [online]. Last update 2012-11-08. [cit. 2012-11-08]. Available on URL:
http://en.wikipedia.org/wiki/Pythagorean_theorem.

Series (mathematics) [online]. Last update 2012-12-06. [cit. 2012-12-14]. Available on URL:
http://en.wikipedia.org/wiki/Series_(mathematics).

Software testing [online]. Last update 2012-11-07. [cit. 2012-11-07]. Available on URL:
http://en.wikipedia.org/wiki/Software_testing,

Spherical geometry [online]. Last update 2012-12-29. [cit. 2012-12-30]. Available on URL:
http://en.wikipedia.org/wiki/Spherical_geometry.

WTF, man I just wanted to learn how to program video games [online]. Last update
2011-09-03. [cit. 2012-12-30]. Available on URL: http://www.lolroflmao.com/2011/09/
03/wtf-man-i-just-wanted-to-learn-how-to-program-video-games/.

Zorn’s lemma [online]. Last update 2012-10-10. [cit. 2012-11-08]. Available on URL: http:
//en.wikipedia.org/wiki/Zorn_lemmal

T. Gowers. Mathematics: A Very Short Introduction. Oxford University Press, New York,
2002.

T. Gowers. The Princeton Companion to Mathematics. Princeton University Press, Prince-
ton, 2008.

R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Com-
puter Science. Addison-Wesley, Boston, 2nd edition, 1994.

P. Halmos. Naive Set Theory. Springer, New York, 1998.

M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Boston, 1978.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston, 1979.

. A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.

http://en.wikipedia.org/wiki/Bezouts_identity
http://en.wikipedia.org/wiki/De_Morgan_Laws
http://en.wikibooks.org/wiki/Geometry/Five_Postulates_of_Euclidean_Geometry
http://en.wikibooks.org/wiki/Geometry/Five_Postulates_of_Euclidean_Geometry
http://en.wikipedia.org/wiki/Gauss's_lemma_(number_theory)
http://en.wikipedia.org/wiki/Gauss's_lemma_(number_theory)
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Series_(mathematics)
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Spherical_geometry
http://www.lolroflmao.com/2011/09/03/wtf-man-i-just-wanted-to-learn-how-to-program-video-games/
http://www.lolroflmao.com/2011/09/03/wtf-man-i-just-wanted-to-learn-how-to-program-video-games/
http://en.wikipedia.org/wiki/Zorn_lemma
http://en.wikipedia.org/wiki/Zorn_lemma

Bibliography 60

19. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, Boston,
2nd edition, 2006.

20. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
New York, 2nd edition, 2003.

21. D. Wood. Theory of Computation: A Primer. Addison-Wesley, Boston, 1987.

Index

abstraction,
accepted language,

axiom, [42]

basis of induction proof, [47]
binary relation, [23]
black swan argument,

Cartesian product,
closure,
complement, [16]

computation, 31} [36]

configuration,
corollary, [T]

De Mornag’s laws, [37]

definition, [T]]

deterministic finite automaton,
direct move relation, [30}

e, 20

element
of a sequence,
of a set,
ellipsis, [I0]
empty set, [I3]

equal sets,

even number, [£4]

final state, BI, @ @

finite
automaton, [6] 25]
relation, [22]
sequence, [I§]

set, [I4]
function, [24]

halting problem,

induction step, Fijl

infinite
relation, 22]
sequence, [I§]

set, [T4]
input symbol, 2] 25|
intersection, [I6]

lemma, @
N, [[0]

naive set theory,
natural numbers,

pair, [I9]

parallel postulate, 2]
power, 4]

power set, [I3]

prime number, [45|

proof, [37] [40]

proof by contradiction,
proof by induction, [{7]

proper subset, [TT} [T2]

Q.E.D symbol, [A0]
quadruple,
quintuple, [I9]

quod erat demonstrandum, see Q.E.D symbol

rational number, @

reductio ad impossibilem, see proof by

contradiction
reflexive and transitive closure,
reflexive relation, [33]

relation, 22} 23|

reversal of a string,

rule, [2] [6] 25] [26]

Russell’s paradox, [[3]

>
septuple,

sequence, [I§]

series, [I§]

set,

sextuple, [I9]

spherical geometry, £3]
start state, [2 [0] 25]
state, [2 [6] 25]

statement, [40]
subset,
proper, [T1} [I2]

Index

successful computation, [f]

ternary relation, 23]
theorem, @

transition diagram, [6]
transitive relation,
triplet, [I9]

tuple,

types of proofs, [44]

union, [I5]
universe, [I6]
unsuccessful computation, |§|

z,[

Zermelo-Fraenkel set theory, [L3]

62

	Introduction
	Defining Finite Automata
	Sets
	Sequences
	Relations
	Functions
	Finite Automaton

	Defining Computation and Accepted Language
	Computation
	Accepted Language
	Closures

	Mathematical Statements and Their Proofs
	Why is Proving so Important?
	Layout and Types of Mathematical Statements
	General Layout of a Statement
	The Basics: Theorem, Lemma, and Corollary
	Where Everything Starts: Axiom
	Summary

	Types of Mathematical Proofs
	Direct Proof
	Proof by Contradiction
	Proof by Induction

	Examples from Formal Language Theory
	Concatenation of Languages
	Pumping Lemma
	Operations Over Strings

	Conclusion
	Bibliography
	Index

