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Abstract—GPUs have been successfully used for acceleration 
of many mathematical functions and libraries. A common 
limitation of those libraries is the minimal size of primitives 
being handled, in order to achieve a significant speedup 
compared to their CPU versions. The minimal size 
requirement can prove prohibitive for many applications. It 
can be loosened by batching operations in order to have 
sufficient amount of data to perform the calculation maximally 
efficiently on the GPU. A fast OpenCL implementation of two 
basic vector functions – vector reduction and vector scaling – is 
described in this paper. Its performance is analyzed by 
running benchmarks on two of the most common GPUs in use 
– Tesla and Fermi GPUs from NVIDIA. Reported 
experimental results show that our implementation 
significantly outperforms the current state-of-the-art GPU-
based basic linear algebra library CUBLAS.  

GPU; parallel reduction; linear algebra; BLAS; OpenCL; 
CUDA 

I.  INTRODUCTION 

Although programmable GPUs have been available for 
almost two decades [1], the quest for the most efficient 
implementation of various algorithms on GPU still forms a 
hot topic of the current research. This is partially caused by 
the complex architecture of today’s GPUs which makes 
optimization difficult, and partially by the ever evolving 
nature of GPUs that can hinder general applicability of new 
methods. 

Scientific computing is one of the most active areas 
where GPUs have been successfully used. Core problems 
often benefit from their formulations in terms of linear 
algebra performing various operations on vectors and 
matrices. There are several available libraries that enable 
developers and scientists to accelerate their code using high-
level functions running on GPU. The most popular library – 
NVIDIA CUBLAS [2] became a de-facto standard in this 
area. 

GPU is a highly efficient architecture capable of 
executing hundreds of threads in parallel [3]. While this is 
its main strength, it also imposes some limitations for an 
efficient usage. To deliver its maximal performance, the 

GPU needs many threads running and even more threads 
scheduled. For some applications operating on large 
structures such as image processing, it is typically very easy 
to achieve. However, there are other types of tasks that 
require special procedures to keep the GPU busy as they 
operate on many smaller units (e.g., vectors of lower 
dimensions). That is why batching of operations is required 
in order to fully leverage the computing power of the GPU. 
As simple as it seems, efficient batching is not easy to 
implement on today's GPUs. One proof of this may be the 
CUBLAS library itself. It implements batching for only one 
type of complex matrix operations in its newest version (Q1 
2012). 

The work reported in this paper focuses on measuring 
basic machine properties which govern the performance of 
batched algorithms on GPU. Initial experimental data is 
employed in the design of simple and fast batched vector 
operations. For the sake of simplicity, this paper deals with 
vector operations only. However, the results can be applied 
to other operations as well. This is outlined in the 
conclusion section. 

There are two classes of operations discussed in the 
paper. Operations of the first type are limited by the shared 
memory to run on a single streaming multiprocessor (SM), 
e.g. vector reduction. The other class involves operations 
that use the shared memory to cache data but are not limited 
to a single SM, e.g. vector scaling (a vector-scalar product). 
Note that there is also a third class of operations which does 
not require the use of the shared memory at all, but that is 
not interesting as it runs efficiently on the GPU, and does 
not require any optimizations. 

II. PREVIOUS WORK 

Krüger and Westermann [4] implemented a linear 
algebra framework using programmable shading, present in 
the hardware at that time. The disadvantage of their 
approach is that it is limited by possibilities of 
programmable shading pipeline itself. The authors had to 
resort to complicated matrix and vector representations in 
memory and had to break some of the operations (e.g. 



matrix – matrix multiplication or vector reduction) down to 
several rendering passes, effectively loosing performance. 

Harris, Sengupta and Owens [5] described an efficient 
implementation of parallel prefix sum on GPU, using the 
CUDA language. This is considered an efficient approach, 
as it leverages the access to the specialized GPU features 
such as shared memory for intra-thread communication. 
That was not possible using programmable shading, as it 
does not expose this functionality. But it has some 
shortcomings, as it requires two passes to fully reduce a 
vector. The second pass can be efficiently implemented on 
the CPU (it is too small to be executed efficiently by the 
GPU). 

Volkov and Demmel [6] present a hybrid CPU – GPU 
solution of dense matrix-matrix multiplication and LU, QR 
and Cholesky decomposition. They easily outperform the 
standard libraries by implementing several hardware 
optimizations, notably using a register file instead of shared 
memory, as opposed to the general GPU programming 
paradigm. Their work is orthogonal to the focus of this 
paper. 

Nath, Tomov, Dong, and Dongarra [7], [8] show a 
number of different techniques for optimizing dense linear 
algebra on the GPUs. These techniques seek include 
blocking (the use of shared memory to cache small blocks 
of data), optimizing memory access patterns, optimal 
storage design, autotuning (employing heuristic search to 
generate optimal code) and finally some optimizations for 
generic primitive size. Their work is also orthogonal to the 
focus of this paper. 

There are several high-level libraries oriented on 
acceleration of linear algebra. These include the above 
mentioned CUBLAS [2], along with CUFFT [9], CULA 
[10], CUDPP [11] and possibly more. As of today, none of 
those libraries provide batched operations with the 
exception of CUBLAS' function cublas<t>gemmBatched() 
which calculates the standard BLAS GEMM function, a 
multiplication and addition of three matrices: 

 gemm (α, β, opa, opb, A, B, C) = αopa(A)opb(B) + βC. (1) 

where the operations on matrices include no-op, transpose, 
or conjugate transpose (for complex matrices). The absence 
of batched versions of simpler functions [2] may indicate 
that efficient batching of simple operations is difficult to 
implement. 

On modern GPUs which are capable of executing several 
kernels in parallel, simple batching is possible using several 
command queues. This technique is, however, limited to 
maximal amount of simultaneously running kernels (which 
is 16 on current NVIDIA hardware [3]), and may not 
therefore offer maximal performance, which is also 
confirmed by experimental results provided in section 5. 

In this paper, two simple operations on vectors will be 
considered and performance analyzed with and without 
batching. The first is vector reduction, an operation that 
produces a scalar from a vector. One example of such 
operation may be calculation of Euclidean vector length. 
Implementation of vector reduction on GPUs is complex 
because of its parallel nature. A solution described in [5] 
was used as a baseline solution. It makes an efficient use of 
shared memory, delivering very good performance. To show 
that even tasks of lesser complexity can be batched 
efficiently, the second operation, vector scaling is 
implemented. Vector scaling is embarrassingly parallel and 
that is why naive implementation is sufficient to run 
efficiently on the GPU. 

Note that this paper is based on our previous work, 
briefly described in [12]. This paper brings detailed 
performance analysis of the algorithms outlined in its 
predecessor, along with the explanation of their behavior. It 
also describes the devised algorithms in more detail and 
verifies their function on the newer, more modern hardware. 

III.  BENCHMARKS 

Some simple benchmarks were run before investigating 
various implementation paths to limit the number of options 
to the best ones. For the implementation of the batched 
vector reduction kernel, it is logical to assume that each 
GPU SM will work on a single vector (because shared 
memory is required in order to be able to perform parallel 
reduction and the threads running on one SM can only 
access it’s shared memory space). Next, it was assumed that 
there will be potentially many vectors, ideally more than the 
number of SMs (Fermi architecture GPUs have 16 SMs [3], 
Tesla GPUs have up to 32 SMs [13]). 

The question in implementing efficient batching is how 
to schedule the individual vectors to be processed. There are 
several aspects that need to be considered. Most 
importantly, as vector reduction is not an arithmetically 
intensive operation, memory accesses need to be properly 
aligned. Then, the GPU needs to have enough threads to 
occupy all of the SMs (that is not the same as having the 
same amount of thread blocks as SMs as the threads are 
suspended at the first blocking instruction, yielding to the 
sleeping threads until the outstanding operation is finished). 
And finally, the workload needs to be well distributed in 
order to prevent slack. 

The first set of benchmarks involved a simple read-
modify-write operation carried out on a set of vectors, while 
each vector is processed in a single thread block, one thread 
per vector element (while the number of elements matches 
SIMD width). There are several options for implementing 
this operation: a single thread block per vector in 1D grid, a 
single thread block per vector in 2D grid, and a single thread 
block per several vectors in 1D grid. While this is a simple 
test, the results are already useful. It turns out that scheduling 
a 2D kernel is unsurprisingly somewhat slower than 
scheduling a 1D kernel on both Tesla and Fermi GPUs (the 



driver needs to create more instances of register files and fill 
them with the appropriate kernel arguments). That is also the 
reason why 3D and higher-dimension kernels were not 
considered. However, using a loop in a 1D kernel to process 
several vectors is actually much faster than having a single 
block per vector on Fermi (the difference is negligible on 
Tesla). This makes sense as Fermi thread scheduler is more 
complicated than Tesla, and launching a new thread is 
slower than looping, even though it reduces the total number 
of running threads. This way, the bandwidth could be 
boosted from 100 GB/sec to almost 160 GB/sec, much closer 
to the theoretical 192.4 GB/sec [3] on Fermi. The complete 
results can be seen in table 1. It contains bandwidths for 
different numbers of vectors for different types of kernels, 
speedup of a 1D kernel with loop compared to a 1D kernel, 
number of iterations where the peak occurred and the 
corresponding number of thread blocks each SM needs to 
process. The results for Tesla were omitted in order to save 
space since there was no significant speedup. Note that the 
bandwidth is also dependent on the complexity of operations 
performed on each of the vectors, in this case a linear one. 
But as previously stated, linear algebra operations are mostly 
bandwidth-limited and that’s why the results are still valid. 

TABLE I.  SM-BOUND THREAD SCHEDULING STRATEGIES (FERMI) 

 Peak bandwidth [GB/sec]    
Vectors 1D 2D 1D/loop Speedup Iters Blocks 
102400 108.805 106.097 153.370 40.96 % 32 200 
89600 108.727 106.270 153.014 40.73 % 32 175 
76800 108.531 106.035 152.655 40.66 % 25 192 
64000 108.418 105.919 152.275 40.45 % 20 200 
51200 108.231 105.769 152.512 40.91 % 20 160 
38400 108.293 105.085 152.128 40.48 % 25 96 
25600 108.063 105.448 152.677 41.29 % 64 25 
12800 107.212 104.375 150.159 40.06 % 400 2 
2560 99.863 97.396 138.661 38.85 % 160 1 
1280 92.727 89.524 123.475 33.16 % 80 1 
256 56.735 55.512 64.771 14.16 % 16 1 

*Iters denotes number of loop iterations, Blocks is number of thread blocks scheduled per SM 

 
The second set of benchmarks was aimed at the memory 

subsystem. Memory operations on the GPU are fast only if 
the memory accesses are coalesced [8], [14] (each thread 
reads from memory location which corresponds to its thread 
index, with offset that needs to be an integer multiple of 32). 
While on Fermi the cache should take care of most of the 
problems, matters are complicated on Tesla. But it is 
possible to use either the constant memory which is cached 
on Tesla as well as on Fermi, or to use the shared memory. 

Constant memory has the advantage of being transparent 
to the kernel. No code modifications are required, compared 
to the global memory approach. The data are automatically 
copied from global memory by the driver upon kernel 
launch. Both architectures are equipped with 64 kB of 
constant memory [3], [13]. 

Shared memory, on the other hand, has the advantage 
that there is more shared memory (up to 16 × 48 kB on 
Fermi [3] and 32 × 16 kB on Tesla [13]) than there is of 

constant memory. The disadvantage of shared memory is 
that it needs to be filled explicitly by the kernel, requiring 
changes in the code. On the other hand, it enables the choice 
of size of the blocks in which the scales are copied from 
global memory to shared memory.  

The second benchmark was a simple one, it involved 
iterating over a list of vectors and multiplying each vector 
by a corresponding scale (again, a read-modify-write 
operation). This time, vectors were not bound to SMs which 
makes thread scheduling a lot easier. A constant number of 
threads per thread block was used (1024 for Fermi and 512 
for Tesla) and each thread processed a single vector 
element. The total amount of data to be processed was 
800 MB, vector length was 128. The choice of the large 
amount of relatively short vectors is to avoid being limited 
by having too little vectors, hence penalizing the use of 
larger interleave sizes. Then the performance of the kernel 
was measured, while using different interleave sizes (the 
amount of data read into the shared memory before 
processing any vector elements). The results can be found in 
table 2. 

TABLE II.  VECTOR SCALING BANDWIDTH AS A FUNCTION OF 
INTERLEAVE SIZE 

 Bandwidth [GB/sec] 
Interleave size [B] Fermi Tesla 
8 12.291 10.859 
16 34.824 27.390 
256 144.019 74.087 
512 146.723 86.804 
1024 149.956 89.668 
2048 150.039 91.415 
4096 151.620 91.990 
16384 153.125 92.437 

32768 155.167  
49152 156.538  

 
It is clear that the greater the interleave size, the greater 

performance. Also, the scheduling parameters were set 
reasonably, as the peak bandwidths on either platform reach 
their maximum theoretical values. The results from the two 
above benchmarks will affect the design of the proposed 
vector operation algorithms described in the next chapter. 

IV. ALGORITHM DESIGN 

With the benchmark results at hand, it is now 
straightforward to implement efficient batched operations. 
OpenCL was chosen as the implementation language in 
order to make the resulting code portable and not limited to 
NVIDIA GPUs. Only simple functions on vectors of real 
values were implemented, complex values are not supported 
at the moment. 

The parallel reduction is now pretty straightforward, it is 
sufficient to take the code from [5] and wrap it in looped 1D 
block code from chapter 3. The only changes required in 
order to make the implementation practical involve adding 



vector range specification as the pass size might exceed 
maximum pass size limitation of the GPU, and the kernel 
would fail to launch in that case. That already gives good 
results. This is summed up in algorithm 1. Other variants 
were also implemented to verify that this variant really gives 
the best results. The other variants included vector per thread 
and vector per kernel - different levels of granularity. 

The parallel scaling was also practically described in the 
benchmarks chapter. But again, variants of the algorithm 
employing the global memory and the constant memory 
instead of the shared memory were implemented as well in 
order to show that these really give suboptimal results. The 
best solution (shared memory) is described in algorithm 2. 
Like the reduction algorithm, additional parameters for 
multipass processing were added. 

V. RESULTS 

Runtimes of a simple baseline “C” implementation, of 
the proposed GPU implementation and of CUBLAS were 
recorded. Times needed for generating the test data or 
storing the results were omitted. GPU times include copying 
data to GPU memory as well as copying the results back. To 
ensure all the GPU operations have finished, clFinish() was 
called. The results of all the operations were cross-checked 
for correctness and the algorithms operated on 
pseudorandom data, excluding the possibility of filling the 
GPU memory with the correct results in one instance and 
failing to actually generate any results in the next (as often 
happens with GPU debugging). 

The implementations presented here were built using the 
Microsoft Visual Studio 2008 compiler. The CPU time of 
all the algorithms was measured on a pair of unloaded AMD 
Opteron 2360 SE processors (8 cores running at 2.6 GHz in 
total), running on Windows XP x64. The GPU times were 
measured on the NVIDIA GeForce GTX 590 (Fermi) and 
the GTX 260 (Tesla), while using the most recent drivers. 
The GPUs were present in the computer one at a time, and 
were replaced between the tests. GPU times were a bit noisy 
so each test was run four times and the results were 
averaged. 

The results for the three vector reduction approaches 
described in chapter 4 and for CUBLAS function 
cublasSnrm2() are plotted on figure 1.a and 1.c and are 
denoted VAT (vector at a time), VPT (vector per thread), 
VTB (vector per thread block), and CUDA (function 
cublasSnrm2()). 

All the tests were run with an equal amount of data, only 
the vector dimensions (and hence the number of vectors) 
changed. CPU time was therefore almost constant. It can be 
seen that the last strategy (vector per thread-block) is the 
most beneficial and even surpasses cublasSnrm2() by more 
than 50 GB/sec on Tesla and by 80 GB/sec on Fermi, for the 
very large vector sizes. 

The whole situation for the vector scaling benchmarks is 
depicted on figure 1.b and 1.d. These are denote global 

(scales are stored in global memory), const (scales are 
stored in constant memory), local (scales are stored in 
shared memory) and CUDA (function cublasSscal()). Note 
the spiking is caused by element misalignment of the non-
multiple-of-32 dimensional vectors. As expected, CUBLAS 
function cublasSscal() turns out to perform sub optimally, 
although it is better at the unaligned vectors. It is caused by 
the fact that the first vector is always aligned, and may only 
result in a small amount of idle threads. And since it only 
processes a single vector at a time, it never has uncoalesced 
reads and its performance exceeds performance of the 
proposed batched version for cases with a few large vectors. 

VI.  CONCLUSIONS AND FUTURE WORK 

A simple, yet novel approach for implementing two 
different classes of batched algorithms was suggested. It 
was also demonstrated on two simple vector functions that 
belong in either class. The results confirm that the described 
approach is really effective, outperforming the standard 
GPU BLAS library, CUBLAS, by a factor of three. 

There are a lot of algorithms that would profit from this 
improvement. The list may include matrix operations, sparse 
vector and matrix operations, and some other. It would be 
interesting to remove the current limitation that all the 
vectors in the batch need to have the same dimension. That 
would enable even more of the existing code to profit from 
the accelerated algorithms. Another interesting aim is to 
focus on vectors with lengths that are not a multiple of 32, a 
feature that seems to be missing in most of the GPU 
libraries at the time. 

ACKNOWLEDGMENT 

This work was supported by the European Regional 
Development Fund in the IT4Innovations Centre of 
Excellence project (CZ.1.05/1.1.00/02.0070) and by the 
Advanced Recognition and Presentation of Multimedia Data 
project (FIT-S-11-2). 

REFERENCES 
[1] Simon Green, “History of Programmability in OpenGL”, online 

http://http.download.nvidia.com/developer/presentations/2004/ 
6800_Leagues/6800_Leagues_OpenGL_exts.pdf, 2004 

[2] NVIDIA, “CUDA CUBLAS Library”, online 
http://developer.nvidia.com/cublas, 2012 

[3] NVIDIA, “Fermi Compute Architecture White Paper”, online 
http://www.nvidia.com/object/fermi_architecture.html, 2009 

[4] Krüger J., Westermann R., “Linear algebra operators for GPU 
implementation of numerical algorithms”, ACM Transactions on 
Graphics 22, 2003, 908–916. 

[5] Harris M., Sengupta S., Owens J. D.: “Parallel prefix sum (scan) with 
CUDA”, GPU Gems 3, Nguyen H., (Ed.). Addison Wesley, 2007, ch. 
31.  

[6] Volkov V. and Demmel J., “Benchmarking gpus to tune dense linear 
algebra“, In Proceedings of SC ’08, pages 1–11, Piscataway, NJ, 
USA, 2008. 

[7] R. Nath, S. Tomov and J. Dongarra: “Accelerating GPU Kernels for 
Dense Linear Algebra”, VECPAR 2010 



[8] R. Nath, S. Tomov, T. Dong, and J. Dongarra, “Optimizing 
Symmetric Dense Matrix-Vector Multiplication on GPUs”, in 
Proceedings of 2011 International Conference for High Performance 
Computing, Networking, Storage and Analysis (SC '11), 2011 

[9] NVIDIA, “CUDA CUFFT Library”, online 
http://developer.nvidia.com/cufft, 2012 

[10] EM Photonics, “CUDA CULA Library”, online 
http://www.culatools.com/, 2010 

[11] “CUDA Data Parallel Primitives Library. CUDPP”, online 
http://code.google.com/p/cudpp/, 2012 

[12] Polok, L., Smrz, P., “Implementing Random Indexing on GPU”, In: 
High Performance Computing Symposium 2011, Boston, US, SCS, 
2011, s. 9, ISBN 978-1-61782-840-9 

[13] NVIDIA, “Tesla M2090 Board Specification”, online 
http://www.nvidia.com/object/tesla_product_literature.html, 2011 

[14] NVIDIA, “CUDA C Best Practices Guide”, online 
http://developer.nvidia.com/nvidia-gpu-computing-documentation, 
2012 

 

 

Algorithm 1. Batched vector reduction 

1. FUNCTION reduce(vectors, dest, first_vec, last_vec, vec_dimensions) 
2.   FOR v := first_vec + get_group_id(0) TO last_vec - 1 STEP get_num_groups(0) DO 
3.   accum := 0 
4.   FOR i := get_local_id(0) TO vec_dimensions - 1 STEP get_local_size(0) DO 
5.    accum := accum + OP(vectors[i + v * vec_dimensions]) 
6.   shared[get_local_id(0)] := accum 
7.   barrier(CLK_LOCAL_MEM_FENCE) 
8.   { reduce in shared memory as described in [5] } 
9.   IF get_local_id(0) = 0 THEN 
10.    dest[v] := shared[0] 

 

Algorithm 2. Batched vector scaling 

1. FUNCTION scale(vectors, scales, dest, first_vec, last_vec, vec_dimensions, interleave) 
2.  first_elem := first_vec * vec_dimensions 
3.  last_elem := last_vec * vec_dimensions 
4.  elem_step := (interleave - 1) * vec_dimensions 
5.  e0 := get_group_id(0) * elem_step + first_elem 
6.  IF e0 >= last_elem THEN 
7.   RETURN 
8.  WHILE TRUE DO 
9.   v0 := e0 / vec_dimensions 
10.   FOR i := get_local_id(0) TO min(interleave, last_vec - v0) - 1 STEP get_local_size(0) DO 
11.    shared[i] := scales[i + v0] 
12.   barrier(CLK_LOCAL_MEM_FENCE) 
13.   FOR e := get_local_id(0) + e0 TO min(e0 + elem_step, last_elem) - 1 STEP get_local_size(0) DO 
14.    dest[e] := vectors[e] * shared[e / vec_dimensions - v0] 
14.   e0 := e0 + get_num_groups(0) * elem_step 
15.   IF e0 >= last_elem THEN 
16.    RETURN 
17.   barrier(CLK_LOCAL_MEM_FENCE) 

 



  
 

  
Figure 1.  (a) comparison of vector reduction kernels (Tesla), (b) comparison of vector scaling kernels (Tesla), 

 (c) comparison of vector reduction kernels (Fermi), (d) comparison of vector scaling kernels (Fermi). 

 


