
Complexity Classes

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Lukáš Charvát

This material was created with the support of the Czech Ministry of Education,
Youth and Sports (project FRVŠ 166/2013/G1).

Complexity Classes – Motivation

We have studied the relation of a complexity class of a certain
type on a function which is used for its definition.

Now, we will focus on investigating the relation between
complexity classes of different types.

Although a lot effort has been invested in this area in recent years,
some problems (such as P ?

= NP) remain unsolved.

Complexity Theory (FIT VUT) Complexity Classes 2 / 27

Complexity Classes – Motivation

LOG

LOGSPACE

P

NP
co

NP

PSPACE

EXP

EXPSPACE

ELEMENTARY
.
.
.

2-EXP

R

Complexity Theory (FIT VUT) Complexity Classes 3 / 27

Inclusion of Complexity Classes

We will show that the following chain of inclusions holds:

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

To do this, we will prove the statements shown below:

a) DSPACE(f (n)) ⊆ NSPACE(f (n)),
b) DTIME(f (n)) ⊆ NTIME(f (n)),
c) NTIME(f (n)) ⊆

⋃
c>0 DTIME(cf (n)),

d) NTIME(f (n)) ⊆ DSPACE(f (n)),
e) NSPACE(f (n)) ⊆ DTIME(2O(f (n))) for f (n) ≥ log n,

f) NSPACE(f (n)) ⊆ DSPACE(f (n)2) for f (n) ≥ log n
(Savitch’s theorem).

where f (n) is a time and space constructible function.

Complexity Theory (FIT VUT) Complexity Classes 4 / 27

Proof of the Inclusion of Complexity Classes (1/4)

Proof (Parts a, b, c, and d)

Parts a) (DSPACE(f (n)) ⊆ NSPACE(f (n))) and
b) (DTIME(f (n)) ⊆ NTIME(f (n))) are trivial since each
deterministic TM is a special case of a nondeterministic TM.
Part c) (NTIME(f (n)) ⊆

⋃
c>0 DTIME(cf (n))) has been proven in

the previous lecture.
The inclusion d) (NTIME(f (n)) ⊆ DSPACE(f (n))) is a
consequence of the proof of the proposition
NTIME(f (n)) ⊆ DTIME(2f (n)). A nondeterministic TM MN can
make at most f (n) nondeterministic choices. The deterministic TM
MD simulating MN uses f (n) cells of the tape to represent the
choices of MN and at most f (n) cells for simulating the tape of MN .
MD simulates the possible runs of MN one by one.

Complexity Theory (FIT VUT) Complexity Classes 5 / 27

Proof of the Inclusion of Complexity Classes (2/4)

Proof (Part e)

NSPACE(f (n)) ⊆ DTIME(2O(f (n))) for f (n) ≥ log n
We will define the configuration graph G(M,w) of an NTM M with
the input w. The vertices of the graph G(M,w) are configurations
that may occur during a computation of M on w. There is an edge
between the vertices C1 and C2 iff M can do a transition from the
configuration C1 to C2 in a single step.
We ask whether there is a path from the vertex denoting the initial
configuration to the vertex representing the accepting one.
For each input w, the number of vertices of G(M,w) can be
upper-bounded by 2O(log |w |+f (|w |)).
The already known algorithm REACHABILITY can solve the
problem in time O(m2) for graphs with m vertices. Therefore, the
overall time complexity of a DTM simulating M is 2O(log n+f (n)).

Complexity Theory (FIT VUT) Complexity Classes 6 / 27

Proof of the Inclusion of Complexity Classes (3/4)

Proof (Part f)

NSPACE(f (n)) ⊆ DSPACE(f (n)2) for f (n) ≥ log n (Savitch’s th.)
First, we will show that REACHABILITY ∈ DSPACE(log2 n).
Let G be a graph with n vertices.
Let x , y be two distinct vertices from G.
Then, the longest path from x to y can have at most length n.
We use a DTM to implement the procedure path(x , y , i) which
returns true iff there exists a path from x, y of length at most 2i .
procedure path(x, y, i)
if (i = 0) then return ((x = y) ∨ ((x,y) ∈ G))
else for all vertices z ∈ G do

if (path(x, z, i-1) ∧ path(z, y, i-1)) then
return true

return false

Complexity Theory (FIT VUT) Complexity Classes 7 / 27

Proof of the Inclusion of Complexity Classes (4/4)

Proof (Part f)

Recursive calls of path(x , y , i) create a tree of depth i.
For our problem, it suffices to check whether path(x , y , dlog ne)
holds.
The DTM implementing the path procedure will have to store call
stack with at most dlog ne triplets of length 3 · log n.
Therefore, the space complexity of REACHABILITY is O(log2 n).
For a NTM MN we can create a DTM MD which uses another DTM
deciding REACHABILITY for each accepting configuration of MN .
The number of vertices of G(MN ,w) cannot be bigger than cf (|w |).
Thus, the space complexity of MD is O(log2 cf (n)) = O(f (n)2).

Complexity Theory (FIT VUT) Complexity Classes 8 / 27

Inclusion of Complexity Classes: Conclusion

We have shown that

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

We expect all inclusion to be proper but for none of them has this
been either proved or refuted yet.
However, because of Time/Space Hierarchy Theorems (not
covered here), it is known that some inclusions need to be proper.
It is known that:

DLOG ⊂ PSPACE

P ⊂ EXP

NP ⊂ NEXP

Complexity Theory (FIT VUT) Complexity Classes 9 / 27

Definition of Complements of Complexity Classes (1/2)

Definition
Let L ⊆ Σ∗ be a language. The complement of L denoted co–L is the
language

co–L = Σ∗ \ L.

The same approach can be extended for decision problems.

Definition
The complement of a decision problem A, denoted A–COMPL, is a
problem for which the solution is:

yes ⇐⇒ the solution for A is no
no ⇐⇒ the solution for A is yes

Formally, A–COMPL is not a complement of a language because
A ∪ A–COMPL 6= Σ∗.

Complexity Theory (FIT VUT) Complexity Classes 10 / 27

Definition of Complements of Complexity Classes (2/2)

Definition
Let C be a complexity class. The complement of C, denoted co–C, is
the complexity class

co–C = {co–L | L ∈ C}.

Clearly, deterministic time and space complexity classes are
closed under complement:
each DTM accepting L can be transformed into a DTM accepting
co–L by swapping accepting and rejecting states.

DTIME(f (n)) = co–DTIME(f (n))

DSPACE(f (n)) = co–DSPACE(f (n))

Complexity Theory (FIT VUT) Complexity Classes 11 / 27

Complements of Nondeterministic Complexity Classes

Nondeterminism introduces an asymmetry in acceptance of a
given input by NTM M:

w ∈ L(M) ⇐⇒ there is an accepting run of M on w ,
w 6∈ L(M) ⇐⇒ there is no accepting run of M on w .

Thus, it suffices that one accepting computation exists for the
former case but it is required that all computations are rejecting for
the latter one.

Complexity Theory (FIT VUT) Complexity Classes 12 / 27

Nondeterministic Space Complexity Classes (1/8)

Proposition (Immerman-Szelepcsényi Theorem)

NSPACE(f (n)) = co–NSPACE(f (n)) for f ≥ log n

We have seen that REACHABILITY is in NLOGSPACE.
First, we will demonstrate that the converse of REACHABILITY ,
called UNREACHABILITY , is in NLOGSPACE too.

Definition
UNREACHABILITY

Input: Graph G = (V ,E), a pair of vertices x , y ∈ V.
Output: YES if there is no path from x to y, NO otherwise.

Proposition

UNREACHABILITY ∈ NLOGSPACE

Complexity Theory (FIT VUT) Complexity Classes 13 / 27

Nondeterministic Space Complexity Classes (2/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
We will first devise an algorithm that computes the number of
reachable nodes in a graph in O(log n) space,

• and later modify it to solve UNREACHABILITY .

Let G = (V ,E) be a graph and x ∈ V.
S(k) is the set of nodes reachable from x in k or less steps,

• |S(k)| is the number of nodes reachable from x in k or less steps.

adjac(v ,u) is true iff v = u ∨ (v ,u) ∈ E, otherwise false.
procedure numReachable(x, (V, E))

• nondeterministically either FAILs or returns the number of nodes
reachable from x,

• we will start with a procedure working in O(n) space and modify it
in several steps to use O(log n) space.

Complexity Theory (FIT VUT) Complexity Classes 14 / 27

Nondeterministic Space Complexity Classes (3/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do

compute |S(k)| from |S(k-1)|

return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 15 / 27

Nondeterministic Space Complexity Classes (4/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do
if u ∈ S(k) then `++

|S(k)| := `
return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 16 / 27

Nondeterministic Space Complexity Classes (4/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do
if u ∈ S(k) then `++

|S(k)| := `
return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 17 / 27

Nondeterministic Space Complexity Classes (5/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false
for each node v := 1 to |V| do

if v ∈ S(k-1) then
if adjac(v, u) then reply := true

if reply then `++
|S(k)| := `

return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 18 / 27

Nondeterministic Space Complexity Classes (5/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false
for each node v := 1 to |V| do

if v ∈ S(k-1) then
if adjac(v, u) then reply := true

if reply then `++
|S(k)| := `

return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 19 / 27

Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 20 / 27

Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|

guesses path from x to v of
length at most k-1:
returns true iff path is OK,
false if path is wrong

if calls to reachNondet() did
not guess all the paths correctly,
terminate the computation

Complexity Theory (FIT VUT) Complexity Classes 21 / 27

Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|

Complexity Theory (FIT VUT) Complexity Classes 22 / 27

Nondeterministic Space Complexity Classes (7/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure reachNondet(x, v, d)
w0 := x
for p := 1 to d do

guess a node wp
if ¬adjac(wp−1, wp) then return false

return (wd = v)

For UNREACHABILITY (G, x , y), modify numReachable():
...

if m < |S(k-1)| then return false
if reply then `++
if k = |V|-1 and u = y then return ¬reply

...

Complexity Theory (FIT VUT) Complexity Classes 23 / 27

Nondeterministic Space Complexity Classes (8/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
UNREACHABILITY can be implemented using a NTM M that
works in space O(log n).

M keeps binary values of |S(k-1)|, `, k, u, v, m, reply, p, wp,
wp−1 on separate tapes.

Variables are only incremented or compared with each other.

Values of all variables are at most |V |, their length at most log |V |.

Complexity Theory (FIT VUT) Complexity Classes 24 / 27

Nondeterministic Space Complexity Classes (7/7)

Proposition (Immerman-Szelepcsényi Theorem)

NSPACE(f (n)) = co–NSPACE(f (n)) for f ≥ log n

Proof
Let L ∈ NSPACE(f (n)) be a language decided by a NTM MN and
let w be its input.
We can construct a DTM MD working in NSPACE(f (n)) deciding
co–L.
MD simulates the UNREACHABILITY algorithm for the
configuration graph G(M,w).

Corrolary

NPSPACE(f (n)) = co–NPSPACE(f (n)), . . .

Complexity Theory (FIT VUT) Complexity Classes 25 / 27

Nondeterministic Time Complexity Classes (1/2)

We have seen that

NTIME(f (n)) ⊆
⋃
c>0

DTIME(cf (n))

Each problem from class NTIME(f (n)) can be deterministically
decided in time

⋃
c>0 DTIME(cf (n)).

Corrolary

co–NTIME(f (n)) ⊆
⋃
c>0

DTIME(cf (n))

Complexity Theory (FIT VUT) Complexity Classes 26 / 27

Nondeterministic Time Complexity Classes (2/2)

Relationship between complements of nondeterministic time
complexity classes remains unsolved:

NTIME(f (n))
?
= co − NTIME(f (n))

Corrolary

NP(f (n))
?
= co–NP(f (n))

Corrolary

NEXP(f (n))
?
= co–EXP(f (n))

Complexity Theory (FIT VUT) Complexity Classes 27 / 27

