
Efficient Implementation for Block Matrix Operations for Nonlinear
Least Squares Problems in Robotic Applications

Lukas Polok, Marek Solony, Viorela Ila, Pavel Smrz and Pavel Zemcik

Abstract— A large number of robotic, computer vision and
computer graphics applications rely on efficiently solving the
associated sparse linear systems. Simultaneous localization and
mapping (SLAM), structure from motion (SfM), non-rigid
shape recovery, and elastodynamic simulations are only few
examples in this direction. In general, these problems are non-
linear and the solution can be approximated by incrementally
solving a series of linearized problems. In some applications,
the size of the system considerably affects the performance,
especially when the sparsity is low. This paper exploits the block
structure of such problems and offers very efficient solutions
to manipulate block matrices within iterative nonlinear solvers.
The resulting method considerably speeds-up the execution of
the implementation of the nonlinear optimization problem. In
this work, in particular, we focus our effort on testing the
method on SLAM applications, but the applicability of the
technique remains general. Our implementation outperforms
the state of the art SLAM implementations on all tested
datasets. In incremental mode, where a larger portion of time is
spent in updating the system, our implementation is on average
two times faster than the others.

I. INTRODUCTION

In robotics, simultaneous localization and mapping
(SLAM) is often formulated as a nonlinear least squares
problem. Similar problems such as structure from motion
(SfM) in computer vision [1] or elastodynamic simulations
in computer graphics [2] rely on solving large nonlinear
systems. Efficient incremental online algorithms for solving
the underlying nonlinear least square problem are essential
in online, real applications. The types of problems we are
targeting in this paper consist of repeatedly assembling and
solving large, positive-definite, sparse linear systems. The
initial problem is nonlinear, and it is usualy addressed by
iteratively solving a sequence of linear systems. The most
computationally demanding part is to assemble and solve
the linearized system at each iteration.

The linear system can be solved either using direct or
iterative methods. Direct methods, such as Cholesky or QR
factorizations, are based on repeatedly factorizing a large
matrix and backsubstitution to obtain the solution. Iterative
methods, such as conjugate gradient, on the other hand,
iteratively approximate the solution of the linear system. Iter-
ative methods are more efficient from the storage (memory)
point of view, since they only require access to the gradient,
but they can suffer from poor convergence. Direct methods
produce more accurate solutions and avoid convergence
difficulties but they typically require a lot of storage as well

The authors are with Brno University of Technology, Faculty of In-
formation Technology. Bozetechova 2, 612 66 Brno, Czech Republic.
{ipolok,isolony,ila,smrz,zemcik}@fit.vutbr.cz

Fig. 1. An example of a randomly generated sparse block matrix composed
of 31 blocks, 32 elements each, used in testing operations on block matrices.

as efficient elimination orderings to be found in order to
maintain the sparsity of the resulting factors.

In robotics, approaching SLAM as a nonlinear optimiza-
tion on graphs showed to provide very efficient solutions
to moderate scale and well-behaved SLAM applications [3],
[4], [5], [6], [7]. Graphs allow more natural representation
of nonlinear least squares problems such as SLAM, where
we estimate a set of variables such as the robot poses and/or
landmarks position, given a set of measurement constraints
between those variables. The goal is to find the optimal con-
figuration of the variables that maximally satisfy the set of
nonlinear constraints. The existing methods repeatedly solve
a sequence of linear systems in an iterative Gauss-Newton
(GN) or Levenberg-Marquardt (LN) nonlinear solver. Real
applications such as online mapping and localization of
a robot in a large area and over very long periods of
time require extremely fast methods for building, updating
and solving the sequence of linearized systems. It involves
operating on matrices having a block structure, where the
size of the blocks corresponds to the number of degrees of
freedom of the variables.

Some of the existing implementations rely on sparse
block-structure schemes [8], [7]. The block structure is
maintained until the point of solving the linear system. Here
is where CSparse [9] or CHOLMOD [10] libraries are used
to perform the matrix factorization. Those are state of the
art element-wise implementation of operations on sparse
matrices.

The advantage of element-wise sparse matrix schemes is
that the arithmetic operations can be performed efficiently.
Compressed column storage (CCS) format used in CSparse
is an efficient way to store the sparse data in the memory. The



disadvantage of this format is its inability or impracticality
to change matrix structurally or numerically once it has been
compressed. The block-wise schemes are complementary,
their advantages include both easy numeric and structural
matrix modification, at the cost of memory overhead and
reduced arithmetic efficiency, speed-wise.

In the SLAM context, the linear system is updated every
iteration of the GN or LM solver. This involves repeatedly
building the corresponding matrix. The well known element-
wise CCS sparse matrix representation is as efficient (some-
times even more efficient) as any block matrix structure,
in the case of operating on a set of structurally-different
matrices. The SLAM problem, however, involves operating
iteratively on matrices where large parts of the matrix have
the same structure. In such case, block matrix schemes
can be very proficient, as they allow for modifying the
block structure as well as efficiently modifying the numeric
content.

We propose a fast and cache efficient data structure for
sparse block matrix representation, which combines the ad-
vantages of element-wise and block-wise schemes. It enables
simple matrix modification, be it structural or numerical,
while also maintaining, and sometimes even exceeding the
speed of element-wise operations schemes. In this direction,
we introduce a new storage model for block matrices, which
improves the memory coherency and the cache utilization.
Fig 1 shows an example of a random generated block, sparse
matrix, we used in testing the arithmetic operations using
the proposed storage scheme. Another important advantage
is the overall robustness of the structure, allowing for error-
checking, resulting in easier usage and in more stable error-
free code.

This paper provides a new scheme for efficient sparse
block matrix operations, which are the core operations
for solving many least squares problems. The new block
matrix scheme has been integrated in standard nonlinear
least squares algorithms, and tested on several well-known
SLAM datasets. The experimental evaluation shows that,
even without any algorithmic improvements, the proposed
methodology provides important speedups, in both batch and
incremental settings.

The paper is structured as follows. In the next section
we comment the already existing graph-optimization SLAM
implementations. Section III succinctly formulates SLAM
as a nonlinear least square estimation problem. Then, in
the section IV we describe the characteristics of our new
implementation. In the experimental evaluation section V we
show the increased efficiency of our proposed scheme over
the existing implementations. Conclusions and future work
are given in Section VI.

II. RELATED WORK

This work focuses on the implementation of nonlinear
least square solvers, involving direct methods. Several suc-
cessful implementations of graph optimization techniques
for SLAM already exist and have been used in robotic
applications. In general, they are based on similar algorithmic

framework, repeatedly applying Cholesky or QR factoriza-
tions in an iterative Gauss-Newton or Levenberg-Marquardt
nonlinear solver. g2o [7] is an easy to use, open-source
implementation which has been proven to be very fast in
batch mode. It exploits the sparse connectivity and operates
on the block-structure of the underlying graph problem. A
similar scheme was initially implemented in SSBA [8] and
SPA [11] and it is based on block-oriented sparse matrix
manipulation. Using blocks is a natural way to minimize
cache misses, since the CPU can automatically pre-fetch the
data as they are accessed. Nevertheless, taking care about
the layout of the individual blocks in the memory is very
important, otherwise the overhead of handling the blocks can
easily outweigh the advantage of cache efficiency.

However, in SLAM the state changes every step when new
observations need to be integrated into the system. For very
large problems, updating and solving every step can become
very expensive. Incremental smoothing and mapping (iSAM)
allows efficiently solving a nonlinear graph optimization
problem in every step [5]. The implementation incrementally
updates the R factor obtained from the QR factorization and
performs backsubstitution to find the solution. The sparsity of
the R factor is ensured by periodic reorderings. Recently, the
Bayes tree data-stucture [6], [13] was introduced to enable
a better understanding of the link between sparse matrix
factorization and inference in graphical models. The Bayes
tree was applied to obtain iSAM2 [6], [13], which achieves
high efficiency through incremental variable re-ordering and
fluid relinearization, eliminating the need for periodic batch
steps. When compared to the existing methods, iSAM2
performance finds a good balance between efficiency and
accuracy. But still the complexity of maintaining the Bayes
tree data structure can introduce several overheads.

The solutions proposed in this paper aim to improve
the core of above-mentioned implementations, which is the
block matrix manipulation and block matrix operations. Our
scheme is general, and can be easily incorporated into ad-
vanced incremental algorithms such as iSAM. Even iSAM2,
which relies on a tree-like data structure, can also benefit
from the proposed scheme for the management of the dense
blocks in memory.

III. SLAM AS A NONLINEAR LEAST SQUARES PROBLEM

In robotics, SLAM is often formulated as a nonlinear
least squares problem [3], which estimates a set of variables
θ = [θ1 . . . θn] containing the robot trajectory and/or the
position of landmarks in the environment, given a set of
measurement constraints z = [z1 . . . zn]. The goal is to obtain
the maximum likelihood estimate (MLE) of a set of variables
in θ given the measurements in z:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z)} . (1)

In SLAM, the measurement constraints involve rotations and
are nonlinear. For every measurement zk = hk(θik , θjk)−vk
we assume the Gaussian distribution:

P (zk | θik , θjk) ∝ exp

(
−1

2
‖ hk(θik , θjk)− zk ‖2Σk

)
, (2)



where h(θik , θjk) is the nonlinear measurement function, and
where vk is the normally distributed zero-mean noise with
the covariance Σk. Finding the MLE from (1) is done by
solving the following nonlinear least squares problem:

θ∗ = argmin

{
m∑

k=1

‖hk(θik , θjk)− zk‖2Σk

}
, (3)

where we minimize the sum of squared residual of the type:

rk = hk(θik , θjk)− zk . (4)

Gathering all residuals in r(θ) = [r1, . . . , rm]
> and the

measurement noise in Σ = diag([Σ1, . . . ,Σm]) , the sum
in (3) can be written in the vectorial form and expressed in
terms of 2-norm:

‖r(θ)‖2Σ = r>(θ) Σ−1r(θ) =
∥∥∥Σ−>\2r(θ)

∥∥∥2

. (5)

Iterative methods such as Gauss-Newton or Levenberg-
Marquardt are often used to solve the nonlinear problem in
(3). They are based on a series of linear approximations of
the nonlinear functions in r around the current linearization
point θi:

r̃(θi) = r(θi) + J(θ0)(θ − θi) , (6)

where J is the Jacobian matrix which gathers the derivative
of the components of r(xi). Gauss-Newton methods compute
the correction δ = (θ−θi) at each iteration. The linear least
squares problem in δ is:

δ∗ = argmin
δ

1

2
‖A δ − b‖2 , (7)

where theA = Σ−>\2J is the system matrix and b = −r(θi)
the right hand side (r.h.s.). For SLAM problems, the matrix
A is in general sparse, but it can become very large when
the robot performs long trajectories. The normalized system
has the advantage of remaining of the size of the state even
if the number of measurements increases:

δ∗ = argmin
δ

1

2
‖Λδ − η‖2 , (8)

where Λ = A>A is the information matrix and η = A>b is
the information vector.

A. Linear Solver

The linearized version of the problem introduced above
can be efficiently solved using sparse direct optimization
methods, either performing Cholesky or QR factorizations,
followed by backsubstitution.

Cholesky factorization yields Λ = R>R, where R> is the
Cholesky factor, and a forward and back substitutions on
R>y = A>b and R δ = y first recovers y, then the actual
solution δ.

Alternatively, the normal equation in (8) can be skipped
and QR factorization can be applied directly to the matrix
A in (7), yielding A = Q R. The solution δ can be
directly obtained by backsubstitution in Rδ = d where
d = R−>A>b. Note, that Q is not explicitly formed; instead
b is modified during factorization to obtain d.

B. Incremental SLAM

Online robotic applications require fast and accurate meth-
ods for the estimation of the current position of the robot.
In an online application, the state is incremented with a
new robot position and/or a new landmark every step and
it is updated with the corresponding measurements. This
translates into adding new block columns to the matrix A
corresponding to each new variable (pose/landmark) and new
block rows corresponding to each measurement [3].

For the normalized equation in (8), the size of the matrix
increments in rows and columns with the size of each new
variable. Updating Λ and η is additive:

Λ̃ =

(
Λ11 Λ>21

Λ21 Λ22 + Ω

)
; η̃ =

[
η1

η2 + ω

]
, (9)

where Ω = H>Σ−1
k H and ω = −HΣ

−1\2
k rk, H being the

Jacobian of the measurement function.
For very large problems, updating and solving every step

can become very expensive. Kaess et. al [5], [6], [13]
proposed efficient algorithms to incrementally update and
solve the linear systems. Those algorithmic improvements
offer very good solutions to online SLAM but they are
out of scope of this paper, which focuses on efficiently
constructing the system at each iteration and speeding-up
the basic arithmetic operations on sparse block matrices.

IV. IMPLEMENTATION DETAILS

In order to efficiently cope with very large nonlinear
systems, the process of assembling and solving the sequence
of linear systems must be as fast as possible. The data
structure has to allow for both, efficiently re-computing the
values of the matrices A or Λ and the r.h.s. b or η every time
a new linearization point is available as well as efficiently
updating the system when new measurements are available
in incremental mode. One important characteristic of those
matrices is their sparse block structure.

Operating on dense blocks is a natural way to support
vectorization and improve cache efficiency without any ad-
ditional effort. Also, the division of the data in blocks al-
lows efficient data representation at their natural granularity,
making it simple to reference the data inside the matrix and
change their value when it’s needed. In existing implemen-
tations, the blocks are usually allocated on the heap, and
it can not be guaranteed that the blocks are allocated in
close memory locations. If the blocks are allocated in distant
memory locations, cache misses still occur. To improve
that, our implementation uses segregated storage, which
guarantees that the blocks are stored tightly next to each
other. On the other hand, the arithmetic efficiency of block
matrices is mostly reduced, compared to element-wise sparse
matrices. That is because two extra loop counters for block
rows and block columns are needed. Our implementation
elegantly solves this issue using metaprogramming.

A. The data structure

In general, all existing block matrix schemes, including
ours, involve the same data layout as CCS representation (or



(a) (b)

Fig. 2. Block row/column layout of a block matrix. a) An example of a sparse block matrix and the actual values of the cumulative block sum (on top
and left side). Non-zero dense blocks are shown in violet. Yellow shows null rows/columns. b) Dense block data in segregate storage. On the bottom, we
show the block column layout and the corresponding sorted list of pairs of type (iRL, pDB), where iRL is the index of the row layout, and pDB is the
pointer to the block data in the memory.

equivalent), but use more complicated data structures such
as trees or other higher abstract data structures to make the
matrix structure editable. Trees, in particular, are used in the
existing implementations such as g2o or SSBA.

In the proposed block matrix implementation, block row
and block column layouts are described using the same
structure, except that the columns also contain the non-zero
matrix blocks. The structure is implemented as a sorted list of
cumulative sums of block sizes (see Fig. 2 a)). The matrix
blocks are also stored in a sorted list. Each matrix block
contains row index and a pointer to matrix data. The data
itself is allocated in forward-allocated segregated storage
(see Fig. 2 b)), a storage model similar to a pool but only
permitting allocation and de-allocation of elements from the
end of the storage, in the same manner stacks do. This yields
fast allocation and improves cache coherency.

In order to enable the unusually fast O(1) block random
access in arithmetic operations and also to facilitate error
checking for incorrectly placed blocks, one important restric-
tion on block and column layouts must be applied. The whole
area of the matrix needs to be represented, which means that
the layout of null rows or columns needs to be represented
as well. Those are marked in yellow in Fig. 2 a) and their
representation is shown in Fig. 2 b) where the fifth and sixth
fields from the block column layout are empty.

This contrasts with the usual sparse block matrix repre-
sentations, which only describe the layout of nonzero blocks
without caring about the null elements in between. This
comes at the cost of small increase in memory requirements,
but only for the layout itself, not for the data. In general,
for m block columns (or n rows), there can be maximum
floor(m/2) nonzero block columns (or floor(n/2) nonzero
block rows) that will require extra storage. Please note that
for NLS problems there are no such null columns or rows,
therefore, no extra space requirements apply.

B. Block matrix insertion

In order to write (scatter) a block in the matrix, the
block column and block row needs to be resolved first.
Adding a new block or column inside the matrix area takes
O(log n) time. However, incrementally appending the matrix
with blocks to or after the last row / column is a constant
time operation, as it only needs to determine whether to
create a new row / column at the end, or to use an existing
one. This is a basic operation but frequently used in the
context of incremental solvers. In the general case, in order to
lookup a block, the position to insert the block is resolved in
O(log n)+O(log f) time, where f is the number of nonzero
blocks in a column. Repeated block lookup is avoided in
our implementation by storing a reference to the block after
inserting it in the matrix. This is very useful for updating
the A or Λ matrices every time a new linearization point is
available. In this case, the new values of the blocks can be
calculated directly inside the matrix, avoiding copying data
or block lookup.

C. Arithmetic operations

The arithmetic operations on block matrices are carried
out in the same manner as on element-wise sparse matrices,
with the exception of handling matrix blocks instead of
scalar values. Most of the arithmetic operations require
block lookup at some point. In other existing block matrix
implementations, the O(log n) lookup is used.

In our implementation, a mapping function between
columns and rows of operand matrices is calculated, which
enables direct access to the blocks in O(1) time. The cost of
calculating the mapping function is O(n) in the number of
block rows or block columns. Note that the mapping function
needs to be only calculated once, before the arithmetic oper-
ation takes place. Also, the complexity involved is negligible,
compared to the complexity of the arithmetic operation itself.

In SLAM and related problems, the possible block sizes
correspond to DOF of the variables, and are known in



10k 100k City10k CityTrees10k Intel Killian V ictoriaPark

Fig. 3. The datasets used in our evaluations. Manhattan dataset is omitted due to space limitations.

TABLE I
TIME COMPARISONS OF THE BATCH SOLVERS (CH REFERS TO CHOLMOD AND CS REFERS TO CSPARSE).

Manhattan 10k 100k City10k CityTrees10k Intel Killian
g2o (CS) 0.0614 0.5539 10.8135 0.4855 0.1359 0.0066 0.0084

g2o (CH) 0.0607 0.5497 9.41806 0.4491 0.1391 0.0070 0.0086

iSAM (CS) 1.3641 2.9518 24.9582 1.4207 0.6245 0.0356 0.0535

A−SLAM (CS) 0.0573 0.6341 10.4795 0.4635 0.1390 0.0126 0.0090

A−SLAM (CH) 0.0613 0.6977 12.0097 0.5312 0.1469 0.0083 0.0095

Λ−SLAM (CS) 0.0419 0.4852 9.2213 0.4203 0.0916 0.0052 0.0070

Λ−SLAM (CH) 0.0468 0.5798 11.0566 0.4563 0.1090 0.0060 0.0075

χ2 6112.18 171545.45 8685.07 31931.41 548.50 559.05 0.000005

iterations 5 6 6 6 5 2 1

TABLE II
TIME COMPARISONS OF THE INCREMENTAL SOLVERS.

Manhattan 10k City10k CityTrees10k Intel Killian Victoria Park
Incremental-solve every step

g2o 94.9096 2134.3000 1326.6600 659.1590 5.0513 20.8899 293.1010

iSAM 64.5844 1768.8400 693.7860 434.7500 4.4647 19.7519 209.1740

SPA 23.8834 515.2880 308.0680 N/A 1.4763 5.6260 N/A

A−SLAM 10.8883 377.7490 235.7910 25.2809 0.8829 2.4275 30.6333

Λ−SLAM 10.0038 329.1840 222.5930 22.7070 0.8424 2.1485 28.0194

Incremental-solve every 10 steps
g2o 9.5326 211.2470 132.0070 65.0364 0.5245 2.1518 29.2946

iSAM 6.2510 172.8720 68.5533 42.7519 0.4541 1.9473 20.7089

SPA 2.5745 62.6485 33.4328 N/A 0.1689 0.6392 N/A

A−SLAM 2.1462 46.8314 28.8257 13.2880 0.1336 0.3194 6.0668

Λ−SLAM 1.9560 42.0610 26.7019 12.0940 0.1227 0.2794 5.5461

Incremental-solve every 100 steps
g2o 0.9891 21.0767 13.3781 6.4883 0.0695 0.2443 2.9323

iSAM 0.6142 17.0565 6.6846 4.1876 0.0459 0.1915 2.0580

SPA 0.4446 17.4968 5.4739 N/A 0.0371 0.1426 N/A

A−SLAM 0.3059 6.2372 3.4363 1.8136 0.0339 0.0904 0.8963

Λ−SLAM 0.2853 5.4294 3.0175 1.5028 0.0292 0.0845 0.7522

advance. Therefore, our implementation employs advanced
metaprogramming concepts to enable automatic compile-
time generation of matrix operations code, containing a
decision tree that chooses fixed-size function to perform
operation on the block(s). This allows for loop unrolling
and vectorization, making the block matrix operations faster
than element-wise matrix operations. This is a very important
advancement in the context of nonlinear solvers, as most of
the existing implementations abandon arithmetic operations
on block matrices altogether and resort to operations at the
element level.

V. EXPERIMENTAL EVALUATION

In order to evaluate our new efficient block matrix scheme,
we implemented two standard graph SLAM algorithms; one
that builds the linear system in (7), which we call A-
SLAM and another one that increments the information
matrix in (8), which we call Λ-SLAM. We compared the
timing results with similar state of the art implementa-
tions such as iSAM [5], g2o [7], and SPA [11] (a 2D
SLAM variant of SSPA [8]). For SPA the svn revision
39478 of ROS (http://www.ros.org/) was used; for
g2o, svn revision 29 from http://openslam.org/
was used and for iSAM we used revision 7 from



https://svn.csail.mit.edu/isam.
We evaluate our implementation on five standard simulated

datasets; Manhattan [14], 10k and 100k [4], City10k and
CityTree10k [15] and three real datasets; Intel [16], Killian
Court [17] and Victoria park (see Fig. 3). These are 2D
SLAM datasets commonly used in evaluating graph-based
SLAM implementations.

We performed all the tests on a computer with Intel
Core i5 CPU 661 running at 3.33 GHz and 8 GB of
RAM. This is a quad-core CPU without hyperthreading and
with full SSE instruction set support. During the tests, the
computer was not running any time-consuming processes in
the background. Each test was run ten times and the average
time was calculated in order to avoid measurement errors,
especially on smaller datasets.

A. Other Implementations

All the implementations used for comparisons are based
on similar algorithms, both in batch and incremental mode.
Gauss-Newton non-linear solver was tested in all cases.
iSAM has the possibility to provide incremental updates and
solve every step and to perform expensive batch steps only
when needed, but for comparison purposes we tested only
the cases where batch, update and solve are done all together.

g2o and SPA use their own sparse block matrix im-
plementation. In g2o, it is based on a dense vector of
trees, where each tree contains blocks for one column. This
allows relatively fast random access to matrix elements,
only O(log f) compared to O(log f + log n) in our im-
plementation. However, our implementation always avoids
accessing blocks randomly, while in g2o this complexity
is enforced on block lookup in matrix operations, making
them slower than both CSparse and our implementation.
Overall, g2o is optimized for batch processing, but not for
incremental solving. The good SPA timings come from the
fact that their implementation is optimized for the specific
2D pose adjustment problem (or bundle adjustment problem
in case on SSPA). In contrast, our implementation is general,
allowing any combination of any block sizes.

In the case of iSAM, its sparse matrix storage does not
use any block matrix scheme. A dense vector of sparse
row vectors is used to represent a sparse matrix. This has
some advantage for simple matrix manipulation, as each
measurement modifies only certain sparse vectors, and it is
also straightforward to perform matrix permutation. On the
other hand, the storage is not cache friendly as data of each
sparse vector are allocated separately.

B. Discussion of the results

Timing results for running batch and incremental SLAM
are shown in tables IV-C and IV-C, respectively. Note that
the accompanying figures show time per vertex, as it was
hard to display the radically different times for all the
datasets in a single plot. This makes the results comparable
in scope of one dataset only, not between different datasets.
Victoria park dataset is not included in the batch tests since
it does not converge. Similarly, 100k dataset is too large

to be executed incrementally, therefore we did not include
it in the incremental tests. The last two rows of table IV-
C reports values of the χ2 and the number of iterations.
Those are the same (or very close in the case of χ2) for
all the tested solvers. In incremental mode, the tests were
done using the best linear solver from the batch mode
(CHOLMOD - in the case of g2o and CSparse in the case
of our implementation). The incremental results are split in
three parts; solution calculated everytime, every 10 vertices
and every 100 vertices.

Our implementation outperforms all the existing imple-
mentations in both batch and incremental mode. The com-
parison in batch mode shows a speed op of 10% when
compared to the fastest implementation. This is mainly due
to the proposed block matrix scheme, the algorithm being the
same and the differences in the implementation style cannot
cause large speedups.

However, observe that there is some imbalance between
small speedup in batch mode and large speedup in incremen-
tal mode. This stems from the simple fact that in batch, the
system is only constructed once and most of the time is spent
in linear solver - CSparse [9] or CHOLMOD [10] - which we
did not improve or modify in any way. For incremental mode,
especially on large datasets, the efficient matrix operations
start paying off, as there is a larger portion of time spent in
updating the system.

Due to the efficient block matrix operations described
in IV-C, the difference between A-SLAM and Λ-SLAM is
very close to zero, as updating Λ as in (9) with all the
measurements is just a parallel version of A>A computation.
Of course, when incrementing the system, the upper-left
submatrix of Λ doesn’t change and in Λ-SLAM, this compu-
tation is saved. In A-SLAM, A>A must be calculated for the
whole matrix, resulting in increased number of floating-point
operations and slightly worse run times.

The difference between the use of CSparse [9] and
CHOLMOD [10] is partly caused by different integer types
being used in either library. We ran the tests on an Intel
processor, where CSparse [9] is faster. Our development en-
vironment, however, was based on a pair of AMD processors,
where CHOLMOD [10] is faster.

C. Block operations tests

Beyond the SLAM evaluation, we also ran matrix op-
erations benchmarks on A and Λ matrices computed with
the corresponding SLAM solution. Times for elementary
sparse matrix operations, such as compression, transpose,
addition and multiplication were measured. Performance of
CSparse [9], g2o [7] and our implementation were compared.
SPA [11] wasn’t included because it’s block matrix scheme
is similar as in g2o. iSAM [5] wasn’t included either, since it
doesn’t use any block matrix scheme. The results are shown
in Fig. 4.

Observe that CSparse is very good with matrix com-
pression, since it’s data structure is the least complicated.
But the compression must be performed every time the
system is updated, making CSparse compression effectively



Fig. 4. Block matrix operations performance on SLAM dataset matrices.

slower after two iterations. In the other tests, our block
matrix implementation outperforms CSparse. The most of the
speedup comes from the use of vectorization. Furthermore,
the block schemes prove to be more cache friendly than
element-wise especially in the case of matrix transposition.
In case of g2o [7], matrix transposition and multiplication is
slower because of the use of the slow O(log n) block lookup,
but they are not used in the optimization framework.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated a new implementation for
block matrix manipulations, which are the core operations
for many nonlinear least squares problems with applications
in robotics. We targeted problems such as SLAM, which has
a particular block structure, where the size of the blocks
corresponds to the number of degrees of freedom of the
variables.

The proposed scheme combines the advantages of block-
wise schemes convenient in both, numeric and structural
matrix modification and element-wise, which allows efficient
arithmetic operation. The advantage of the new scheme
was demonstrated through an exhaustive comparison with
the existing implementations in SLAM, on several available
datasets.

Even though the proposed scheme proved to significantly
outperform the state-of-the-art implementations in incre-
mental mode, several improvements from algorithmic point
of view can be applied; incremental updates directly on
the Cholesky factor, better ordering strategies (ordering is
important to reduce the fill-in), changing only the blocks
corresponding to affected variables.

The implementation itself can be improved. Some block
matrix operations can be efficiently parralelized. In the cur-
rent implementation, only the matrix vector product runs in
parallel. Especially the time-consuming matrix multiplication
needs to be parallelized, which should basically erase any
differences between A-SLAM and Λ-SLAM in batch mode.

Finally, the block layout was designed with hardware
acceleration in mind. This is very important for large scale

problems, which can efficiently run on wide scale of accel-
erators, ranging from DSPs and FPGAs to clusters of GPUs.

VII. ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Union, 7th Framework Programme
grants 316564-IMPART and 247772-SRS, Artemis JU grant
100233-R3-COP, and the IT4Innovations Centre of Excel-
lence, grant n. CZ.1.05/1.1.00/02.0070, supported by Oper-
ational Programme Research and Development for Innova-
tions funded by Structural Funds of the European Union and
the state budget of the Czech Republic.

REFERENCES

[1] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,”
in Symposium on Photogrammetric Computer Vision, Sep 2006, pp.
266–271.

[2] F. Hecht, Y. J. Lee, J. R. Shewchuk, and J. F. O’Brien, “Updated sparse
cholesky factors for corotational elastodynamics,” ACM Transactions
on Graphics, vol. 31, no. 5, pp. 1–13, Oct. 2012, presented at
SIGGRAPH 2012.

[3] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing,” Intl. J. of
Robotics Research, vol. 25, no. 12, pp. 1181–1203, Dec 2006.

[4] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Robotics: Science and Systems (RSS), Jun
2007.

[5] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, Dec 2008.

[6] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), Shanghai, China, May
2011.

[7] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[8] K. Konolige, “Sparse sparse bundle adjustment,” in British Machine
Vision Conference, Aberystwyth, Wales, 08/2010 2010.

[9] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Society for Industrial and Applied Mathematics,
2006.

[10] T. A. Davis and W. W. Hager, “Modifying a sparse cholesky factor-
ization,” 1997.

[11] R. K. W. B. B. L. K. Konolige, G.Grisetti and R.Vincent, “Efficient
sparse pose adjustment for 2d mapping,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2010, pp. 22–29.

[12] M. Kaess, V. Ila, R. Roberts, and F. Dellaert, “The Bayes tree:
An algorithmic foundation for probabilistic robot mapping,” in Intl.
Workshop on the Algorithmic Foundations of Robotics, Dec 2010.

[13] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb.
2012.

[14] E. Olson, “Robust and efficient robot mapping,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2008.

[15] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), Rome, Italy, April 2007,
pp. 1670–1677.

[16] A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

[17] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous
localization and map building in large-scale cyclic environments using
the Atlas framework,” Intl. J. of Robotics Research, vol. 23, no. 12,
pp. 1113–1139, Dec 2004.


