
Fast Linear Algebra on GPU

Lukas Polok and Pavel Smrz
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Bozetechova 2, 61266 Brno, Czech Republic
e-mail: {ipolok,smrz}@fit.vutbr.cz

Abstract—GPUs have been successfully used for acceleration
of many mathematical functions and libraries. A common
limitation of those libraries is the minimal size of primitives
being handled, in order to achieve a significant speedup
compared to their CPU versions. The minimal size
requirement can prove prohibitive for many applications. It
can be loosened by batching operations in order to have
sufficient amount of data to perform the calculation maximally
efficiently on the GPU. A fast OpenCL implementation of two
basic vector functions – vector reduction and vector scaling – is
described in this paper. Its performance is analyzed by
running benchmarks on two of the most common GPUs in use
– Tesla and Fermi GPUs from NVIDIA. Reported
experimental results show that our implementation
significantly outperforms the current state-of-the-art GPU-
based basic linear algebra library CUBLAS.

GPU; parallel reduction; linear algebra; BLAS; OpenCL;
CUDA

I. INTRODUCTION

Although programmable GPUs have been available for
almost two decades [1], the quest for the most efficient
implementation of various algorithms on GPU still forms a
hot topic of the current research. This is partially caused by
the complex architecture of today’s GPUs which makes
optimization difficult, and partially by the ever evolving
nature of GPUs that can hinder general applicability of new
methods.

Scientific computing is one of the most active areas
where GPUs have been successfully used. Core problems
often benefit from their formulations in terms of linear
algebra performing various operations on vectors and
matrices. There are several available libraries that enable
developers and scientists to accelerate their code using high-
level functions running on GPU. The most popular library –
NVIDIA CUBLAS [2] became a de-facto standard in this
area.

GPU is a highly efficient architecture capable of
executing hundreds of threads in parallel [3]. While this is
its main strength, it also imposes some limitations for an
efficient usage. To deliver its maximal performance, the

GPU needs many threads running and even more threads
scheduled. For some applications operating on large
structures such as image processing, it is typically very easy
to achieve. However, there are other types of tasks that
require special procedures to keep the GPU busy as they
operate on many smaller units (e.g., vectors of lower
dimensions). That is why batching of operations is required
in order to fully leverage the computing power of the GPU.
As simple as it seems, efficient batching is not easy to
implement on today's GPUs. One proof of this may be the
CUBLAS library itself. It implements batching for only one
type of complex matrix operations in its newest version (Q1
2012).

The work reported in this paper focuses on measuring
basic machine properties which govern the performance of
batched algorithms on GPU. Initial experimental data is
employed in the design of simple and fast batched vector
operations. For the sake of simplicity, this paper deals with
vector operations only. However, the results can be applied
to other operations as well. This is outlined in the
conclusion section.

There are two classes of operations discussed in the
paper. Operations of the first type are limited by the shared
memory to run on a single streaming multiprocessor (SM),
e.g. vector reduction. The other class involves operations
that use the shared memory to cache data but are not limited
to a single SM, e.g. vector scaling (a vector-scalar product).
Note that there is also a third class of operations which does
not require the use of the shared memory at all, but that is
not interesting as it runs efficiently on the GPU, and does
not require any optimizations.

II. PREVIOUS WORK

Krüger and Westermann [4] implemented a linear
algebra framework using programmable shading, present in
the hardware at that time. The disadvantage of their
approach is that it is limited by possibilities of
programmable shading pipeline itself. The authors had to
resort to complicated matrix and vector representations in
memory and had to break some of the operations (e.g.

matrix – matrix multiplication or vector reduction) down to
several rendering passes, effectively loosing performance.

Harris, Sengupta and Owens [5] described an efficient
implementation of parallel prefix sum on GPU, using the
CUDA language. This is considered an efficient approach,
as it leverages the access to the specialized GPU features
such as shared memory for intra-thread communication.
That was not possible using programmable shading, as it
does not expose this functionality. But it has some
shortcomings, as it requires two passes to fully reduce a
vector. The second pass can be efficiently implemented on
the CPU (it is too small to be executed efficiently by the
GPU).

Volkov and Demmel [6] present a hybrid CPU – GPU
solution of dense matrix-matrix multiplication and LU, QR
and Cholesky decomposition. They easily outperform the
standard libraries by implementing several hardware
optimizations, notably using a register file instead of shared
memory, as opposed to the general GPU programming
paradigm. Their work is orthogonal to the focus of this
paper.

Nath, Tomov, Dong, and Dongarra [7], [8] show a
number of different techniques for optimizing dense linear
algebra on the GPUs. These techniques seek include
blocking (the use of shared memory to cache small blocks
of data), optimizing memory access patterns, optimal
storage design, autotuning (employing heuristic search to
generate optimal code) and finally some optimizations for
generic primitive size. Their work is also orthogonal to the
focus of this paper.

There are several high-level libraries oriented on
acceleration of linear algebra. These include the above
mentioned CUBLAS [2], along with CUFFT [9], CULA
[10], CUDPP [11] and possibly more. As of today, none of
those libraries provide batched operations with the
exception of CUBLAS' function cublas<t>gemmBatched()
which calculates the standard BLAS GEMM function, a
multiplication and addition of three matrices:

 gemm (α, β, opa, opb, A, B, C) = αopa(A)opb(B) + βC. (1)

where the operations on matrices include no-op, transpose,
or conjugate transpose (for complex matrices). The absence
of batched versions of simpler functions [2] may indicate
that efficient batching of simple operations is difficult to
implement.

On modern GPUs which are capable of executing several
kernels in parallel, simple batching is possible using several
command queues. This technique is, however, limited to
maximal amount of simultaneously running kernels (which
is 16 on current NVIDIA hardware [3]), and may not
therefore offer maximal performance, which is also
confirmed by experimental results provided in section 5.

In this paper, two simple operations on vectors will be
considered and performance analyzed with and without
batching. The first is vector reduction, an operation that
produces a scalar from a vector. One example of such
operation may be calculation of Euclidean vector length.
Implementation of vector reduction on GPUs is complex
because of its parallel nature. A solution described in [5]
was used as a baseline solution. It makes an efficient use of
shared memory, delivering very good performance. To show
that even tasks of lesser complexity can be batched
efficiently, the second operation, vector scaling is
implemented. Vector scaling is embarrassingly parallel and
that is why naive implementation is sufficient to run
efficiently on the GPU.

Note that this paper is based on our previous work,
briefly described in [12]. This paper brings detailed
performance analysis of the algorithms outlined in its
predecessor, along with the explanation of their behavior. It
also describes the devised algorithms in more detail and
verifies their function on the newer, more modern hardware.

III. BENCHMARKS

Some simple benchmarks were run before investigating
various implementation paths to limit the number of options
to the best ones. For the implementation of the batched
vector reduction kernel, it is logical to assume that each
GPU SM will work on a single vector (because shared
memory is required in order to be able to perform parallel
reduction and the threads running on one SM can only
access it’s shared memory space). Next, it was assumed that
there will be potentially many vectors, ideally more than the
number of SMs (Fermi architecture GPUs have 16 SMs [3],
Tesla GPUs have up to 32 SMs [13]).

The question in implementing efficient batching is how
to schedule the individual vectors to be processed. There are
several aspects that need to be considered. Most
importantly, as vector reduction is not an arithmetically
intensive operation, memory accesses need to be properly
aligned. Then, the GPU needs to have enough threads to
occupy all of the SMs (that is not the same as having the
same amount of thread blocks as SMs as the threads are
suspended at the first blocking instruction, yielding to the
sleeping threads until the outstanding operation is finished).
And finally, the workload needs to be well distributed in
order to prevent slack.

The first set of benchmarks involved a simple read-
modify-write operation carried out on a set of vectors, while
each vector is processed in a single thread block, one thread
per vector element (while the number of elements matches
SIMD width). There are several options for implementing
this operation: a single thread block per vector in 1D grid, a
single thread block per vector in 2D grid, and a single thread
block per several vectors in 1D grid. While this is a simple
test, the results are already useful. It turns out that scheduling
a 2D kernel is unsurprisingly somewhat slower than
scheduling a 1D kernel on both Tesla and Fermi GPUs (the

driver needs to create more instances of register files and fill
them with the appropriate kernel arguments). That is also the
reason why 3D and higher-dimension kernels were not
considered. However, using a loop in a 1D kernel to process
several vectors is actually much faster than having a single
block per vector on Fermi (the difference is negligible on
Tesla). This makes sense as Fermi thread scheduler is more
complicated than Tesla, and launching a new thread is
slower than looping, even though it reduces the total number
of running threads. This way, the bandwidth could be
boosted from 100 GB/sec to almost 160 GB/sec, much closer
to the theoretical 192.4 GB/sec [3] on Fermi. The complete
results can be seen in table 1. It contains bandwidths for
different numbers of vectors for different types of kernels,
speedup of a 1D kernel with loop compared to a 1D kernel,
number of iterations where the peak occurred and the
corresponding number of thread blocks each SM needs to
process. The results for Tesla were omitted in order to save
space since there was no significant speedup. Note that the
bandwidth is also dependent on the complexity of operations
performed on each of the vectors, in this case a linear one.
But as previously stated, linear algebra operations are mostly
bandwidth-limited and that’s why the results are still valid.

TABLE I. SM-BOUND THREAD SCHEDULING STRATEGIES (FERMI)

 Peak bandwidth [GB/sec]
Vectors 1D 2D 1D/loop Speedup Iters Blocks
102400 108.805 106.097 153.370 40.96 % 32 200
89600 108.727 106.270 153.014 40.73 % 32 175
76800 108.531 106.035 152.655 40.66 % 25 192
64000 108.418 105.919 152.275 40.45 % 20 200
51200 108.231 105.769 152.512 40.91 % 20 160
38400 108.293 105.085 152.128 40.48 % 25 96
25600 108.063 105.448 152.677 41.29 % 64 25
12800 107.212 104.375 150.159 40.06 % 400 2
2560 99.863 97.396 138.661 38.85 % 160 1
1280 92.727 89.524 123.475 33.16 % 80 1
256 56.735 55.512 64.771 14.16 % 16 1

*Iters denotes number of loop iterations, Blocks is number of thread blocks scheduled per SM

The second set of benchmarks was aimed at the memory

subsystem. Memory operations on the GPU are fast only if
the memory accesses are coalesced [8], [14] (each thread
reads from memory location which corresponds to its thread
index, with offset that needs to be an integer multiple of 32).
While on Fermi the cache should take care of most of the
problems, matters are complicated on Tesla. But it is
possible to use either the constant memory which is cached
on Tesla as well as on Fermi, or to use the shared memory.

Constant memory has the advantage of being transparent
to the kernel. No code modifications are required, compared
to the global memory approach. The data are automatically
copied from global memory by the driver upon kernel
launch. Both architectures are equipped with 64 kB of
constant memory [3], [13].

Shared memory, on the other hand, has the advantage
that there is more shared memory (up to 16 × 48 kB on
Fermi [3] and 32 × 16 kB on Tesla [13]) than there is of

constant memory. The disadvantage of shared memory is
that it needs to be filled explicitly by the kernel, requiring
changes in the code. On the other hand, it enables the choice
of size of the blocks in which the scales are copied from
global memory to shared memory.

The second benchmark was a simple one, it involved
iterating over a list of vectors and multiplying each vector
by a corresponding scale (again, a read-modify-write
operation). This time, vectors were not bound to SMs which
makes thread scheduling a lot easier. A constant number of
threads per thread block was used (1024 for Fermi and 512
for Tesla) and each thread processed a single vector
element. The total amount of data to be processed was
800 MB, vector length was 128. The choice of the large
amount of relatively short vectors is to avoid being limited
by having too little vectors, hence penalizing the use of
larger interleave sizes. Then the performance of the kernel
was measured, while using different interleave sizes (the
amount of data read into the shared memory before
processing any vector elements). The results can be found in
table 2.

TABLE II. VECTOR SCALING BANDWIDTH AS A FUNCTION OF
INTERLEAVE SIZE

 Bandwidth [GB/sec]
Interleave size [B] Fermi Tesla
8 12.291 10.859
16 34.824 27.390
256 144.019 74.087
512 146.723 86.804
1024 149.956 89.668
2048 150.039 91.415
4096 151.620 91.990
16384 153.125 92.437

32768 155.167
49152 156.538

It is clear that the greater the interleave size, the greater

performance. Also, the scheduling parameters were set
reasonably, as the peak bandwidths on either platform reach
their maximum theoretical values. The results from the two
above benchmarks will affect the design of the proposed
vector operation algorithms described in the next chapter.

IV. ALGORITHM DESIGN

With the benchmark results at hand, it is now
straightforward to implement efficient batched operations.
OpenCL was chosen as the implementation language in
order to make the resulting code portable and not limited to
NVIDIA GPUs. Only simple functions on vectors of real
values were implemented, complex values are not supported
at the moment.

The parallel reduction is now pretty straightforward, it is
sufficient to take the code from [5] and wrap it in looped 1D
block code from chapter 3. The only changes required in
order to make the implementation practical involve adding

vector range specification as the pass size might exceed
maximum pass size limitation of the GPU, and the kernel
would fail to launch in that case. That already gives good
results. This is summed up in algorithm 1. Other variants
were also implemented to verify that this variant really gives
the best results. The other variants included vector per thread
and vector per kernel - different levels of granularity.

The parallel scaling was also practically described in the
benchmarks chapter. But again, variants of the algorithm
employing the global memory and the constant memory
instead of the shared memory were implemented as well in
order to show that these really give suboptimal results. The
best solution (shared memory) is described in algorithm 2.
Like the reduction algorithm, additional parameters for
multipass processing were added.

V. RESULTS

Runtimes of a simple baseline “C” implementation, of
the proposed GPU implementation and of CUBLAS were
recorded. Times needed for generating the test data or
storing the results were omitted. GPU times include copying
data to GPU memory as well as copying the results back. To
ensure all the GPU operations have finished, clFinish() was
called. The results of all the operations were cross-checked
for correctness and the algorithms operated on
pseudorandom data, excluding the possibility of filling the
GPU memory with the correct results in one instance and
failing to actually generate any results in the next (as often
happens with GPU debugging).

The implementations presented here were built using the
Microsoft Visual Studio 2008 compiler. The CPU time of
all the algorithms was measured on a pair of unloaded AMD
Opteron 2360 SE processors (8 cores running at 2.6 GHz in
total), running on Windows XP x64. The GPU times were
measured on the NVIDIA GeForce GTX 590 (Fermi) and
the GTX 260 (Tesla), while using the most recent drivers.
The GPUs were present in the computer one at a time, and
were replaced between the tests. GPU times were a bit noisy
so each test was run four times and the results were
averaged.

The results for the three vector reduction approaches
described in chapter 4 and for CUBLAS function
cublasSnrm2() are plotted on figure 1.a and 1.c and are
denoted VAT (vector at a time), VPT (vector per thread),
VTB (vector per thread block), and CUDA (function
cublasSnrm2()).

All the tests were run with an equal amount of data, only
the vector dimensions (and hence the number of vectors)
changed. CPU time was therefore almost constant. It can be
seen that the last strategy (vector per thread-block) is the
most beneficial and even surpasses cublasSnrm2() by more
than 50 GB/sec on Tesla and by 80 GB/sec on Fermi, for the
very large vector sizes.

The whole situation for the vector scaling benchmarks is
depicted on figure 1.b and 1.d. These are denote global

(scales are stored in global memory), const (scales are
stored in constant memory), local (scales are stored in
shared memory) and CUDA (function cublasSscal()). Note
the spiking is caused by element misalignment of the non-
multiple-of-32 dimensional vectors. As expected, CUBLAS
function cublasSscal() turns out to perform sub optimally,
although it is better at the unaligned vectors. It is caused by
the fact that the first vector is always aligned, and may only
result in a small amount of idle threads. And since it only
processes a single vector at a time, it never has uncoalesced
reads and its performance exceeds performance of the
proposed batched version for cases with a few large vectors.

VI. CONCLUSIONS AND FUTURE WORK

A simple, yet novel approach for implementing two
different classes of batched algorithms was suggested. It
was also demonstrated on two simple vector functions that
belong in either class. The results confirm that the described
approach is really effective, outperforming the standard
GPU BLAS library, CUBLAS, by a factor of three.

There are a lot of algorithms that would profit from this
improvement. The list may include matrix operations, sparse
vector and matrix operations, and some other. It would be
interesting to remove the current limitation that all the
vectors in the batch need to have the same dimension. That
would enable even more of the existing code to profit from
the accelerated algorithms. Another interesting aim is to
focus on vectors with lengths that are not a multiple of 32, a
feature that seems to be missing in most of the GPU
libraries at the time.

ACKNOWLEDGMENT

This work was supported by the European Regional
Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070) and by the
Advanced Recognition and Presentation of Multimedia Data
project (FIT-S-11-2).

REFERENCES
[1] Simon Green, “History of Programmability in OpenGL”, online

http://http.download.nvidia.com/developer/presentations/2004/
6800_Leagues/6800_Leagues_OpenGL_exts.pdf, 2004

[2] NVIDIA, “CUDA CUBLAS Library”, online
http://developer.nvidia.com/cublas, 2012

[3] NVIDIA, “Fermi Compute Architecture White Paper”, online
http://www.nvidia.com/object/fermi_architecture.html, 2009

[4] Krüger J., Westermann R., “Linear algebra operators for GPU
implementation of numerical algorithms”, ACM Transactions on
Graphics 22, 2003, 908–916.

[5] Harris M., Sengupta S., Owens J. D.: “Parallel prefix sum (scan) with
CUDA”, GPU Gems 3, Nguyen H., (Ed.). Addison Wesley, 2007, ch.
31.

[6] Volkov V. and Demmel J., “Benchmarking gpus to tune dense linear
algebra“, In Proceedings of SC ’08, pages 1–11, Piscataway, NJ,
USA, 2008.

[7] R. Nath, S. Tomov and J. Dongarra: “Accelerating GPU Kernels for
Dense Linear Algebra”, VECPAR 2010

[8] R. Nath, S. Tomov, T. Dong, and J. Dongarra, “Optimizing
Symmetric Dense Matrix-Vector Multiplication on GPUs”, in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC '11), 2011

[9] NVIDIA, “CUDA CUFFT Library”, online
http://developer.nvidia.com/cufft, 2012

[10] EM Photonics, “CUDA CULA Library”, online
http://www.culatools.com/, 2010

[11] “CUDA Data Parallel Primitives Library. CUDPP”, online
http://code.google.com/p/cudpp/, 2012

[12] Polok, L., Smrz, P., “Implementing Random Indexing on GPU”, In:
High Performance Computing Symposium 2011, Boston, US, SCS,
2011, s. 9, ISBN 978-1-61782-840-9

[13] NVIDIA, “Tesla M2090 Board Specification”, online
http://www.nvidia.com/object/tesla_product_literature.html, 2011

[14] NVIDIA, “CUDA C Best Practices Guide”, online
http://developer.nvidia.com/nvidia-gpu-computing-documentation,
2012

Algorithm 1. Batched vector reduction

1. FUNCTION reduce(vectors, dest, first_vec, last_vec, vec_dimensions)
2. FOR v := first_vec + get_group_id(0) TO last_vec - 1 STEP get_num_groups(0) DO
3. accum := 0
4. FOR i := get_local_id(0) TO vec_dimensions - 1 STEP get_local_size(0) DO
5. accum := accum + OP(vectors[i + v * vec_dimensions])
6. shared[get_local_id(0)] := accum
7. barrier(CLK_LOCAL_MEM_FENCE)
8. { reduce in shared memory as described in [5] }
9. IF get_local_id(0) = 0 THEN
10. dest[v] := shared[0]

Algorithm 2. Batched vector scaling

1. FUNCTION scale(vectors, scales, dest, first_vec, last_vec, vec_dimensions, interleave)
2. first_elem := first_vec * vec_dimensions
3. last_elem := last_vec * vec_dimensions
4. elem_step := (interleave - 1) * vec_dimensions
5. e0 := get_group_id(0) * elem_step + first_elem
6. IF e0 >= last_elem THEN
7. RETURN
8. WHILE TRUE DO
9. v0 := e0 / vec_dimensions
10. FOR i := get_local_id(0) TO min(interleave, last_vec - v0) - 1 STEP get_local_size(0) DO
11. shared[i] := scales[i + v0]
12. barrier(CLK_LOCAL_MEM_FENCE)
13. FOR e := get_local_id(0) + e0 TO min(e0 + elem_step, last_elem) - 1 STEP get_local_size(0) DO
14. dest[e] := vectors[e] * shared[e / vec_dimensions - v0]
14. e0 := e0 + get_num_groups(0) * elem_step
15. IF e0 >= last_elem THEN
16. RETURN
17. barrier(CLK_LOCAL_MEM_FENCE)

Figure 1. (a) comparison of vector reduction kernels (Tesla), (b) comparison of vector scaling kernels (Tesla),

 (c) comparison of vector reduction kernels (Fermi), (d) comparison of vector scaling kernels (Fermi).

