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Abstract— In this paper we propose a method for the
extraction of data from network flow and a contextual sepa-
ration of partial connections using a set of network metrics
that create a signature defining the connection behavior. We
begin with the definition of the input dataset of captured
communication and the process of extraction metrics from
separated connections. Then we define the set of metrics
included in the final behavioral signature. The second part
of the article describes experiments performed with a state-
of-the-art set of network metrics with comparison to our
proposed experimental set. The paper concludes with the
results of our experiments.
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1. Introduction
There is considerable interest in developing novel de-

tection methods based on new metrics for the description
of network flow to identify connection characteristics, for
examples to permit early identification of emerging secu-
rity incidents, rapid detection of infections within internal
networks, or instantaneous prevention of forming attacks.
Buffer overflows continue to be one of the most com-
mon vulnerabilities prevalent today, dominating the field
of undetected and most dangerous "zero-day" attacks. This
factor has motivated researchers to create more or less
sophisticated defenses addressing this threat. The first line
of defense is based on memory randomization (ASR), which
unfortunately makes the attack harder to achieve, but it is
still possible to find a way of offsetting the current process
address. The second line of defense is based on automated
signature generation techniques that generate filters to block
network traffic similar to an attack payload signature. Un-
fortunately, polymorphic attacks can evade these signatures,
and hence subsequent research has focused on behavioral
signatures that have favored the development of several
data-mining methods defining sets of network metrics de-
scribing the attack vector by the features of its behavior.
These methods use either the existing NetFlow standard or
network traffic packets. Several previous research studies
left NetFlow to create their own set of network metrics,
which brought more information and context in analyzed
connections. Recognizing the importance of the quality of
network metrics for influence on successful detection, this

paper proposes a new set of metrics with high detection
and a low false positive ratio. It is expected that detection
algorithms based on these new network behavioral metrics
will outperform existing methods and will be applicable to
a wider range of intrusion detection and prevention systems.

Our primary goal is to create a network based system
for online defense against zero-day buffer overflow attacks
in the production environment. We described the reduction
of attack types to buffer overflow in a previous article [1].
The secondary goal of this research is (a) to design the
architecture of a detection framework that will enhance the
overall network security level with the ability to learn new
behaviors of attacks without human intervention by using
expert knowledge from Honeypot (or similar) systems; (b)
to find the most suitable set of metrics that will successfully
describe the behavior of attacks in network traffic and will
significantly increase the detection rate and lower the false
positive rate.

In our previous article [1] we proposed the idea of
framework architecture that would be used for the detec-
tion of various network threats. The paper presented novel
Automated Intrusion Prevention System (AIPS) which uses
honeypot systems for the detection of new attacks and
automatic generation of behavioral signatures based on net-
work flow metrics. We have successfully experimented with
the architecture of the AIPS system and have defined 112
metrics (recently updated to 167) divided into five categories
according to their nature. These metrics are used to describe
a properties of a detected attack, not upon the fingerprint of
a common signature, but based on its behavior.

In this article we provide a definition of the method
used for generating network behavioral signatures from a set
of network security metrics – Advanced Security Network
Metrics (ASNM) consisting of 167 metrics enhancing the
ability of detecting potential attacks from network traffic.

The paper is organized as follows. Section 2 discusses
related work in network security datasets and detection
metrics. In Section 3 we describe a method used for signature
generation and in Section 4 a description of metrics set.
Section 5 presents experiments performed on two sets of
metrics and Section 6 assesses the results of these experi-
ments. Section 7 contains the conclusion of this paper.



2. Related Work
Since 1999, KDD’99[2] dataset, based on DARPA’98 IDS

evaluation program, has been used for evaluating new intru-
sion detection methods based on analyzing network traffic.
The training dataset consists of approximately 4.9 million
single connection vectors, each labeled as either normal or
attack, containing 41 features per connection record. The
dataset is criticized [3] mainly because it does not seems to
be similar to traffic in real networks, and also there are some
critiques of attack taxonomies and performance issues. As
a result, many researches have proposed new measures to
overcome existing deficiencies.

DARPA IDS evaluation dataset [4] was created for the
purpose of training and testing the intrusion detectors. How-
ever, in the dataset, all traffic was generated by software
that is not publicly available and hence it is not possible to
determine how accurate the background traffic inserted into
the evaluation is. Also, evaluation criteria do not account for
system resources used, ease of use, or what type of system
it is.

The 2005 Moore sets [5] of data are intended to aid in the
assessment of classification work. A number of data sets are
described; each data set consists of a number of objects and
each object is described by a group of features (also referred
to as discriminators). Leveraged by a quantity of hand-
classified data, each object within each data set represents
a single flow of TCP packets between client and server.
Features for each object consist of (application-centrist)
classification derived elsewhere and a number of features
derived as input to probabilistic classification techniques.
In the classification, applications with similar dynamics are
classified into the same class. A naive Bayesian classificator
is used in the algorithm in which the Bayes formula is
used to calculate posterior probability of a testing sample
and selects the largest probability class as the classification
result. A total of approximately 200 features of a network
flow is used to train the model and a kernel-based function
is used to estimate the distribution function [6]. The total
accuracy is about 95% in the dimension of a flow number
being correctly classified and 84% in the dimension of the
flow size.

In our research, classifying IP traffic is crucial and it
is important to include general classification techniques to
our research for the classification of network attacks. The
survey paper [7] reviewed state of the art work in the
machine learning IP traffic classification in the period from
2004 to 2007. This paper created four categories of ma-
chine learning classification techniques, clustering approach,
supervised learning, hybrid, and comparisons and related
work approaches. Each category was reviewed according to
a number of requirements divided to offline and real-time
classification.

Auld et al., based on Bayesian method introduced in [6],
proposed the Bayesian Neutral Network method [8]. Com-

pared with the Bayesian method, it made the classification
correct rate rise to 99% on data from a single site for two
days, eight months apart.

In [9], a novel probabilistic approach was proposed that
uses the Markov chain for probabilistic modeling of ab-
normal events in network systems. The performance of the
proposed approach was evaluated through a set of exper-
iments using the above mentioned DARPA 2000 data set.
The proposed approach achieves high detection performance
while representing a level of attacks in stages.

None of these approaches can be used in a real time eval-
uation of network traffic due to performance issues or high
false-positive ratio. Only a little research has been done on
creating new network metrics for the behavioral description
of network attacks to raise the classification accuracy, which
makes this area still attractive for researchers.

3. Method Description
In this section we provide the abstract description of a

method used for the extraction of network connections and
generation of attacks signatures.

3.1 Used notation
We will use capital letters as labels for a set or constants in

most cases. Lower case notation will be used for an element
label or for an index label. By notation o[p] we mean the
property p of the object o. The notation S∗ or S+ means
the iteration of the set S or positive iteration of the set S,
respectively. Notation AB represents set A, which is a subset
of set B. For example sets WP and WC denote semantically
the same set, but these are constructed of different items at
a different level of abstraction. In the first case items are a
subset of set P and in the second case items are a subset of
set C, respectively.

3.2 Principle of the method
The method of our approach is based on the extraction

of various types of properties from each analyzed
TCP connection. We suppose having all packets set
P = {pi}, i ∈ {1, . . . , N}, where N represents all packets
count. The identification of each packet is represented
by its index i. A packet pi can be expressed as a tuple
pi = (id, t, size, ethsrc, ethdst, tcpsport, tcpdport, tcpsum,
tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp, iplen,
ipoff , ipttl, ipp, ipsum, ipsrc, ipdst, data, iptos). Symbols
used in the packet tuple are described in Table 1.

TCP connection c is represented by tuple c =
(ts, te, idS , idSA, idA, idFA, ps, pd, ips, ipd, Ps, Pd). The in-
terpretation of the symbols used in tuple is briefly described
in Table 2. The source part of the TCP connection is the
one with the initiation of the connection and the destination
part is the opposite part of the connection.

The set of all packets can be interpreted also as a set
of all TCP connections C = {c1, . . . , cM}, where M is



Table 1: Symbols used in the packet tuple.
symbol meaning
id ∈ ℵ0 Id of the packet.
t ∈ T Timestamp of the packet capture.

size ∈ ℵ Size in Bytes of the whole Ethernet
frame which wraps the IP packet.

ethsrc ∈ {0, . . . , 248 − 1} Source MAC address of the Ether-
net frame.

ethdst ∈ {0, . . . , 248 − 1} Destination MAC address of the
Ethernet frame.

tcpsport ∈ {0, . . . , 216 − 1} Source port of the packet.
tcpdport ∈ {0, . . . , 216 − 1} Destination port of the packet.
tcpsum ∈ {0, . . . , 216 − 1} TCP Checksum of the header.

tcpseq ∈ {0, . . . , 232 − 1} TCP sequence number of the
packet.

tcpack ∈ {0, . . . , 232 − 1} TCP acknowledgment number of
the packet.

tcpoff ∈ {0, . . . , 28 − 1} TCP offset and reserved fields to-
gether.

tcpflags ∈ {0, . . . , 28 − 1} TCP control bits.
tcpwin ∈ {0, . . . , 216 − 1} TCP window field.
tcpurp ∈ {0, . . . , 216 − 1} TCP urgent pointer field.

iplen ∈ {0, . . . , 216 − 1} Size in Bytes of the whole IP
packet with IP header.

ipoff ∈ {0, . . . , 213 − 1} IP offset field.
ipttl ∈ {0, . . . , 28 − 1} IP time to live field.
ipp ∈ {0, . . . , 28 − 1} IP protocol field.

ipsum ∈ {0, . . . , 216 − 1} IP checksum of the header.
ipsrc ∈ {0, . . . , 232 − 1} Source IP address of the packet.

ipdst ∈ {0, . . . , 232 − 1} Destination IP address of the
packet.

data ∈ {0, . . . , 28 − 1}∗ Payload of the packet.
iptos ∈ {0, . . . , 28 − 1} IP type of service field.

Table 2: Symbols used in the TCP connection tuple.
symbol meaning
ts ∈ T Timestamp of the connection start.
te ∈ T Timestamp of the connection end.

idS ∈ I Id of the first packet which contains
SYN flag of TCP 3WH1.

idSA ∈ I Id of the first packet which contains
SYN, ACK flags of TCP 3WH.

idA ∈ I Id of the last packet which contains ACK
flag of TCP 3WH.

idFA ∈ I Id of the packet pi which contains FIN,
ACK flags.

ps ∈ {0, . . . , 216 − 1} Source port of the TCP connection.
pd ∈ {0, . . . , 216 − 1} Destination port of the TCP connection.

ips ∈ {0, . . . , 232 − 1} Source IP address of the TCP connec-
tion.

ipd ∈ {0, . . . , 232 − 1} Destination IP address of the TCP con-
nection.

Ps ⊂ P Source packet set of the TCP connec-
tion.

Pd ⊂ P Destination packet set of the TCP con-
nection.

the number of TCP connections, which we can identify in
the P and N is the number of all packets in set P . The
minimum packets count, which is necessary to identify the
TCP connection, is three packets which are used to establish
a TCP connection according to TCP specifications. These
three or more packets must contain the same IP addresses

(ipsrc, ipdst), ports (tcpsport, tcpdport) and fields tcpseq ,
tcpack corresponding to a three way handshake specification
stated in RFC 7932. The number of all TCP connections
identified in P is M ≤ N/3.

Then we define sliding window WP
j as a subset of all

packets set P :

WP
j ⊆ P, j ∈ {1 + |Cs|, . . . ,M − |Ce|}, (1)

where M is the number of all TCP connections identified in
P , index j is the position of the sliding window in the set of
all TCP connections C and |Cs|, |Ce| is the number of TCP
connections found in the first half of the sliding window with
an initial position W1+|Cs| and the second half of the sliding
window with finite position WM−|Ce|, respectively. It should
be noted taht the sliding window WP

j always represents
continuous subset of packets bounded by a specified time
interval tsw in the time domain T ⊂ <+ instantiated by
timestamps with a floating point part. Interval tsw represents
a time bounded notation of the size of a sliding window W .

The next statement which we can proclaim about sliding
window is that we can interpret it as subset of all TCP
connection set:

WC
j ⊆ C, WC

j = {cI , . . . , cL}, I ≤ L ≤M. (2)

This notation of the sliding window we denote as the
connection notation of the sliding window WC

j . Note L− I
can be different for various positions of the sliding window
for the same set C because of the time boundary of the
sliding window, not boundary specified by n-connections.
The next fact about each particular TCP connection ck is an
unambiguous association of ck to particular sliding window
WC

j . We can interpret the start time ts of the TCP connection
ck as a center of the sliding window WP

j . We can also denote
a shift of the sliding window ∆(WP

j ) is always defined by
start time differences of two consecutive TCP connections
in C:

∆(WP
j ) = ck+1[ts]− ck[ts],

k ∈ {1 + |Cs|, . . . ,M − |Ce| − 1}.
(3)

Next we define the context of the TCP connection, which
is a set of all connections in a particular sliding window WC

j

without an analyzed TCP connection ck:

Kck
= {c1, . . . , cn} = {WC

k \ ck}. (4)

Defined terms are shown in figure 1. In this figure the
x axis displays time and in the y axis, TCP connections
are shown in the order of their occurrences. Packets are
represented by small squares and TCP connections are
represented by a rectangular boundary of particular packets.
A bold line and font is used for depicting an analyzed TCP
connection ck, which has an associated sliding window Wk

and context Kck. TCP connections, which are part of the

2URL http://www.ietf.org/rfc/rfc793.txt, page 30



sliding window Wk, are drawn by full line boundary and
TCP connections, which are not part of this sliding window,
are drawn by a dashed line boundary.
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Fig. 1: Sliding window and context of the first analyzed
TCP connection ck.

3.3 Metrics extraction
We identify all TCP connections set C in a set of all

packets P and next we perform metrics extraction for each
TCP connection from a time bounded subset of C in the
order of their beginnings. A time bounded subset is identified
by CB and is defined because a metrics extraction process is
performed only for TCP connections with a complete context
and this set states:

CB = {ci} ⊂ C,

∀i : ci[ts] ≥ tsw

2
∧ ci[ts] ≤

(
pl[t]−

tsw

2

)
,

(5)

where pl ∈ P represents a packet with the latest timestamp.
The metrics extraction process is defined as an advanced

process of signature computation from all packets of ana-
lyzed TCP connection and its context.

We define metric m as a tuple consisting of natural or real
numbers or an enumerated set of finite symbolic literals:

m = (e0, . . . ,en), n ∈ ℵ0,

ei ∈ ℵ | ei ∈ < | ei ∈Γ+, i ∈ {0, . . . , n},
Γ = {a− z, A− Z, 0− 9}.

(6)

The input of the metrics extraction process is sliding
window WC

j , TCP connection ck with metainformations of
its associated packets. The output of the process is the set

of all extracted metrics Mk = {mk
1 , mk

2 , . . . ,mk
D}, where

D is the number of all defined metrics and mk
i for i ∈

{1, . . . , D} contains a tuple of values specific for analyzed
input TCP connection ck and its sliding window WC

j .

3.4 Functions for metrics extraction
Metrics for a particular connection ck are extracted by

several functions with a very similar input, which in all
cases, includes an analyzed TCP connection ck. The other
part of the input may be, in some cases, context Kck

of
the TCP connection ck. There are exactly 30 functions used
for metrics extraction and 7 of them uses the context of
the TCP connection. Some functions return more than one
metric when these can be directly extracted. Other functions
are parametrized by various parameters as a direction of the
TCP connection, order and type of polynomial, thresholds
of the data size or packet count, etc.

One metric extraction function f declaration has the
following form:

mk = f(ck, Kck
, arg1, . . . , argn), (7)

where mk is the set of values of one defined metric m
for input TCP connection ck. Kck

is context of input TCP
connection and arg1, . . . , argn are additional arguments of
the function f .

4. Metrics Definition
All metrics were defined in order to describe properties,

process and behavior of network attacks or legitimate TCP
connections. By using these metrics we are able to identify
an attack with a higher probability. For the purpose of
the best relevant signature of the TCP connections we use
167 metrics as signature. These 167 metrics are in many
cases, a result of reasonable parametrization of base metrics
functions. Since our previous article [1] we have slightly
changed the categorization of the set of all metrics and
have defined several new metrics with an emphasis on the
behavior of a TCP connection. New types of our metrics
set are depicted in Table 3 with a number of them in each
category. We decided to determine the naming of categories
of metrics according to their principles, not according to
static data representation. Vector and polynomial metrics
from our previous article [1] were divided into behavioral
and distributed metrics categories. The list of all metrics
with regard to the categorization, is introduced in master’s
thesis [10].

4.1 Statistical metrics
In this category of proposed metrics statistic properties

of TCP connections are identified. All packets of the TCP
connection were considered in order to determine count,
mode, median, mean, standard deviation, ratios of some
header fields of packets or the packets themselves. This



Table 3: Distribution of Metrics.
metric count
Statistical 50
Dynamic 32
Localization 8
Distributed 34
Behavioral 43

category of metrics partially uses a time representation of
packets occurrences contrary to the dynamic category defi-
nition. Therefore, it includes particularly dynamic properties
of the analyzed TCP connection, but without any context
of it. Most of the metrics in this category also distinguish
inbound and outbound packets of analyzed TCP connection.
In total, 50 statistical metrics were defined.

4.2 Dynamic metrics
Dynamic metrics were defined in order to examine dy-

namic properties of the analyzed TCP connection and trans-
fer channel such as speed or error rate. These properties
can be real or simulated. Fourteen of the metrics consider
the context of an analyzed TCP connection. The difference
between some of the statistic and dynamic metrics from
a dynamic view can be demonstrated on two instances
of the same TCP connection, which performs the same
packet transfers, but in different context conditions and
with different packet retrasmitions and attempts to start or
finish the TCP connection. There were 32 dynamic metrics
defined in total. Many of them distinguish between inbound
and outbound direction of the packets and consider statistic
properties of the packets and their sizes as mentioned in
statistical metrics.

4.3 Localization metrics
The principal character of localization metrics category

is that it contains static properties of the TCP connection.
These properties represent the localization of participating
machines and their ports used for communication. In some
metrics localization is expressed indirectly by a flag, which
distinguishes whether participating machines lie in a local
network or not. Metrics included in this category do not
consider the context of the analyzed TCP connection, but
they distinguish a direction of the analyzed TCP connection.
We defined 8 localization metrics.

4.4 Distributed metrics
The characteristic property of distributed metrics category

is the fact that they distribute packets or their lengths to
a fixed number of intervals per unit time specified by a
logarithmic scale (1s, 4s, 8s, 32s, 64s). A logarithmic scale
of fixed time intervals was proposed because of a better
performance of used classification methods. The next prin-
cipal property of this category is vector representation. All
these metrics are supposed to work within the context of an

analyzed TCP connection. Altogether, we defined 34 metrics
in this category which are a result of parametrization of 2
functions, which accepts parameters as unit time, threshold,
direction and the context of an analyzed TCP connection.

4.5 Behavioral metrics
Behavioral metrics are a set of metrics based on the

description of the properties directly associated with TCP
connection behavior. Examples include legal or illegal con-
nection closing, the number of flows at defined time inter-
vals, polynomial approximation of the length of packets in
a time domain or in an index of occurrence domain. Since
our previous article [1] we have proposed new behavioral
metrics:
• count of mutual TCP flows of participating nodes before

an analyzed TCP connection bounded by a specified
time interval. It considers the context of an analyzed
TCP connection,

• count of new TCP flows after starting an analyzed
TCP connection. It also works within the context of
an analyzed TCP connection,

• coefficients of Fourier series in a trigonometric repre-
sentation with distinguished direction of an analyzed
TCP connection,

• standard deviation of time intervals between TCP con-
nections going on the same ports and IP addresses,

• standard deviation of time intervals between TCP con-
nections going on the same IP addresses,

• normalized products of the analyzed communication
with 1, . . . , n Gaussian curves with regard to direction.

We defined 43 behavioral metrics. Most of them use the
direction of the analyzed TCP connection and 6 of them
consider the context.

5. Experiments description
The performance of our behavioral metrics was evaluated

in comparison with discriminators suggested by [5]. The
authors of this paper considered only TCP connections to
perform extraction of discriminators in the same way we
did. So there are equivalent conditions for performance com-
parison between our suggested metrics and discriminators
suggested in the above mentioned work. There were 248
discriminators defined, including all items of vector types.
Unlike their research we considered the whole particular
vector metric as one. In their work, each TCP flow is
described by three modes according to packet transmissions:
idle, interactive and bulk. Many discriminators use these
three modes as their input. The authors did not mention any
explicit categorization of defined discriminators. The only
possible categorization can implicitly follow from a direction
of the TCP flow. We also performed a similar analysis of
discriminators and metrics definition. We discovered that
there is approximately 20% of discriminators’ definitions



principally similar or the same as in the metrics case.
Unique properties of discriminators’ definitions include, for
example, the using of quartiles for a statistical analysis,
analysis of selective acknowledgment of TCP, a number of
window probe indication, pushed or duplicate packets etc.

A dataset CDX 2009 was used for these
experiments, which was generated by Sangster et
al. in [11]. This dataset is available from URL:
https://www.itoc.usma.edu/research/dataset/. It contains
data captured by NSA, data captured outside of the
West Point network border (in TCP dump format) and
snort intrusion prevention log as relevant sources for our
experiments.

The CDX 2009 dataset was created during the network
warfare competition, in which one of the goals was to
generate a labeled dataset. By labeled dataset, the authors
mean TCP dump traces of all simulated communications and
snort log with information about occurrences of intrusions.
Network infrastructure contained 4 servers with 4 vulnerable
services (one per each server). These services with IP
addresses of their hosted servers are described in Table 4.
Two types of IP addresses are shown in this table:
• internal IP addresses – corresponding to snort log,
• external IP addresses – corresponding to a TCP dump

network captured outside the West Point network bor-
der.

This fact has to be considered in the process of matching
snort log entries with a TCP dump capture.

Table 4: List of CDX 2009 vulnerable servers.
service OS internal IP external IP

Postfix Email FreeBSD 7.204.241.161 10.1.60.25
Apache Web Server Fedora 10 154.241.88.201 10.1.60.187

OpenFire Chat FreeBSD 180.242.137.181 10.1.60.73
BIND DNS FreeBSD 65.190.233.37 10.1.60.5

We noticed that specific versions of services described in
[11] were not announced. Since this fact was not crucial for
our research, it was of no concern to us.

It was discovered that the snort log can be associated only
with data capture outside of the West Point network border
and only with significant timestamps differences – approx-
imately 930 days. We did not find any association between
the snort log and data capture performed by the National
Security Agency. We focused only on buffer overflow attacks
found in a log from snort IDS and a match with the packets
contained in the West Point network border capture was
performed. It should be noted that buffer overflow attacks
were performed only on two services – Postfix Email and
Apache Web Server. An example of the buffer overflow snort
log entry:

[**] [124:4:1] (smtp) Attempted specific command

buffer overflow: HELO, 2320 chars [**]

[Priority: 3]

11/09-14:22:25.794792

10.2.195.251:2792 -> 7.204.241.161:25

TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:2360

***AP*** Seq: 0x68750738 Ack: 0x24941B59

Win: 0xFDC0 TcpLen: 20.

We used IP addresses (5th row), ports (5th row), time of
occurrence (4th row) and TCP sequence and acknowledg-
ment numbers (7th row) as information to match the snort
log entries with particular TCP connections identified in TCP
dump traces.

Despite all efforts, there were exactly 44 buffer overflow
attacks matched out of all 65, and these identified attacks
were used as expert knowledge for the data mining process.
In order to correctly match snort entries, it was necessary
to remap IP addresses of the internal to external network
because a snort detection was realized in the internal network
and TCP dump data capture contains entries from outside the
IP address space.

Buffer overflow attacks, which were matched with data
capture, have their content only in two TCP dump files:
2009-04-21-07-47-35.dmp, 2009-04-21-07-47-35.dmp2. Due
to the enormous count of all packets (approximately 4
million) in all dump files, only two files were considered
which contained 1 538 182 packets. We also noticed that
network data density was increased in the time when attacks
were performed. Consequently, we made another reduction
of packets, which filters enough temporal neighborhood of
attacks occurrences. In the result, 204 953 packets for next
phases of our experiments were used.

The whole process of metrics and discriminators extrac-
tion with data mining comparison is illustrated in Figure
2. There are four segments and data flow direction from
top to bottom depicted in the figure. Empty boxes represent
data as input or output of some processes and filled ovals
represent working components which perform some action.
A working component takes input data and outputs output
data. The upper segment represents the input of the whole
experiment process and includes input data files: CDX 2009
TCP dump files and CDX 2009 snort log file. The CDX
2009 TCP dump files are the mutual input of both extraction
processes. The input of expert knowledge (CDX 2009 snort
log file) is directly provided to the metrics extraction process
and is indirectly bounded to extracted discriminators after
the end of metrics extraction process.

The left segment contains phases of discriminators extrac-
tion and the right segment contains the metrics extraction
process with expert knowledge processing.

5.1 Metrics extraction process
The metrics extraction process of the right segment in-

cludes a process described in subsection 3.3. An all packets
set P is represented by the input of CDX 2009 TCP dump
files, which are imported into the database by a DB importer
component. Next, an active component Connection extractor
performs the identification of all TCP connections set C
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Fig. 2: The Process of metrics extraction and assessment.

in all packet set P . The extraction of TCP connections
was followed by expert knowledge information processing,
which means matching of extracted TCP connections with
parsed snort log information. If a match occurred, the TCP
connection is labeled as an attack by the Attacks labeling
component. Then, metrics extraction is performed for each
TCP connection in C by the Metrics extractor component
and the result of this step are metrics values for each
TCP connection object in CSV file. It should be noted
that the metrics extraction process is independent of expert
knowledge information.

5.2 Discriminators extraction process
The input of this process is the same as in the metrics

extraction process. The component Flows creator performs
the identification of TCP connections by netdude tool3 and it

3URL: http://netdude.sourceforge.net/

creates a TCP dump file for each identified TCP connection.
These TCP dump files are used as an input for Discrim-
inator generator component, which performs extraction of
discriminators for each identified TCP connection. This com-
ponent performs equivalent operation as Metrics extractor
component in the process of metrics extraction. It generates
discriminators meta files which contain intermediate results
of discriminators values. These meta files are processed and
joined by the ARFF&CSV creator component into a CSV
file. After this step, the attack TCP connections are labeled,
which is performed by the the Attack labeling component.

5.3 Mining & assessment process

This process is depicted in the lower part of Figure 2.
Before this process takes place, it is necessary to make
an intersection between output CSV files of metrics and
discriminators extraction processes, which is performed by
the CSV entries intersector component. At the output of this
step there are metrics and discriminators of the same TCP
connections objects, so there are equivalent conditions for
the data mining process. Two intersected CSV files with an
equal number of entries are used as the input of the Mining
tool component and output consists of classification accuracy
and other results suitable for comparison.

It should be noted that we found 5 771 TCP connections
by our TCP connections extractor and 63 859 TCP con-
nections by the TCP demultiplexer from netdude framework
which is used by discriminators extraction. The main reason
is the fact that we consider only established TCP connections
because only an established TCP connection can perform
a buffer overflow attack. The intersection of metrics and
discriminators outputs contains 5 758 objects and 44 of
them represent attacks. This intersection was used in the
data mining process and, therefore, they were adjusted by
the same conditions for both metrics and discriminators
outputs with the same TCP connections entries. Thirteen
(13) established TCP connections were not found by the TCP
demultiplexer. The discrimination extraction was performed
using a source code available from the author’s web4. The
whole process of discriminators extraction itself was not
described in [5], so we deduced it from a source code
and README instructions. It was also necessary to debug
some functionality of provided tools. During the preparation
for discriminators extraction, there were some compatibility
issues caused by old versions of dependencies. We finally
used Linux Fedora 4 as the most suitable operating system
for the necessary operation.

4URL: http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers
/sigmetrics/index.html



6. Result of Experiments
We analyzed joined outputs of metrics and discriminators

extraction processes by the RapidMiner5 tool. Our training
model used the Naive Bayes classificator kernel. A stratified
sampling with 5-cross fold validation for every experiment
was performed. A feature selection component was used
which tries to select the most relevant attributes for final
model generation. We focused only on the accuracy evalu-
ation of particular metrics and discriminators. Our experi-
ments were adjusted for maximal classification accuracy of
input data. The best results were merged from both input
CSV files. In Figure 3 the best metrics and discriminators
(over 99.43% overall accuracy) are shown, sorted by the
overall accuracy. The names of discriminators consist of a
number and label defined in [5]. The names of metrics are
defined in [10]. The names of polynomial approximation
metrics consist of 5 parts: polynomial metric label, method
of approximation (indexes or time), order of polynomial,
direction and coefficient index. Fourier coefficient metrics’
names consist of the Fourier coefficient metric label, the
goniometric representation, the angle or the module, the di-
rection and the coefficient index. Gaussian products metrics’
names are a compound of the Gaussian metric label, the
number of Gaussian curves, the direction and the product
index (e.g. PolynomIndexes5OrdOut[1]).

We can see that the best classification accuracy for the
metrics sets was achieved by several polynomial approxi-
mation metrics. In most of these cases we achieved better
results by the output direction, but we were also able
to achieve interesting results with the input direction. A
good performance was also achieved by Gaussian curves
approximation and Fourier coefficients. The relevance in the
case of standard deviation of packets length in the output
direction (sigPktLenSrc) is also presented.

In the set of discriminators, the best results were achieved
by an average segment size discriminator in the direction
from client to server (avg_segm_size_a_b). It could be
caused by the fact that the exploit’s payload contains a huge
amount of data necessary to perform application buffer over-
flow and these data are segmented. Another distinguished
discriminator is the variance of bytes count in Ethernet or
IP datagram in the destination direction (var_data_wire_ab
and var_data_ip_a_b). This discriminator is equivalent to
average standard deviation metric of packet length in the
output direction and brings nearly equivalent results. Also,
the average window advertisement in the input direction
(avg_win_adv_b_a) holds relevant information potentially
useful in the process of classification.

We have successfully increased the detection rate by
0.9% from the previous state-of-the-art classification method
(99.0%) by extending the set of network metrics used for
classification.

5URL: http://rapid-i.com/content/view/181/190/lang,en/
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Fig. 3: List of metrics sorted by overall accuracy
(over 99.43%).

7. Conclusion
In this paper, we focused on defining the process of

extraction metrics from separated connections of captured
network traffic and consequently focused attention on the
experiments that proved the concept of a designed metrics
set. In described experiments we achieved 99.9% accuracy
of detecting buffer overflow attacks by combining an existing
proposed metrics set with our solution. Accuracy is highly
dependent on training samples parsed from captured network
traffic. The training and testing samples may be biased
towards a certain class of traffic. For example, valid com-
munication (according to the separation to valid and attack
connections) represents a large majority of the samples in
the testing dataset[6] (approximately 99.24%). The reason
to the high classification capability of fewer metrics is that
classification of buffer overflow attacks was highly predi-
cable due to the size of data in fragmented packets, which
caused the overflow and the nature of a valid communication
with a small number of fragmented packets.

Our future work focuses on extending the metrics set to
achieve a more sufficient results in the detection of buffer
overflow attacks. We plan to perform more experiments with
actual metric sets. The efficiency of the current detection



method was tested only on a small number of attacks. In the
near future, we plan to create a public detection set that will
create a challenge to the development of detection algorithms
in order to detect unknown attacks.
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