
Low-Latency Modular Packet Header Parser for FPGA

Viktor Puš, Lukáš Kekely
CESNET a. l. e.

Zikova 4, 160 00 Prague, Czech Republic
pus,kekely@cesnet.cz

Jan Kořenek
IT4Innovations Centre of Excellence

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
korenek@fit.vutbr.cz

ABSTRACT
Packet parsing is the basic operation performed at all points
of the network infrastructure. Modern networks impose
challenging requirements on the performance and configura-
bility of packet parsing modules, however the high-speed
parsers often use very large chip area. We propose novel
architecture of pipelined packet parser, which in addition
to high throughput (over 100 Gb/s) offers also low latency.
Moreover, the latency to throughput ratio can be finely
tuned to fit the particular application. The parser is hand-
optimized thanks to the direct implementation in VHDL,
yet the structure is very uniform and easily extensible for
new protocols.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays, Algorithms implemented in hardware

Keywords
Packet Parsing, Latency, FPGA

1. INTRODUCTION
As the computer networks evolve both in terms of speed

and diversity of protocols, there is still need for packet pars-
ing modules at all points of the infrastructure. This is true
not only in the public Internet, but also in closed, applica-
tion specific networks. There may be different expectations
on packet parsers. Consider for example the multi-million
dollar business of fast algorithmic trading, where the parsing
latency is often more important than the raw throughput.

Current high-speed FPGA-based parsers can achieve raw
throughput over 400Gb/s at the cost of extreme pipelining,
which increases both latency and chip area significantly [1].
Also, the configurability issue is being solved only partially.
Configuring the set of supported protocols is often addressed
by some higher-level protocol description followed by auto-
matic code generation, but the configuration of implemen-
tation details is left unnoticed.

2. MODULAR PARSER DESIGN
Our modular packet parser is designed to meet the de-

mands rising from various applications. Since we realize

Copyright is held by the author/owner(s).
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
ACM 978-1-4503-1685-9/12/10.

that the development of VHDL modules is very low-level
and often slow, we start with the design of Generic Protocol
Parser Interface (GPPI). This interface provides the input
information necessary to parse a single protocol header: cur-
rent data being transferred at the data bus, offset of these
data, offset of the protocol header. GPPI also contains out-
put information needed to parse the next protocol header or
to read or modify packet header fields. The GPPI output
information includes the type and offset of the next proto-
col header. Fig. 1 shows how modules are connected. By
manually adhering to the GPPI, we achieve a hint of ob-
ject orientation in VHDL – all protocol header parsers are
derived from the same ”class”. This improves the code main-
tainability and enable easy extensibility of the parser: new
protocol header parser is connected just in the same way as
the others.

IPv4

IPv6

Data bus

Pipeline stage
(optional)

Pipeline stage
(optional)

Header
type

Header
offset

Header
type

Header
offset

Data offset
counter

Figure 1: Example of one pipeline stage. Protocol
header parsers share inputs, their outputs are se-
lected based on the input type of protocol.

The inner implementation of each protocol header parser
is protocol-specific, but the basic parser block is usually the
waiting for a specific header field to appear at the data bus,
i.e. po+fo ∈ 〈do; do+dw〉, where po is protocol offset (mod-
ule input), fo is field offset (from protocol specification), do
is data bus offset (module input), and dw is data bus width.
Once the header field is observed at the data bus, it can be
used to compute the length of current header, decode the
type of the next header, or any other operation.

The output information about types and offsets of pro-
tocol headers is more general than having already parsed
header field values: The offset is needed for packet editing,
and obtaining the header field values can be done simply
by multiplexers, with the knowledge of offsets. Our parser
offers the option to skip the actual multiplexing of header

77



field values from the data stream. This may save consider-
able amount of logic resources and is particularly useful for
applications where only small number of header fields must
be read, or when the packets are modified in a write-only
manner.

Similarly to [1], our parser also uses pipelining to achieve
high throughput. However, every pipeline step in our de-
sign is optional. If many pipelines are enabled, then the
frequency (and throughput) rises, but also latency and logic
resources increase. By tuning the use of pipelines, designer
can find the optimal parameters for the particular use case.

3. RESULTS
We have implemented the parser supporting the following

protocol stack: Ethernet, up to two MPLS headers, up to
two VLAN headers, IPv4 or IPv6 (with up to two extension
headers), TCP or UDP. The header field extraction mod-
ule (if present) extracts the classical 5-tuple: IP addresses,
protocol, TCP or UDP ports. We provide results after syn-
thesis for Xilinx Virtex-7 870HT FPGA, with the different
settings of data width, number of pipeline stages and the
use of extraction module.

These settings, together with the resulting frequency, la-
tency and resource usage generate a large space of solutions,
where the Pareto set can be found and used to pick the
best-fitting solution for the application. Fig. 2 shows the
throughput and FPGA resources for data widths from 128
to 2 048 bits. For each data width, each possible placement
of pipelines is shown as a point in the graph and the Pareto
set (finding the best throughput and resource utilization,
without regard to latency) is highlighted. The lower curve
is the Pareto set for the parser without the extraction mod-
ule. Tab. 1 shows the Pareto set optimized for latency and
throughput, without regard to chip area. The last line of
Tab. 1 is the estimation of parser from [1] with similar con-
figuration of supported protocols (TcpIP4andIP6).

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Throughput [Gbps]

L
U

T
−F

F
 p

ai
rs

 

 

Pareto set
128b
256b
512b
1024b
2048b
Pareto set
(no extraction)

Figure 2: FPGA resource utilization for different
parser settings.

Careful design space exploration is very important for
our parser. For example, parser optimized for latency uses
17 685 LUT-FlipFlop pairs to achieve near 100Gb/s through-
put with latency only 21.1 ns (see Tab. 1), while parser
optimized for chip area uses only 6 536 LUT-FF pairs to
achieve throughput just over 100Gb/s (but with the latency
of 35.8 ns).

Data Pipes Throughput Latency LUT-FF
Width [Gb/s] [ns] pairs

256 0 14.5 17.1 3 238
512 0 28.4 18.0 4 053

2 048 0 96.9 21.1 17 685
2 048 1 158.5 25.9 18 547
2 048 2 212.8 28.9 18 317
2 048 4 333.0 30.8 21 775
2 048 5 352.0 34.9 22 373
2 048 7 453.0 36.2 26 728
2 048 8 478.1 38.6 29 301

1 024 ? 325 309 67 902

Table 1: Pareto set for best throughput and latency

4. CONCLUSION
Our low-latency modular packet parser for FPGA uses

only 1.19% of the Virtex-7 870HT FPGA to achieve through-
put over 100 Gb/s and 4.88% for throughput over 400 Gb/s
with reasonable latency, while most of the FPGA logic is
kept for application. These results, together with the la-
tency below 40 ns are better than previous solutions (com-
pare to FPGA utilization over 10% and latency over 300 ns
at 300+Gb/s throuput in [1]). Our parser uses 68% less
FPGA resources and has 90% smaller latency than [1] for
throughput over 300 Gb/s. Moreover, the parser can be
finely tuned trough design space exploration to meet the
demands of the particular application.

Acknowledgment
This research has been partially supported by the“CESNET
Large Infrastructure” project no. LM2010005 funded by the
Ministry of Education, Youth and Sports of the Czech Re-
public, the research programme MSM 0021630528, the grant
BUT FIT-S-11-1 and the IT4Innovations Centre of Excel-
lence CZ.1.05/1.1.00/02.0070.

5. REFERENCES
[1] M. Attig and G. Brebner. 400 gb/s programmable

packet parsing on a single fpga. In Architectures for
Networking and Communications Systems (ANCS),
2011 Seventh ACM/IEEE Symposium on, pages 12 –23,
oct. 2011.

78




