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Abstract—This paper deals with evolutionary design of ap-
proximate circuits. This class of circuits is characterized by
relaxing the requirement on functional equivalence between the
specification and implementation in order to reduce the area on
a chip or minimize energy consumption. We proposed a CGP-
based automated design method which enables to find a good
trade off between key circuit parameters (functionality, area
and power consumption). In particular, the digital approximate
circuits consisting of elementary gates are addressed in this paper.
Experimental results are provided for combinational single-
output circuits and adders where two different metrics are
compared for the error assessment.

I. INTRODUCTION

Evolvable hardware (EHW) is usually defined as a non-

traditional (unconventional) search-based method for hardware

design and adaptation that uses various bio-inspired compu-

tational intelligence paradigms. The main reasons why EHW

has mainly been studied and developed include its ability to (i)

provide novel designs hardly reachable by means of conven-

tional methods, (ii) deliver good solutions for problems where

the specification is inherently incomplete and any golden solu-

tion does not exist, and (iii) achieve adaptation/fault tolerance

directly at the hardware level. Despite some success stories,

as reported in e.g. [1], [2], it has not fully penetrated into

mainstream hardware design tools. There are several reasons

for this fact, in particular, the EHW method utilizes very time

consuming algorithms, the scalability of resulting solutions is

very limited and the whole process is too non-deterministic

for some tasks. This situation also holds for the subfield of

digital circuit evolution which this paper deals with.

However, researchers working on algorithms and method-

ologies that we could classify as conventional from the EHW

perspective have recently shown an interest in a group of tech-

niques that are currently known as approximate computing. In

this area, the requirement of perfect functional behavior is

relaxed because some users are willing to accept less-than-

perfect results, errors are not observed as human perception

capabilities are limited (e.g. in image, speech, music and video

perception) or even a perfect solution is impossible to define

and thus reach. If an approximate solution (i.e. a circuit) is

employed then it is expected that significant benefits will be

obtained in terms of energy savings, speedup or area on a chip

[3], [4], [5].

Approximate circuits have initially been constructed manu-

ally, e.g. by removing those parts of existing fully functional

designs that did not contribute to the result significantly.

For example, approximate adders and multipliers have been

reported for signal processing applications such as image

filtering and compression [6]. Other approaches exploit timing

induced errors due to voltage over scaling and over clocking.

The current trend is to create general design methods capable

of constructing approximate circuits which never exceed a

predefined error [7], [4]. The error can be expressed by

various metrics such as worst case error, average error, error

probability etc. These ‘error-oriented’ approaches, however,

represent only one of possible methodologies for approximate

circuits design.

In this paper it is proposed to employ the evolutionary

circuit design as a method for approximate circuits design. In

particular, we utilize the fact that search-based design methods

(i.e. evolutionary design) always provide a partially working

solution even if resources needed for constructing a fully

functional solution are not available. It has to be noticed that

conventional methods do not usually provide any result when

allocated resources are insufficient. The method targets on

small and middle-size digital circuits represented at the gate or

register-transfer (RT) level where EHW is capable of providing

novel solutions w.r.t. conventional design tools [2]. The first

approximate circuit C1 is created by means of an EA which

can use up to n − 1 gates (i.e. components in case of the RT

level) where n is the number of gates required for reaching a

perfect functionality. Next approximations are created by EA

where the amount of available gates is gradually reduced. The

user thus obtains a set of approximate circuits, each of which

typically exhibits different trade-off between the functionality

and cost. Other criteria such as power consumption and delay

can be included in the optimization framework.

The proposed method has been implemented as an extension

of our system for evolutionary design of combinational circuits

which is based on Cartesian Genetic Programming (CGP).

The experimental evaluation consists of creating approximate

circuits for two classes of circuits: combinational single-

output circuits where the functionality degradation is simply

measured as the number of bits incorrectly calculated for all

possible input combinations and combinational adders where

two different metrics are compared for the quality assessment.

For all circuits, the decreasing quality is contrasted with

decreasing power consumption and area on the chip.

The rest of the paper is organized as follows. Section II



surveys current research in the field of approximate circuits

and some bio-inspired approaches that could be classified

as a contribution to approximate computing. The proposed

design methodology is introduced in Section III. Experimental

framework is presented together with experimental results in

Section IV. Conclusions are given in Section V.

II. PREVIOUS RESEARCH

In this section we will first present the field of approx-

imate computing as it has been introduced by the com-

munity of researchers mainly developing and utilizing con-

ventional/standard circuit design tools. Then we will survey

approaches and results from the evolvable hardware literature

that have something in common with this notion of approxi-

mate computing.

A. Approximate Circuits

Approximate circuits have been intensively studied in recent

five years which can be documented by numerous papers on

this topic published at major CAD conferences such as DAC

and DATE. The concept has been know earlier, for exam-

ple, Shih-Lien Lu dealt with approximate pipeline circuits

in microprocessors in 2004 [3]. In approximate circuits, the

requirement on functional equivalence between the specifi-

cation and implementation is relaxed in order to accelerate

computations, reduce the area on a chip or minimize the energy

consumption. Over-scaling and functional approximation are

two basic design techniques.

In case of over-scaling, these circuits are designed to be

working perfectly under normal environment. However, their

energy consumption can be reduced by voltage over-scaling.

Similarly, performance can be increased when the circuit is

over-clocked. Timing induced errors are due to the fact that

some paths in the circuit fail to meet the delay constraints [8].

Both techniques can be combined.

Functional approximation means that the circuit is designed

in such a way that it does not fully implement the logic

behavior given by the specification. A simple method is to

reduce the precision of computations in case of arithmetic

circuits by ignoring the least significant bits. Other methods

adopt logic synthesis scenarios in which implementations

that satisfy the specification almost perfectly are sought, but

the amount of resources is significantly reduced w.r.t. the

perfectly working circuit. For example, a two-bit multiplier

was manually constructed which consists of 5 gates only and

exhibits the delay of 2d where d is a unit delay. Its output is

correct for 15 out of 16 possible inputs. A usual conventional

solution requires 8 gates and exhibits the delay of 3d. This

approximate multiplier has been used in larger multipliers

and then employed in image processing applications. Reported

power savings are impressive: 30%-50% for a mean error of

1.39% - 3.35% [6].

Manual re-design is a typical approach adopted to create

approximate circuits [6]. Systematic methods for synthesis

have been proposed recently [4]. The most recent SALSA

methodology, presented at DAC 2012, starts with a RT level

description of the exact version of the circuit and an error

constraint that specifies the type and amount of error that the

implementation can exhibit [7]. The methodology introduces

the so-called Q-function which takes the outputs from both

the original circuit and approximate circuit and decides if

the quality constraints are satisfied. The Q-function outputs

a single Boolean value. The SALSA algorithm attempts to

modify the approximate circuit with the goal to keep the output

of the Q function unchanged. The SALSA method iteratively

and separately approximates the outputs of the approximate

subcircuit by exploiting the fact that one output can remain

unchanged for some primary inputs (the so-called observability

don’t cares are exploited). The main advantage is that these

steps can be done by conventional synthesis tools.

Various approaches can be used to evaluate the quality

of approximation. For some cases, e.g. arithmetic circuits,

a golden solution (i.e. perfectly functional circuit) can be

constructed. In other cases, e.g. image filters, no golden

circuits exist. We will compare several error functions during

our experiments. An approach for modeling and analysis

of circuits for approximate computing which addresses the

issues of comparison of approximate and conventional designs,

accuracy calculations and verification has been proposed in

[5]. It has to be stressed that traditional design and verification

techniques are not directly applicable for approximate circuits.

B. Evolutionary Circuit Design

Some results that the evolvable hardware community has

created so far can be understood as at least partially relevant

for approximate computing.

Famously Thompson’s evolutionary design of a tone dis-

criminator circuit in the XC6216 FPGA can be considered

as an early approach to approximate computing. Thompson’s

EA discovered a discriminator requiring significantly less re-

sources than usual solutions would occupy in the same FPGA

[9]. Though the evolved discriminator was fully functional,

its robustness was limited. Higher sensitivity to fluctuations in

environment (external temperature, power supply voltage) and

dependability on a particular piece of FPGA were reported.

Hence we can observe a trade off between the robustness and

the amount of resources in the FPGA.

Miller has introduced a CGP-based method for finite im-

pulse response (FIR) filter design [10]. During the evolu-

tionary design process target filters are composed from ele-

mentary gates, ignoring thus completely the well-developed

techniques based on multiply–and–accumulate structures. The

main practical result of this approach is that the evolved

filters are extremely area-efficient (and thus potentially energy

efficient) in comparison with conventional filters. However,

only partial functionally has been obtained. Evolved filters

worked correctly only for a very limited amount of potential

input signals. Another Miller’s work addressed the problem of

evolutionary design of digital circuits that can approximate real

numbers [11]. Similarly to the previous approach, the circuits

are composed from elementary gates.



Kneiper et al. investigated robustness of EHW-based clas-

sifiers [12]. A classifier system was reported which is able to

cope with changing resources at run-time. During optimiza-

tion, the number of pattern matching elements was modified

and its influence on classification accuracy was studied. The

performance and accuracy was recognized as sufficient as long

as a certain amount of resources is present in the system.

Our previous work on multifunctional circuits has led to an

adaptive FIR filter architecture which can adjust the filtering

quality by means of polymorphic gates [13]. A similar con-

cept has been employed in digital controllers that gracefully

degrade when some inconvenient situations arise, e.g. when

battery goes low or a chip temperature crosses some safe level

[14].

The concept of inherent fault tolerance investigated in the

EHW field seems to be very relevant to approximate comput-

ing. Inherent fault tolerance means that in case of a failure of

a circuit element, the evolutionary algorithm is usually able to

recover the original functionality using the remaining elements

or using another member of the population which might be

insensitive to the failure [15]. If a critical number of elements

is damaged, the original function cannot fully be recovered;

however, a partial functionality can be obtained. For instance,

functional recovery of a quadrature decoder after a stuck-at-

zero fault was demonstrated for a model of an FPGA [16].

We can sum up that the EHW method is in principle

applicable for approximate circuit design assuming that the

scalability problems of EHW can be eliminated for a particular

application.

III. PROPOSED METHODOLOGY

As the proposed method is based on CGP we will first recall

main principles of CGP for circuit evolution according to [17].

The overall design methodology will then be introduced in this

section.

A. Circuit Evolution Using CGP

1) Encoding: The CGP approach utilizes a set of pro-

cessing nodes (gates) arranged in nc columns and nr rows

to represent a target circuit. Each node can perform one

function taken from an a priori given finite set of functions

Γ. A specific interconnection of the elements gives rise to a

functional circuit. The circuit utilizes ni primary inputs and

no primary outputs. The circuit inputs as well as the output of

each node in the grid have assigned a unique integer (index)

according to which the interconnection is defined. Similarly,

the functions of the nodes are identified by integer values.

Since the circuits considered in this paper can be realized

as combinational circuits in which no feedback is allowed,

it is necessary to consider this limitation in the representation

scheme. Each gate can be connected either to the output of

a gate placed in previous l columns or to one of the circuit

inputs. For example, if l equals 1, then it means that the input

of a node in column c can only be connected to an arbitrary

output of a node in column c − 1 or to one of the circuit’s

inputs.

A candidate solution represented by CGP can be described

by means of a sequence of integers specifying functions

of the nodes and interconnection of the nodes. The CGP

encoding consists of nc.nr triplets (i1, i2, f) determining for

each element its function f and input indices i1 and i2 which

the element’s inputs are connected to. It is assumed here that

the gates have up to two inputs. The tail part of the CGP

encoding contains no integers specifying the nodes where the

primary outputs are connected to.

2) Search Method: For the search in the search space

induced by the CGP representation, a technique denoted as

evolutionary strategy is usually adopted [17]. The population

consists of a finite number of chromosomes, each of which

represents a candidate circuit using the CGP encoding. At

the beginning of evolution, the first population is randomly

generated and consequently evaluated. In order to create a new

population, the chromosome of the highest-scored candidate

circuit is selected as the new parent and by applying a point

mutation (i.e. h genes are modified) offspring are generated

in the count needed to fill up the rising population. The steps

of the evolution loop are repeated in the next generations

until either a circuit is found whose output fulfills the criteria

specified by the designer or a maximal generation count is

reached.

B. Fitness function

For the evolutionary design of digital circuits the fitness

value of a candidate circuit is usually defined as:

fit1 = b (1)

where b is the number of correct output bits obtained as

response for all possible assignments to the inputs. In other

words, the goal is to minimize the Hamming distance between

the obtained truth table and required truth table. After reaching

b = bmax = no2
ni other objectives can be optimized, e.g. the

number of gates.

Obviously, this method is not scalable, mainly because

the evaluation time grows exponentially with the increasing

number of primary inputs. Techniques proposed to overcome

the scalability problem have been surveyed in [2].

If the problem is formulated as a symbolic regression

problem, the goal of evolution is usually to minimize the mean

absolute error of a candidate circuit response y and target

response t. The fitness function is then defined as:

fit2 =

k∑

j=1

|y(j) − t(j)| (2)

where k is the number of fitness cases.

C. The Overall Scheme

The proposed methodology addresses the problem of ap-

proximate circuit synthesis by constructing a set of circuits

that attempt to approximate the target functionality using

constrained resources. These circuits are then analyzed in

terms functionality violation (error w.r.t. specification). The



circuit showing the best trade off between consumed resources

and measured error is taken as the final solution. We will

primarily study the trade off between the number of gates and

error. As computing the power consumption is a very time

consuming operation in the fitness function, it will not be

used in the fitness function. However, we will measure the

power consumption of the best evolved circuits at the end of

evolution. The power consumption is calculated using the SIS

tool (power estimate command) which estimates, by means of

symbolic simulation, the power dissipated in a circuit due to

switching activity [18].

Let us assume that the area is expressed as the number of

gates. Our method starts with evolutionary design of a target

circuit C to find out the minimum number of gates n required

for its implementation. Approximations of C are created in

iterations. Approximate circuit C1 is created by means of CGP

which can consume up to n− 1 gates. The goal of CGP is to

minimize the error function. The evolution is stopped when

the stopping condition is satisfied. The first approximation

exhibits the error e1. Approximate circuits C2 . . . Ck are then

constructed wherein up to n − 2 . . . n − k gates are supplied

for CGP. At the end the user has to choose the solution

which exhibits the best trade off between functionality and

the number of gates (or power consumption).

IV. EXPERIMENTAL RESULTS

Experimental evaluation consists of evolutionary circuit

design under sufficient and limited resources. The experiments

are performed for two classes of circuits: single output circuits

and combinational adders of various sizes (i.e. multiple output

circuits). In both cases, the evolutionary design is firstly

carried out to find the minimum number of gates needed for

obtaining a perfectly working circuit. Resulting circuits are

then considered as reference circuits for evolutionary design

of approximate circuits.

A. Single Output Circuits

Circuits with a single output represent a special case in our

context because there is only one reasonable way to define

the fitness – as the number of correctly calculated output bits

for all possible inputs (see eq. 1). Three circuits from the

LGSynth93 suite (cm152, sym9 and t481) and 9-input majority

circuit are used as benchmark problems. The 9-input majority

is included as its optimal size is known to be 15 AND gates

and 15 OR gates.

The CGP is set with sufficiently redundant resources, i.e.

nr = 1, nc = 35 (nc = 40 for the 9-input majority).

Setting of other parameters corresponds with the recommen-

dations given in [17]: l = nc, λ = 4, h = 5%, and

Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}. The

initial population is always randomly generated. The maxi-

mum number of evaluations is 100 · 106. For the 9-majority

a reduced set consisting of {BUF,AND,OR} is utilized. The

number of evaluations is 300 · 106.

Table I summarizes the results achieved by CGP in the task

of circuit optimization under decreasing, but still sufficient

resources (nc is variable). The columns are the success rate

in finding a fully functional solution according to eq. 1

(succ.rate), the minimum number of gates obtained (best ng),

the average number of evaluations to find a fully functional

solution (meen ne [·106]) and the average functionality. Both

averages were computed from all runs. The success rate

decreases with decreasing resources which corresponds with

earlier findings about the importance of redundancy for CGP

[17].

TABLE I
STATISTICAL RESULTS OF CGP FOR SINGLE-OUTPUT CIRCUITS

maj9

nc 40 39 38 37 36 35 34 33 32 31 30

succ.rate 100% 100% 100% 98% 97% 90% 84% 63% 27% 9% 2%

best ng 30 30 30 30 30 30 30 30 30 30 30

mean ne 2.3 2.8 4.0 4.5 5.7 9.3 15.1 19.4 22.7 27.7 14.6

mean func. 100% 100% 100% 99% 99% 99% 99% 99% 99% 99% 98%

sym9

nc 35 34 33 32 31 30 29 28 27 26 25

succ.rate 56% 42% 40% 36% 25% 18% 14% 9% 11% 6% 1%

best ng 24 24 24 23 24 24 24 24 24 24 24

mean ne 66 86 87 83 75 88 141 63 142 261 196

mean func. 99% 98% 98% 98% 98% 97% 97% 96% 96% 95% 94%

cm152

nc 30 29 28 27 26 25 24 23 22 21 20

succ.rate 100% 100% 98% 96% 91% 84% 57% 34% 6% 0% -

best ng 21 22 22 21 21 21 21 21 22 - -

mean ne 1.9 2.2 2.7 3.8 3.8 4.8 6.5 6.6 8.0 - -

mean func. 100% 100% 99% 99% 99% 99% 98% 97% 95% 94% 92%

t481

nc 30 29 28 27 26 25 24 23 22 21 20

succ.rate 62% 61% 53% 39% 25% 32% 15% 12% 0% 0% -

best ng 21 22 21 22 21 21 21 21 - - -

mean ne 11.1 11.7 10.6 12.6 12.6 12.7 14.7 16.3 - - -

mean func. 95% 95% 95% 93% 91% 91% 90% 88% 86% 86% 84%

Table II gives the parameters of the best discovered circuits.

The ng column denotes the number of gates. Other columns

are devoted to the best, worst and mean power consumption

and area. These values were calculated by the SIS tool after

mapping the evolved circuits to a reference gate set. We can

observe that the power consumption significantly varies for

resulting circuits. The best evolved circuits are significantly

better in comparison with conventionally optimized circuits

(see Table III).

TABLE II
PARAMETERS OF THE BEST EVOLVED SINGLE-OUTPUT CIRCUITS

power [uW] area

circ ng best worst mean best worst mean

maj9 30 170.2 259.8 216.0 ± 15.3 69.0 101.0 83.2 ± 5.0

cm152 21 143.4 460.1 235.5 ± 44.9 50.0 107.0 72.9 ± 9.0

sym9 23 432.1 1598.0 739.7 ± 179.1 115.0 165.0 138.4 ± 10.1

t481 21 197.1 871.4 303.2 ± 69.3 56.0 135.0 76.2 ± 10.0

Figure 1 shows the trade off between the number of gates

and power consumption for approximate circuits where the

number of gates decreases from the amount needed to obtain



TABLE III
RESULTS OF CONVENTIONAL OPTIMIZATION BY SIS

Circuit PI PO gates power [uW]

maj9 9 1 42 254.8

cm152 11 1 22 152.2

sym9 9 1 156 1148.0

t481 16 1 23 154.8

a fully functional circuit down to 1 gate. The best, worst

and mean functionality calculated from 100 independent runs

is given in percentage points. Similarly, the best, worst and

mean reduction of power consumption is provided. As a

reference value (0%) we took the average power consumption

calculated from 10 fully functional circuits with the lowest

power consumption. In this interpretation, 100% represents

a circuit consuming 0 uW. The cross symbol indicates fully

functional solutions. The circle symbol indicates a reduction

in power consumption for a circuit which exhibits the highest

fitness for a given number of gates.

In order to observe basic parameters of approximate circuits

after removing 0%. . .90% gates we constructed Table IV.

From all the evolved circuits we selected those circuits which

show the highest functionality for a given reduction. If there

are two or more circuits sharing the same functionality, power

consumption was taken as the second criterion. Power reduc-

tion is computed with respect to the circuit given in the first

column (reference). It has to be noted that even more impres-

sive power reductions could be obtained if reference solutions

were taken from Table III. The negative sign means that the

corresponding circuit exhibits higher power consumption with

respect to the reference circuit. This situation occurs when the

switching activity has higher impact on the power consumption

(in this case negative) than the reduction of number of gates.

B. Multiple Output Circuits

For multiple-output circuits more options exist to define the

fitness function. For example, the Sum of Hamming Distances

(SHD as defined in eq 1) is not well suited for evolution

of arithmetic circuits since it does not take into account the

importance of bits at circuit outputs. Reaching almost perfect

fitness value (e.g. no2
ni −1) may even imply a big worst case

error because the MSB is incorrectly computed.

Hence we will compare SHD with another approach. We

will calculate the sum of absolute differences (SAD) between

the output vectors and required vectors. All vectors will be

interpreted as unsigned integers. The approach is, in fact,

expressed by eq. 2 where all possible input combinations are

utilized to generate test cases. The goal is to compare SHD

and SAD in terms of the computational cost and the quality of

reachable circuits for combinational 3-bit, 3.5-bit (i.e. 3 bits

+ 4 bits) and 4-bit adders.

The CGP is set with sufficiently redundant resources, i.e.

nr = 1, nc = 20 for 3-bit addres, 25 for 3.5 adder and 30 for

4-bit adders, l = nc, λ = 4, h = 5%. The set of gates is chosen

as Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}. The

initial population is always generated randomly. CGP-based
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Fig. 1. Functionality with respect to power reduction for single-output
circuits.

design is repeated 100 times for each adder and the fitness

criterion (SHD and SAD). The evolution is terminated after

reaching the predefined number of evaluations which is given

in Table V.

First we used CGP to find the smallest adders under decreas-

ing, but still sufficient resources. Table VI shows statistical

results for SHD with the same meaning of rows as in Table I.

One can again observe that the success rate decreases with

decreasing redundant resources. Table VII provides the same

statistical evaluation for the SAD-based fitness function. It can

be stated that it is more difficult and more time consuming

to find a correct adder using SAD in comparison with SHD.

However, we will see later that it still makes sense to utilize

SAD in the fitness function.



TABLE IV
ACHIEVABLE POWER REDUCTION FOR SINGLE-OUTPUT CIRCUITS.

maj9

removed 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

gates (30) (27) (24) (21) (18) (15) (12) (9) (6) (3)

func. 100% 98% 97% 92% 90% 86% 83% 80% 75% 71%

power 0% -4% 12% 21% 34% 42% 55% 67% 79% 89%

saving (170) (177) (148) (133) (110) (97) (75) (55) (35) (18)

cm152

removed 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

gates (21) (18) (16) (14) (12) (10) (8) (6) (4) (2)

func. 100% 93% 89% 87% 81% 76% 73% 68% 64% 59%

power 0% -1% 25% 24% 38% 55% 58% 73% 82% 90%

saving (143) (145) (106) (107) (87) (63) (59) (37) (25) (13)

sym9

removed 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

gates (23) (20) (18) (16) (13) (11) (9) (6) (4) (2)

func. 100% 93% 92% 90% 88% 87% 85% 83% 83% 82%

power 0% 19% 20% 34% 65% 68% 75% 91% 93% 97%

saving (316) (255) (249) (206) (109) (100) (77) (27) (19) (8)

t481

removed 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

gates (21) (18) (16) (14) (12) (10) (8) (6) (4) (2)

func. 100% 90% 85% 80% 76% 76% 72% 69% 67% 65%

power 0% 23% 33% 53% 68% 68% 77% 83% 86% 95%

saving (240) (183) (161) (113) (74) (76) (53) (38) (33) (11)

TABLE V
ALLOWED EVALUATIONS (×10

6) IN A SINGLE CGP RUN

Adder SHD SAD

3 × 3 10 100

4 × 3 50 500

4 × 4 100 1000

Table VIII summarizes the parameters of the best-evolved

adders under SHD and SAD-based fitness functions. Columns

give the number of gates and the the best, worst and mean

power consumption and area. Both fitness functions led to the

same (and probably minimal) solutions. The area and power

consumption statistics are very similar.

In order to observe basic parameters of approximate circuits

when resources are reduced by 10%. . .90%, we constructed

Table IX and X. From all the evolved circuits we selected

those circuits which show the highest functionality for a given

reduction. Additional metrics were included to the tables to

easily compare both approaches. Table IX contains the fSAD

row which gives the functionality according to the SAD-

based fitness function. The Avgad is the average absolute error

calculated from all incorrectly computed vectors. The Maxad

denotes the worst case error a particular adder will produce

for at least one input combination. The errs is the percentage

of inputs vectors which an incorrect output is calculated for.

Figures 2 and 3 show the trade off between the number of

gates and power consumption for approximate adders where

the number of gates decreases from the amount needed to

TABLE VI
EVOLUTIONARY DESIGN OF ADDERS WITH THE SHD-BASED FITNESS

FUNCTION

adder 3,3

nc 20 19 18 17 16 15 14 13 12 11 10 9 8 7

succ.rate 100% 100% 100% 100% 100% 99% 97% 90% 79% - - - - -

best ng 12 12 12 12 12 12 12 12 12 - - - - -

mean ne 0.2 0.1 0.2 0.2 0.3 0.3 0.6 0.7 1.3 - - - - -

mean f. 100% 100% 100% 100% 100% 99% 99% 99% 99% 96% 95% 92% 89% 87%

adder 3,4

nc 25 24 23 22 21 20 19 18 17 16 15 14 13 12

succ.rate 100% 100% 100% 100% 98% 100% 98% 98% 92% 84% 62% 50% - -

best ng 14 14 14 14 14 14 14 14 14 14 14 14 - -

mean ne 0.3 0.3 0.3 0.5 0.6 0.7 0.5 1.0 1.5 2.6 1.9 5.3 - -

mean f. 100% 100% 100% 100% 99% 100% 99% 99% 99% 99% 99% 98% 96% 94%

adder 4,4

nc 30 29 28 27 26 25 24 23 22 21 20 19 18 17

succ.rate 100% 100% 100% 100% 100% 100% 100% 100% 99% 98% 93% 84% 57% 46%

best ng 17 17 17 17 17 17 17 17 17 17 17 17 17 17

mean ne 0.8 0.8 0.9 0.9 1.2 1.2 1.4 1.6 1.8 2.6 3.5 4.2 4.8 11.4

mean f. 100% 100% 100% 100% 100% 100% 100% 100% 99% 99% 99% 99% 99% 98%

TABLE VII
EVOLUTIONARY DESIGN OF ADDERS WITH THE SAD-BASED FITNESS

FUNCTION

adder 3,3 (SAD)

nc 20 19 18 17 16 15 14 13 12 11 10 9

succ.rate 46% 58% 24% 24% 12% 12% 8% 0% 0% 0% 0% 0%

best ng 12 12 12 12 12 12 12 - - - - -

mean ne 36 41 39 44 52 49 61 - - - - -

mean func. 99% 99% 98% 98% 98% 98% 98% 97% 97% 97% 97% 95%

adder 3,4 (SAD)

nc 25 24 23 22 21 20 19 18 17 16 15 14

succ.rate 69% 66% 60% 44% 28% 16% 24% 2% 2% 0% 0% 0%

best ng 14 14 14 14 14 14 14 14 14 - - -

mean ne 120 117 158 167 210 162 139 122 216 - - -

mean func. 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 98% 98%

addder 4,4 (SAD)

nc 30 29 28 27 26 25 24 23 22 21 20 19

succ.rate 48% 44% 20% 26% 18% 6% 16% 2% 8% 0% 0% 0%

best ng 17 17 17 17 17 17 17 17 17 - - -

mean ne 417 396 195 474 282 388 389 342 640 - - -

mean func. 99% 99% 99% 99% 99% 99% 98% 98% 98% 98% 98% 97%

obtain a fully functional circuit down to 1 gate.

The main conclusion is that the SHD-based fitness function

leads to adders showing on average four times higher (mean

as well as absolute) error in comparison with the adders

evolved using the SAD-based fitness function. The maxad

also indicates that the adders evolved using SHD even exhibit

some errors in MSB which is not acceptable in practice. This

fact is demonstrated by error tables given in Figure 4. The

error tables were constructed for the best evolved 3-bit adders

which occupy 50% resources needed for constructing a fully

functional 3-bit adder.

V. CONCLUSIONS

We proposed a CGP-based automated design method that

is able to address the problem of the evolutionary design of

digital approximate circuits consisting of elementary gates.



TABLE VIII
THE BEST-EVOLVED ADDERS UNDER SHD AND SAD-BASED FITNESS

FUNCTIONS

power [uW] area

circ gates best worst mean best worst mean

adder 3,3 (SHD) 12 108.5 372.5 196.9 ± 35.8 41.0 73.0 55.1 ± 5.8

adder 3,4 (SHD) 14 143.5 443.7 241.6 ± 44.9 52.0 82.0 65.0 ± 5.9

adder 4,4 (SHD) 17 191.1 681.4 301.0 ± 55.3 62.0 102.0 77.6 ± 7.2

adder 3,3 (SAD) 12 118.4 339.4 193.3 ± 35.6 41.0 69.0 54.0 ± 5.8

adder 3,4 (SAD) 14 163.0 556.7 242.2 ± 50.4 54.0 81.0 64.9 ± 5.9

adder 4,4 (SAD) 17 201.5 570.0 305.8 ± 65.7 60.0 102.0 76.9 ± 7.1
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Fig. 2. SHD: Functionality w.r.t. power reduction for adders

Experimental results clearly showed that SHD-based fitness

function, traditionally used by the evolvable hardware commu-

nity, is not suitable for evolution of approximate adders since

the mean error of resulting approximate adders is significantly

higher in comparison with the SAD-based fitness function. We

expect that the same holds for other circuits where bit positions

are significant. Unfortunately, the SAD-based approach is

more computationally demanding than SHD.

The proposed method provides many alternative solutions

(in terms of the trade off between functionality and power con-

sumption) which is not possible using existing conventional

methods. This paper did not address the scalability problem

of evolutionary design. More complex arithmetic circuits can

be constructed by composing smaller approximate circuits as
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Fig. 3. SAD: Functionality w.r.t. power reduction for adders

Fig. 4. Best evolved 3-bit adders occupying 50% area and their error tables

demonstrated e.g. in [6]. Our future research will be focused

on evolutionary design of complex general approximate cir-

cuits. We plan to utilize functional level evolution, incremental

evolution, equivalence checking and other approaches that

have been used by the evolvable hardware community so far.
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TABLE IX
SHD: ACHIEVABLE POWER REDUCTION FOR ADDERS.

adder 3,3

# 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

gates (12) (10) (9) (8) (7) (6) (4) (3) (2) (1)

func. 100% 95% 93% 92% 90% 87% 81% 78% 75% 68%

power 0% -4% 11% 17% 22% 34% 59% 65% 76% 88%

saving (108) (113) (95) (89) (84) (71) (44) (37) (25) (12)

fSAD 100% 93% 93% 90% 85% 84% 79% 82% 86% 87%

avgad 0.0 6.4 5.3 6.0 6.5 5.7 5.0 4.8 3.4 2.7

maxad 0 8 8 8 8 8 8 8 6 4

errs 0% 15% 18% 25% 34% 43% 65% 57% 62% 75%

adder 3,4

# 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

gates (14) (12) (11) (9) (8) (7) (5) (4) (2) (1)

func. 100% 95% 93% 90% 86% 85% 80% 77% 70% 65%

power 0% 9% 18% 20% 43% 39% 58% 69% 82% 91%

saving (143) (129) (116) (114) (80) (87) (60) (43) (25) (12)

fSAD 100% 98% 96% 86% 95% 94% 94% 93% 75% 75%

avgad 0.0 4.0 5.3 9.4 4.4 4.0 3.4 3.4 9.2 8.4

maxad 0 4 8 16 10 4 6 6 16 16

errs 0% 12% 18% 45% 34% 43% 53% 62% 85% 92%

adder 4,4

# 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

gates (17) (15) (13) (11) (10) (8) (6) (5) (3) (1)

func. 100% 95% 92% 90% 88% 85% 80% 77% 72% 65%

power 0% -3% 17% 25% 43% 48% 62% 70% 80% 93%

saving (191) (197) (156) (143) (107) (99) (71) (56) (37) (12)

fSAD 100% 93% 92% 85% 84% 83% 83% 86% 86% 87%

avgad 0.0 12.1 8.7 11.7 11.0 9.3 7.8 6.4 6.1 4.7

maxad 0 16 20 20 20 20 16 12 14 10

errs 0% 16% 25% 39% 43% 57% 67% 67% 71% 87%

University of Technology project FIT-S-11-1 and the IT4Innovations

Centre of Excellence CZ.1.05/1.1.00/02.0070.
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