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IT4Innovations Centre of Excellence

Faculty of Information Technology

Brno University of Technology
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Abstract—Many packet classification algorithms were

proposed to deal with the rapidly growing speed of

computer networks. Unfortunately all of these algorithms

are able to achieve high throughput only at the cost of

excessively large memory and can be used only for small

sets of rules. We propose new algorithm that uses four

techniques to lower the memory requirements: division

of rule set into subsets, removal of critical rules, prefix

coloring and perfect hashing. The algorithm is designed

for pipelined hardware implementation, can achieve the

throughput of 266 million packets per second, which

corresponds to 178 Gb/s for the shortest 64 B packets,

and outperforms older approaches in terms of memory

requirements by 66 % in average for the rule sets available

to us.

Keywords—FPGA, SRAM, hardware, parallelism, clas-

sification

I. INTRODUCTION

The growth of computer networks provides more

opportunities for new applications and services, but also

gives new possibilities for suspicious activities. Mali-

cious traffic is usually detected by Intrusion Detection

Systems (IDS) and then filtered by firewalls which

perform per-packet classification based on the given set

of rules.

Packet classification (not to be confused with

application-level traffic classification) is a problem of

assigning each network packet into one or more classes.

Classes are unambiguously determined by rules. Each

rule defines a condition for all significant packet header

fields (or dimensions). These fields are usually a 5-tuple

(Source IP Address, Destination IP Address, Source Port,

Destination Port, Protocol). A condition may be exact

match, prefix match (usually for IP addresses), range

match (for ports), or a wildcard, which matches any

value. The goal of a packet classification algorithm is

to find the matching rule with the highest priority. The

output of the algorithm is the number of the matched

rule.

As network speeds are increasing, the demand for a

high speed packet classification is also growing. Usually,

constant time complexity is required in order to achieve

wire speed processing and avoid vulnerability to attacks.

Classification algorithms commonly use preprocessing of

rules to create a data structure that supports high-speed

searching. Current algorithms and hardware architectures

can achieve multigigabit speeds only at the cost of high

memory requirements.

The first memory reduction method for high-speed

packet classification was introduced in Multi Subset

Crossproduct Algorithm (MSCA) [1], which reduces

memory requirements by dividing the rule set into sev-

eral subsets and by moving the worst rules into separate

algorithm branch. Other methods were introduced in

Prefix Coloring Classification Algorithm (PCCA) [2],

which saves memory by additional prefix filtering and

by using perfect hash function to map prefixes directly

into the rule table. We evaluate both algorithms in terms

of throughput and memory. Both algorithms aim at high-

speed networks (tens or hundreds gigabits per second)

and try to keep the memory requirements bounded.

Both algorithms work well for different rule sets, but

none of them seems to produce small memory structures

for all rule sets. Therefore we propose new algorithm

which combines four reduction methods: division of

rule set into subsets, removal of critical rules, prefix

coloring and perfect hashing. All four methods combined

in single algorithm outperform older approaches in terms

of memory requirements by 66 % in average for the

rule sets available to us. The algorithm is designed for

pipelined hardware implementation and is able to process978-1-4577-1379-8/12/$26.00 c©2012 IEEE



266 million packets per second. The proposed algorithm

is faster than MSCA and has the same throughput as

PCCA.

The rest of the paper is organized as follows: The

next section briefly introduces both of the discussed

algorithms and explains the basic concept of pseudorules.

Section III presents the new algorithm created as a

combination of both. The following Section IV presents

the obtained results. Section V concludes the paper.

II. RELATED WORK

The simplest classification scheme uses only one

packet header field. Packet routing in IP networks is a

common example of one-dimensional classification (only

destination IP address is important for routing). This

search on prefixes is called the Longest Prefix Match

(LPM) operation. From the given set of prefixes with

various lengths, the LPM algorithm finds the one that

best fits the given full-length value. This corresponds to

both IPv4 and IPv6 addressing schemes. Because the

LPM operation is performed in IP packet routing, it is

well studied topic. Basic algorithm and data structure

for the LPM is a trie – the tree algorithm processing

one input bit at each tree level and returning the last

valid prefix visited. Trie is often modified to process

more input bits in each step and to reduce memory

requirements. Popular examples of such algorithms are

the Tree Bitmap [3] and the Shape Shifting Trie [4], both

having a strong potential for hardware implementation.

Figure 1 shows an example of trie data structure for the

longest prefix match operation. Black circles represent

valid prefixes (possible results of LPM operation).
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Fig. 1. Example of trie with four stored prefixes. Result for input
10100 will be 1010*.

Many algorithms [5], [6], [7] has been published for

classification in multiple fields, but here we discuss

only decomposition-based methods [1], [2], [8], [9],

which may have constant time complexity of the search

operation and are able to achieve the 100 Gb/s through-

put. In decomposition methods, packet classification is

Rule number

...LPM LPM

Rule Search

Field 1 Field n

Packet

...

LPM vector

Fig. 2. Basic scheme of decomposition algorithms.

divided into several steps, which can be implemented in

hardware by pipeline stages. Figure 2 shows the basic

scheme of decomposition algorithms.

The input of packet classification is a vector of packet

header fields. LPM operation is a first step which is

performed for every packet header field independently.

Range conditions (such as port ranges) in the ruleset are

converted to prefixes, so that the LPM may be performed

in all dimensions [1]. LPM is well studied and can

be performed very fast: recently published approaches

achieve billions of lookups per second using a dedicated

hardware (ASIC or FPGA) [10]. Each LPM search

engine returns one item from the prefix set, where prefix

set is the set of all LPM results for the given ruleset and

the given dimension. Result of the LPM Stage is the

LPM vector, containing one prefix for each dimension.

After the LPM, all fields of the resulting LPM vector

must be processed in some way (this is specific for each

algorithm) to get the correct rule number. Key issue is

that the state space of LPM vectors can be extremely

large. This is because all possible values of the LPM

vector are obtained by creating the Cartesian product of

prefix sets.

A. Pseudorules

Dharmapurikar et al. in [1] introduce the concept of

pseudorules, which is fundamental in recent decomposi-

tion algorithms. We describe in detail how pseudorules

are created and why this process increases the size of

data structures in packet classification algorithms.

To cover all valid combinations of LPM results, pseu-

dorules must be added to the ruleset. In fact, a pseudorule

is always a special case of some rule. This is best

explained by the example of pseudorules generation in

Figure 3. We can see a simplified classification in two

three-bit dimensions with three rules. In each dimension,

trie is shown to illustrate the LPM operation. Colored

arcs are the rules.

For example, LPM vector for packet with header fields



Fig. 3. Three rules R1, R2, R3 and three added pseudorules.

Rule Dimension 1 Dimension 2 Target rule

R1 1* * R1
R2 1* 00* R2
R3 101 100 R3

P1 1* 100 R1
P2 101 00* R2
P3 101 * R1

TABLE I
RULES AND PSEUDORULES.

(111, 100) will be (1∗, 100). This combination is not in

the original ruleset, but it is clear that the correct result is

rule R1(1∗, ∗)1. Therefore, pseudorule P1(1∗, 100) has

to be added to handle this situation. Table I contains all

rules and pseudorules together. Target rule in this table

points to the correct classification result.

The generation of pseudorules is similar to Cartesian

product, and may potentially expand the ruleset signifi-

cantly, but not all possible combinations of prefixes need

to be added. If the universal rule (a rule covering all

possible packets) was in the ruleset, then all possible

combinations would have to be added. However, this

rule can be removed from the ruleset and returned as a

result only if no other rule matches the packet. Therefore,

pseudorules are a subset of Cartesian product of all prefix

sets.

B. Multiple Subset Construction

Because pseudorules expansion is still similar to

Cartesian product, MSCA [1] provides heuristics on how

to break ruleset into several subsets, eliminating the

majority of pseudorules. The algorithm exploits the fact

that the sum of Cartesian products of small sets is much

smaller than the single Cartesian product of large sets.

1Symbol * denotes prefix or wildcard

The paper also identifies rules that generate excessive

amount of pseudorules. These rules are called spoilers

and are treated in a separate algorithm branch to further

reduce number of pseudorules. The LPM operation is

slightly modified to return a result for each subset,

because subsets may contain different prefixes. A Bloom

filter [11] is associated with each subset to perform set

membership query. If the Bloom filter output is true, one

rule table memory access is performed to retrieve the

resulting rule or pseudorule. An optimization technique

is used to avoid single packet match several subsets,

which would slow the algorithm down.

MSCA is designed for hardware implementation to

achieve high throughput. The proposed architecture em-

ploys an FPGA and a single external SRAM. Figure 4

shows the basic structure of the MSCA (spoilers branch

is not shown). Almost all parts of the algorithm are

implemented in the FPGA, only the Rule Table is stored

in the external memory. The Rule Table is the hash table

of rules and remaining pseudorules. Given the fact that

one rule is stored at hundreds of bits, the algorithm

throughput is limited by the external memory bandwidth.
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Fig. 4. Hardware structure of the MSCA.

C. Perfect Hashing with Prefix Coloring

PCCA [2] notes the fact that the LPM operation is per-

formed independently for each field in decomposition-

based packet classification algorithms (see Figure 2).

The advantage of this scheme is the strong potential for

parallel computation. On the other hand, LPM results

are logically related – only certain combinations of LPM

results form a rule, the rest of them are unwished pseu-

dorules. Thus, the knowledge of LPM result from one

dimension should affect LPM result in other dimensions.

The LPM operation in PCCA is modified to return

all matching prefixes, not only the longest one. Each



prefix P stores its color and a precomputed bitmap for

each of remaining dimensions. Each bit in the bitmap

corresponds to one color. The bit corresponding to prefix

R is set to 1 if prefixes P and R appear together in

some rule. Otherwise, the bit is set to 0. This way, it is

possible to remove most pseudorules easily by a simple

logic, because each LPM result contains an information

about ”allowed” and ”suppressed” prefixes from other

dimensions.

PCCA also uses specifically constructed perfect hash

function to map all pseudorules (in the form of LPM

vectors) onto correct rules. This way, it is no longer nec-

essary to store pseudorules, which saves a considerable

amount of memory. Number of remaining pseudorules

however still affects the memory of the algorithm, be-

cause the implementation of perfect hash function grows

linearly with the number of keys (rules+pseudorules).

The perfect hash function consists of two ordinary

hash functions which are used to compute two pointers

to the vertex table. Filling of the vertex table includes

construction of the random acyclic graph, where edges

are hash keys and vertexes are output of the two ordinary

hash functions. Only two integers are read from the

vertex table when computing the perfect hash function.

Similarly to MSCA, PCCA also targets the implemen-

tation in FPGA and SRAM (Figure 4). Thanks to the fact

that no pseudorules are stored in PCCA, the rule table

can be stored in the FPGA. The SRAM is used to store

the vertex table required by the hash function. Only two

16-bit integers are read from the SRAM each packet.

This significantly lowers the required external memory

bandwidth.
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Packet
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...

...

Fig. 5. Hardware structure of the PCCA.

III. ALGORITHM

In this chapter we introduce the new packet classifi-

cation algorithm. Our aim is to achieve throughput at

least 100 Gb/s for the shortest packets and to reduce the

memory in comparison to MSCA and PCCA. We explore

the possibility to combine both approaches into single

algorithm which we call Multi Subset Prefix Coloring

Classification Algorithm (MSPCCA).

The memory optimization techniques introduced in

MSCA are orthogonal to the techniques used in PCCA

This leads us to the idea of combining all methods

into one compound algorithm. MSPCCA uses all four

techniques:

• Division of the rule set into subsets.

• Removal of spoilers into separate algorithm branch.

• Prefix coloring and subsequent filtering.

• Perfect hash function construction.

The classification engine has the structure shown in

Figure 6. (Spoilers branch is not shown.) Upon reception

of each packet, the LPM is computed over all fields.

The LPM results are available for each subset, therefore

the processing is then split into separate independent

branches. The following blocks therefore can run in

parallel. The Color Processing blocks filter out impos-

sible prefix combinations and outputs the LPM vectors.

A Bloom filter for each subset is then queried for the

presence of the LPM vector in the respective subset.

Only in the case of positive result the Perfect Hash

Function is computed to obtain the pointer to the rule

table. The packet is then matched to the selected rule. In

case of match, the selected rule is the output, otherwise

the default rule is applied. In parallel to the main

algorithm there is separate branch for classification of

spoilers. This branch can be implemented as a small on-

chip TCAM. The very end of the algorithm performs

simple priority resolution between the two branches.

In parallel pipelined hardware implementation, several

further optimizations are possible, compared to Figure

6. Supposing that MSCA is able to avoid match of

single packet in multiple subsets, only one instance of

the Perfect Hash Function logic is needed. The vertex

table used by perfect hash function is separate for each

subset. The vertex table is also the only part of the

algorithm that is stored in the external memory. The

perfect hash function reads two 16-bit integers from the

external memory for each packet.

Several data structures must be precomputed before

the packets can be classified by the algorithm. MSPCCA

therefore works in two phases – precomputation and
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Fig. 6. Logical structure of the MSPCCA.

the classification itself. The precomputation phase is

composed of separate methods as follows: After remov-

ing spoilers, MSCA splitting algorithm is used to split

the rule set into subsets. Then for each subset, PCCA

coloring algorithm is used to assign colors to prefixes

and to create the reduced set of pseudorules. The Bloom

filters are then filled with the rules and pseudorules of

each subset. The last precomputation step is building the

perfect hash function for each subset.

The first contribution of MSPCCA is the fact that all

optimization techniques are successfully integrated into

single algorithm. Spoilers removal, division into subsets

and color processing contribute to lower the number

of pseudorules, while the perfect hash function avoid

storing the pseudorules. Therefore we expect the new

algorithm to require less memory than its predecessors.

The second contribution is that the external memory

bandwidth is defined by the faster of the two original

algorithms – PCCA. Supposing that MSCA is able to

avoid match of single packet in multiple subsets, only

two 16-bit accesses to the external memory are required

to classify a packet. The algorithm speed is not limited

by MSCA.

IV. RESULTS

A. Throughput

The algorithm is designed as a sequence of simple

steps which can be directly implemented as a parallel

hardware pipeline. We do not evaluate the throughput

of LPM, because MSCA, PCCA and MSPCCA do not

propose any new LPM algorithm. We just suppose that

the constant number of bits in packet header fields leads

to the constant time of LPM operation [10], [12].

The PCCA color processing uses only simple logic

operations. Implementation of the Color Processing stage

in Virtex-6 FPGA logic consumes 1364 LUT-FlipFlop

pairs, and runs at 262 MHz (after synthesis for 5 dimen-

sions and 8 colors). It only adds four cycles of latency.

This small logic can also be easily replicated to achieve

higher throughput if necessary.

The set membership query using Bloom filter requires

the computation of several hash function and access to

several bit locations in the on-chip memory. The suit-

ability of implementation of Bloom filters is hardware

was shown in many works before [1], [12], [13].

The perfect hash function computation requires com-

puting two ordinary hash functions, two accesses to the

external memory and a summation. All of these steps

are simple, however the external memory limits the

algorithm throughput. We suppose the use of RLDRAM2

running at 533 MHz [14] as external memory to store

the vertex table. The algorithm throughput is 266 mil-

lion packets per second, same as PCCA. Compare to

150 million packets per second throughput of 100 Gbps

Ethernet for the shortest 64 B frames. The algorithm

throughput is independent on the number of rules and

the characteristics of the network traffic.

B. Memory

We compare the memory requirements of the new

MSPCCA to the two original algorithms. We use two

synthetic rule sets generated by ClassBench [15] (synth1-

2) and four real-life rule sets from the university campus

network (rules1-4). The rule sets are characterized in

Table II. Numbers of rules and numbers of unique

prefixes in each dimension are shown.

Rule set Rules Source Dest. Proto SRC DST
IPs IPs Ports Ports

synth1 219 55 53 1 14 1
synth2 394 65 57 1 14 1
rules1 103 28 48 4 6 40
rules2 173 84 84 3 1 16
rules3 275 46 64 3 1 22
rules4 1 107 158 80 4 1 56

TABLE II
BASIC PROPERTIES OF RULE SETS.

Table III shows the memory of the algorithms for

all six rule sets. The memory of the LPM is not con-

sidered. However, all three algorithms require to add

some additional information to prefixes. This memory is

included in the table. Eight spoilers are removed in each

algorithm. For MSCA and MSPCCA, three subsets are

used and the probability of Bloom filter false positive



Rule set MSCA PCCA MSPCCA

synth1 1 622.91 227.51 122.91
synth2 2 928.36 601.23 232.91
rules1 2 303.81 3 347.68 82.96
rules2 162.26 1 075.99 81.45
rules3 211.68 260.02 122.41
rules4 898.77 814.27 568.66

TABLE III
MEMORY SIZE (KBITS) OF THE ALGORITHMS.

is set to 0.005. Eight colors are used in PCCA and

MSPCCA.

It can be seen that MSCA has poor results for rule sets

synth1, synth2 and rules1, while PCCA does not perform

well for rules1 and rules2. The combined algorithm has

smaller memory requirements for all rule sets. Also the

algorithm stability is improved. While MSCA requires

722 to 22 367 and PCCA 645 to 32 501 bits per rule,

MSPCCA stores only 445 to 805 bits per rule.

V. CONCLUSION

We have proposed the new high-speed packet classi-

fication algorithm which significantly reduces memory

requirements. The algorithm is designed for pipelined

hardware implementation and uses four memory reduc-

tion techniques: spoilers removal, rule set division, color

filtering and perfect hashing. As can be seen in results,

the proposed algorithm reduces memory from 36 to 96 %

over MSCA and 30 to 97 % over PCCA. The average

improvement is 66 % for the rule sets available to us.

The algorithm uses perfect hash function to look-up

classification rule and need only two accesses to the

hash table for every packet. Therefore high throughput

can be achieved even for a large rule set, where off-

chip memory is needed to store the hash table. Consid-

ering pipelined hardware architecture implemented in an

FPGA and one off-chip memory, the algorithm analysis

shows the throughput of 266 million packets per second,

which corresponds to 178 Gb/s for the shortest 64 B

packets and 548 Gb/s for the 440 B packets (reported

as average in [16]). Moreover, the algorithm can not

be overwhelmed by attacker, because the packet rate is

independent on the number of rules and characteristics

of the network traffic.
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