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Abstract—GPUs have been successfully used for acceleration GPU needs many threads running and even more thread

of many mathematical functions and libraries. A comrmon

limitation of those libraries is the minimal size & primitives

being handled, in order to achieve a significant sedup
compared to their CPU versions. The minimal size
requirement can prove prohibitive for many applicatons. It

can be loosened by batching operations in order tdave
sufficient amount of data to perform the calculation maximally

efficiently on the GPU. A fast OpenCL implementatia of two

basic vector functions — vector reduction and vectcscaling — is
described in this paper. Its performance is analyz by

running benchmarks on two of the most common GPUshiuse
Tesla and Fermi GPUs from NVIDIA. Reported
experimental results show that our implementation
significantly outperforms the current state-of-theart GPU-

based basic linear algebra library CUBLAS.

GPU; paralld reduction; linear algebra; BLAS OpenCL,
CUDA

l. INTRODUCTION

Although programmable GPUs have been available
almost two decades [1], the quest for the mostiefii
implementation of various algorithms on GPU stilirhs a
hot topic of the current research. This is pagtiahused by

scheduled. For some applications operating on large
structures such as image processing, it is typicaty easy
to achieve. However, there are other types of tdhks
require special procedures to keep the GPU busthes
operate on many smaller units (e.g., vectors ofelow
dimensions). That is why batching of operationeeiguired
in order to fully leverage the computing power loé tGPU.
As simple as it seems, efficient batching is natyet
implement on today's GPUs. One proof of this mayhee
CUBLAS library itself. It implements batching fonly one
type of complex matrix operations in its newestsi@ar (Q1
2012).

The work reported in this paper focuses on meagurin
basic machine properties which govern the perfooaanf
batched algorithms on GPU. Initial experimental adéa
employed in the design of simple and fast batchector
operations. For the sake of simplicity, this pageals with
vector operations only. However, the results camajaied

fofo other operations as well. This is outlined ine th
conclusion section.

There are two classes of operations discussed @n th
paper. Operations of the first type are limitedthy shared

the Complex architecture of tOday’S GPUs which msake memory to run on a Sing|e Streaming mu|tipr0ce$§bﬂ),

optimization difficult, and partially by the evewaving
nature of GPUs that can hinder general applicgtmlithnew
methods.

e.g. vector reduction. The other class involvesratns
that use the shared memory to cache data but afenited
to a single SM, e.g. vector scaling (a vector-scataduct).

Scientific computing is one of the most active area Note that there is also a third class of operatighieh does
where GPUs have been successfully used. Core pnsble not require the use of the shared memory at atlthnt is

often benefit from their formulations in terms adhdar

not interesting as it runs efficiently on the GRund does

algebra performing various operations on vectorsl annot require any optimizations.

matrices. There are several available libraries drable
developers and scientists to accelerate their usitg high-
level functions running on GPU. The most populardry —

Il.
Kriiger and Westermann [4] implemented a linear
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NVIDIA CUBLAS [2] became a de-facto standard insthi algebra framework using programmable shading, ptese

area.

GPU is a highly efficient architecture capable ofapproach

executing hundreds of threads in parallel [3]. Whhis is
its main strength, it also imposes some limitatiéos an
efficient usage. To deliver its maximal performagntee

the hardware at that time. The disadvantage ofr thei
is that it is limited by possibilities of
programmable shading pipeline itself. The authaad ko
resort to complicated matrix and vector represamatin
memory and had to break some of the operations (e.g



matrix — matrix multiplication or vector reductiodpwn to
several rendering passes, effectively loosing perémce.
Harris, Sengupta and Owens [5] described an effficie
implementation of parallel prefix sum on GPU, usihg
CUDA language. This is considered an efficient apph,
as it leverages the access to the specialized @Rtures
such as shared memory for intra-thread communicatio
That was not possible using programmable shadisgt a

does not expose this functionality. But it has some>

shortcomings, as it requires two passes to fuljuce a
vector. The second pass can be efficiently impldéettion
the CPU (it is too small to be executed efficierly the
GPU).

Volkov and Demmel [6] present a hybrid CPU — GPU
solution of dense matrix-matrix multiplication abtd, QR
and Cholesky decomposition. They easily outperfane
standard libraries by implementing several
optimizations, notably using a register file insted shared

In this paper, two simple operations on vectord i
considered and performance analyzed with and withou
batching. The first is vector reduction, an opemtthat
produces a scalar from a vector. One example oh suc
operation may be calculation of Euclidean vectargte.
Implementation of vector reduction on GPUs is carpl
because of its parallel nature. A solution descrire [5]
was used as a baseline solution. It makes anafficise of
hared memory, delivering very good performancesfimv
that even tasks of lesser complexity can be batched
efficiently, the second operation, vector scaling i
implemented. Vector scaling is embarrassingly peiraind
that is why naive implementation is sufficient tanr
efficiently on the GPU.

Note that this paper is based on our previous work,
briefly described in [12]. This paper brings desdil
performance analysis of the algorithms outlined it

hardwargredecessor, along with the explanation of thelrabior. It

also describes the devised algorithms in more Idetzd

memory, as opposed to the general GPU programminggrifies their function on the newer, more modeandware.

paradigm. Their work is orthogonal to the focus this
paper.

Nath, Tomov, Dong, and Dongarra [7], [8] show a
number of different techniques for optimizing detisear

Some simple benchmarks were run before investigatin
various implementation paths to limit the numbeppfions
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algebra on the GPUs. These techniques seek include the best ones. For the implementation of thecheat

blocking (the use of shared memory to cache sntatiks

vector reduction kernel, it is logical to assumattleach

of data), Optimizing memory access patterns, optimaGPU SM will work on a single vector (because shared

storage design, autotuning (employing heuristic@dedo
generate optimal code) and finally some optimizetidor
generic primitive size. Their work is also orthogbto the
focus of this paper.

There are several high-level
acceleration of linear algebra. These include tbeva
mentioned CUBLAS [2], along with CUFFT [9], CULA
[10], CUDPP [11] and possibly more. As of todaynamf

memory is required in order to be able to perforamapel
reduction and the threads running on one SM cary onl
access it's shared memory space). Next, it wagrees$uhat
there will be potentially many vectors, ideally radhan the

libraries oriented ornumber of SMs (Fermi architecture GPUs have 16 &YIs

Tesla GPUs have up to 32 SMs [13]).
The question in implementing efficient batchinghisw
to schedule the individual vectors to be proces$kdre are

those libraries provide batched operations with theéeveral aspects that need to be considered. Most
exception of CUBLAS' function cublas<t>gemmBatched( importantly, as vector reduction is not an arithioaly
which calculates the standard BLAS GEMM function, aintensive operation, memory accesses need to heeipyo
multiplication and addition of three matrices: aligned. Then, the GPU needs to have enough threads
occupy all of the SMs (that is not the same asritathe
same amount of thread blocks as SMs as the thraeds
suspended at the first blocking instruction, yietdito the
sleeping threads until the outstanding operatidimished).

And finally, the workload needs to be well distrieéd in
order to prevent slack.

gemm @, B, op, Oy, A, B, C) =aop,(A)opy(B) +BC. (1)

where the operations on matrices include no-omspase,
or conjugate transpose (for complex matrices). dibeence
of batched versions of simpler functions [2] mayigate
that efficient batching of simple operations isfidiflt to The first set of benchmarks involved a simple read-
implement. modify-write operation carried out on a set of west while

On modern GPUs which are capable of executing akvereach vector is processed in a single thread bl thread
kernels in parallel, simple batching is possiblmgseveral —per vector element (while the number of elementtches
command queues. This technique is, however, limtied SIMD width). There are several options for impletien
maximal amount of simultaneously running kernelfigh  this operation: a single thread block per vectotingrid, a
is 16 on current NVIDIA hardware [3]), and may not Single thread block per vector in 2D grid, andrayls thread
therefore offer maximal performance, which is alsoPlock per several vectors in 1D grid. While thisaisimple

confirmed by experimental results provided in sec test, the results are already useful. It turnstioatt scheduling
' a 2D kernel is unsurprisingly somewhat slower than

scheduling a 1D kernel on both Tesla and Fermi Gfgtus



driver needs to create more instances of regiggsrdnd fill  constant memory. The disadvantage of shared meisory
them with the appropriate kernel arguments). Thalso the  that it needs to be filled explicitly by the kernetquiring
reason why 3D and higher-dimension kernels were nqthanges in the code. On the other hand, it enéiioteshoice
considered. However, using a loop in a 1D kernglribess ¢ qj;o of the blocks in which the scales are abpiem
several vectors is actually much faster than hasirgingle global memory to shared memory.

block per vector on Fermi (the difference is ndbli on . o
Tesla). This makes sense as Fermi thread scheduleore _ 1he second benchmark was a simple one, it involved
complicated than Tesla, and launching a new thrisad Itérating over a I|sF of vectors and_multlplymgchave_ctor _
slower than looping, even though it reduces thal timber Dy @ corresponding scale (again, a read-modifyewrit
of running threads. This way, the bandwidth coulel b operation). This time, vectors were not bound tosSiich
boosted from 100 GB/sec to almost 160 GB/sec, molager makes thread scheduling a lot easier. A constamibeu of

to the theoretical 192.4 GB/sec [3] on Fe_rmi. Tbmp!ete threads per thread block was used (1024 for Fenthi5d 2
results can be seen in table 1. It contains barttsvifbr for Tes|a) and each thread processed a Sing|e vecto
different numbers of vectors for different typeskefinels,  glement. The total amount of data to be processas w
speedup of a 1D kernel with loop compared to a @,  gng (B, vector length was 128. The choice of thegea

number of iterations where the peak occurred arel th ; : A o
corresponding number of thread blocks each SM nézds amount_ of relatlyely short vectors is to av<_)|(_j igelmited
by having too little vectors, hence penalizing tee of

process. The results for Tesla were omitted in rorolesave i )

space since there was no significant speedup. tiatethe ~ 1arger interleave sizes. Then the performance efkirnel
bandwidth is also dependent on the complexity @fragions Was measured, while using different interleave ssid@e
performed on each of the vectors, in this casemealione. amount of data read into the shared memory before
But as previously stated, linear algebra operatawasmostly  processing any vector elements). The results cdaurel in

bandwidth-limited and that's why the results ai &lid. table 2.
TABLE 1. SM-BOUND THREAD SCHEDULING STRATEGIE$FERMI) TABLE II. VECTOR SCALING BANDWIDTH AS A FUNCTION OF
_ INTERLEAVE SIZE
Peak bandwidth [GB/sec]

Vectors 1D 2D 1D/logp | Speedup| Iters| Blocks Bandwidth [GB/sec]
102400 | 108.805 106.09F¢ 153.310 40.96 % 32 20( Interleave size [B] Fermi Tesla
89600 108.727 106.27p 153.014 40.73 6 32 175 8 12.291 10.859
76800 108.531] 106.03p 152.6%5 40.66 Po 25 192 16 34.824 27.390
64000 108.418 105.919 152.275 40.45 P 2 200 256 144.019 74.087
51200 108.231] 105.769 152.512 40.91 o 2 160 512 146.723 86.804
38400 108.293 105.085 152.128 40.48 o 25 96 1024 149.956 89.668
25600 108.063 105.448 152.677 41.29 P 64 25 2048 150.039 91.415
12800 107.2120 104.375 150.1%9 40.06 Po 400 2 4096 151.620 91.990
2560 99.863 97.396 138.661 38.85 % 160 1 16384 153.125 92.437
1280 92.727 89.524 123.475 33.16 % 8@ 1 32768 155.167
256 56.735 55.512 64.771] 14.16 % 16 1 49152 156.538

*|ters denotes number of loop iterations, Blockausnber of thread blocks scheduled per SM
It is clear that the greater the interleave sibe, dreater

The second set of benchmarks was aimed at the rgemoperformance. Also, the scheduling parameters wete s
subsystem. Memory operations on the GPU are fdgtibn reasonably, as the peak bandwidths on either pfatfeach
the memory accesses are coalesced [8], [14] (daelad their maximum theoretical values. The results fritea two
reads from memory location which corresponds tthitsad  above benchmarks will affect the design of the psegl
index, with offset that needs to be an integer ipleitof 32).  vector operation algorithms described in the nésipter.
While on Fermi the cache should take care of mbshe
problems, matters are complicated on Tesla. Butsit
possible to use either the constant memory whicdtached With the benchmark results at hand, it is now
on Tesla as well as on Fermi, or to use the shaedory. straightforward to implement efficient batched @tems.

Constant memory has the advantage of being tramspar OpenCL was chosen as the implementation language in
to the kernel. No code modifications are requikanpared order to make the resulting code portable andinotdd to
to the global memory approach. The data are autoatist NVIDIA GPUs. Only simple functions on vectors ofate
copied from global memory by the driver upon kernelvalues were implemented, complex values are nqicsted
launch. Both architectures are equipped with 64 B at the moment.
constant memory [3], [13]. The parallel reduction is now pretty straightfordait is

Shared memory, on the other hand, has the advanta%lalﬁi(?iE‘nt to take the code from [5] and wrap ifdoped 1D
that there is more shared memory (up to 16 x 4gokB Plock code from chapter 3. The only changes reduine
Fermi [3] and 32 x 16 kB on Tesla [13]) than theseof order to make the implementation practical invohdsling

IV.  ALGORITHM DESIGN



vector range specification as the pass size migheesl
maximum pass size limitation of the GPU, and thenéle
would fail to launch in that case. That alreadyegivgood
results. This is summed up in algorithm 1. Otheriaves
were also implemented to verify that this variadlly gives
the best results. The other variants included veuo thread
and vector per kernel - different levels of graritya

The parallel scaling was also practically descrilvethe
benchmarks chapter. But again, variants of the rigifigo

(scales are stored in global memory), const (scakes
stored in constant memory), local (scales are dtire
shared memory) and CUDA (function cublasSscal(pteN
the spiking is caused by element misalignment ef tbn-
multiple-of-32 dimensional vectors. As expected,BLBWS

function cublasSscal() turns out to perform suhbinoally,

although it is better at the unaligned vectorss taused by
the fact that the first vector is always aligneald anay only

employing the global memory and the constant memoryesult in a small amount of idle threads. And siitcenly

instead of the shared memory were implemented #sirwe
order to show that these really give suboptimalltesThe
best solution (shared memory) is described in dlgor 2.
Like the reduction algorithm, additional parametdcs
multipass processing were added.

V. RESULTS

Runtimes of a simple baseline “C” implementatiofi, o

processes a single vector at a time, it never hasalesced
reads and its performance exceeds performance ef th
proposed batched version for cases with a few legegeors.

VI.

A simple, yet novel approach for implementing two
different classes of batched algorithms was sugdedt
was also demonstrated on two simple vector funstitiat

CONCLUSIONS ANDFUTURE WORK

the proposed GPU implementation and of CUBLAS wergygiong in either class. The results confirm thatdescribed

recorded. Times needed for generating the test data

storing the results were omitted. GPU times inclaolgying
data to GPU memory as well as copying the resalt&.bTo
ensure all the GPU operations have finished, chif)iwas
called. The results of all the operations were sigi®ecked
for correctness and the algorithms operated
pseudorandom data, excluding the possibility dinfjl the
GPU memory with the correct results in one instaacd
failing to actually generate any results in thetn@s often
happens with GPU debugging).

The implementations presented here were built ugiag
Microsoft Visual Studio 2008 compiler. The CPU tirag
all the algorithms was measured on a pair of urddadMD
Opteron 2360 SE processors (8 cores running aBRB in
total), running on Windows XP x64. The GPU timesrave

approach is really effective, outperforming thensdtd
GPU BLAS library, CUBLAS, by a factor of three.

There are a lot of algorithms that would profitrfrdahis
improvement. The list may include matrix operaticsEarse
vector and matrix operations, and some other. lldvde
Ofhteresting to remove the current limitation thak the
vectors in the batch need to have the same dimen§lat
would enable even more of the existing code toipfafm
the accelerated algorithms. Another interesting &@nto
focus on vectors with lengths that are not a mialtqf 32, a
feature that seems to be missing in most of the GPU
libraries at the time.
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The results for the three vector reduction appresch [1]

described in chapter 4 and for CUBLAS functio
cublasSnrm2() are plotted on figure 1.a and 1.c arel
denoted VAT (vector at a time), VPT (vector peretu),

VTB (vector per thread block), and CUDA (function (3]

cublasSnrm2()).

All the tests were run with an equal amount of datdy
the vector dimensions (and hence the number ofox@ct
changed. CPU time was therefore almost constanaritbe
seen that the last strategy (vector per threadkpliscthe
most beneficial and even surpasses cublasSnrm2g)dog
than 50 GB/sec on Tesla and by 80 GB/sec on Féomihe
very large vector sizes.

The whole situation for the vector scaling benctimas
depicted on figure 1.b and 1.d. These are denaibagl
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FUNCTION reduce(vectors, dest, first_vec, last,wec_dimensions)
FOR v := first_vec + get_group_id(0) TO lasicv 1 STEP get_num_groups(0) DO

FOR i := get_local_id(0) TO vec_dimensionsSTEP get_local_size(0) DO
accum := accum + OP(vectors[i + v * vec_disiens])

shared[get_local_id(0)] := accum

barrier(CLK_LOCAL_MEM_FENCE)

{ reduce in shared memory as described i} [5]

Algorithm 2. Batched vector scaling

1. FUNCTION scale(vectors, scales, dest, first_last, vec, vec_dimensions, interleave)

2. first_elem := first_vec * vec_dimensions

3. last_elem := last_vec * vec_dimensions

4. elem_step := (interleave - 1) * vec_dimensions

5. e0 := get_group_id(0) * elem_step + first_elem

6. IF e0 >= last_elem THEN

7. RETURN

8. WHILE TRUE DO

9. v0 := e0 / vec_dimensions

10. FOR i := get_local_id(0) TO min(interleavast_vec - v0) - 1 STEP get_local_size(0) DO
11. shared([i] := scales]i + v0]

12. barrier(CLK_LOCAL_MEM_FENCE)

13. FOR e := get_local_id(0) + e0 TO min(e0 +nelstep, last_elem) - 1 STEP get_local_size(0) DO
14. dest[e] := vectors[e] * shared[e / vec_digiens - v0]

14. e0:=e0 + get_num_groups(0) * elem_step

15. IF e0 >= last_elem THEN

16. RETURN

17. barrier(CLK_LOCAL MEM_FENCE)
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Figure 1. (a) comparison of vector reduction kernels (Tegl®)comparison of vector scaling kernels (Tesla),
(c) comparison of vector reduction kernels (Ferio) comparison of vector scaling kernels (Fermi).



