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Abstract

This paper evaluates the suitability of High Dynamic Range (HDR) imaging techniques for
Feature Point (FP) detection under demanding lighting conditions. The FPs are evaluated in
HDR, tone mapped HDR, and traditional Low Dynamic Range (LDR) images. Eleven global
and local tone mapping operators are evaluated and six widely used FP detectors are used in
the experiments (Harris, Shi-Tomasi, DoG, Fast Hessian, FAST, and BRISK). The distribution
and repeatability rate of FPs are studied under changes of camera viewpoint, camera distance,
and scene lighting. The results of the experiments show that current FP detectors cannot cope
with HDR images well. The best contemporary solution is thus tone mapping of HDR images
using a local tone mapper as a pre-processing step.

Keywords: Feature point detection, Interest point detection, Corner point detection, High
dynamic range imagery, Repeatability rate, Evaluation of tone mapping operators

1. Introduction

Many computer vision tasks, such as image analysis, registration and indexing, object track-
ing, 3D reconstruction, visual navigation (SLAM), etc. rely on the presence of low-level features
in images [1]. These features typically are blobs, edges, or points. In the case of points, these
include corner points, interest points, or most often Feature Points (FPs). These image points
usually correspond to some real points in the scene although some of them might correspond to
“deceiving phenomena”, such as reflections or shadow edges as well.

The detection of FPs is strongly dependent on the illumination of the scene at the moment
of image capture [2]. Demanding lighting conditions or wrong camera settings can cause FP
detectors to fail to detect many of the points. This is particularly true when dealing with
images of the natural world where the average luminance levels may vary approximately between
10−3 cd/m

2
(on a starlit night) and 106 cd/m

2
(on a sunny day), see [3]. Such a difference between

the luminance levels can generate a dynamic range of 1 : 109, or 30 stops1. When capturing
images under demanding lighting conditions, one has to carefully set the camera and arrange
the scene which is a limiting factor and sometimes cannot be performed completely successfully.
An alternative approach is to use High Dynamic Range (HDR) imagery – a technology which
has penetrated a significant segment of professional cameras in recent years and is now starting
to appear even in low end consumer cameras and smart phones.

HDR imagery allows the capture and storage of greater dynamic range of light in a scene
than traditional Low Dynamic Range (LDR) imagery. LDR imagery uses 8-bit integers to store
pixel values, thus limiting the intensity range to 0−255 and the dynamic range to 8 stops. HDR
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imagery, on the other hand, typically uses more than 8 bits, allowing a dynamic range up to
hundreds of stops [3]. This is a fundamental advantage which allows HDR imagery to represent
high ranges of lighting, providing far more detailed information about the scene. HDR thus has
the potential to improve the performance of many computer vision tasks, including feature point
detection.

Many evaluations of feature point detectors have been performed previously, both general
ones [1, 2, 4, 5, 6] and application specific ones [7, 8, 9, 10]. To the best of our knowledge,
all these evaluations have been carried out using classical LDR images only. Only a few recent
papers have considered HDR imagery in FP detection, e.g. [11, 12], but no thorough comparison
with LDR has been done so far. We, therefore, intend to answer the question “Can the use of
HDR imagery be significantly beneficial for feature point detection and if so, why?”

The rest of this paper is organized as follows: In Section 2, we describe the six FP detectors
selected for our experiments; discuss the literature on previous comparisons of FP detectors; and
review methods for tone mapping of HDR images. Section 3 details the setup for the evaluation.
The results are presented and analysed in Section 4. Finally, we conclude and make suggestions
for future work in Section 5.

2. Related Work

2.1. Feature Point Detectors

A number of FP detectors have been proposed in the literature. For a comprehensive survey,
we refer the reader to [13]. The FP detectors are often used together with FP descriptors, e.g.
SIFT [14], SURF [15], BRISK [16], which are beyond the scope of this paper. The following six
widely used detectors are good representatives of the different approaches to FP detection.

Harris Corner Detector: This method is based on the local auto-correlation function reflect-
ing local intensity changes in the image [17]. For each point x, the second moment matrix

M(x) =

[
I2x(x) IxIy(x)
IxIy(x) I2y (x)

]
(1)

is computed, where Ix and Iy are the derivatives of intensity in the x and y directions at
point x. The components of the matrix M are usually smoothed using a Gaussian to make
the detection more robust. Then the point score R(x) is computed as

R(x) = λ1λ2 − k · (λ1 + λ2)2 (2)

where λ1 and λ2 are the eigenvalues of M(x) and k is a sensitivity factor. Since direct com-
putation of the eigenvalues is expensive, Harris and Stephens introduce an approximation
of Eq. (2) by means of the determinant and the trace of M(x):

R(x) = det(M(x))− k · tr(M(x))2 . (3)

Shi-Tomasi: The minimum eigenvalue detection method proposed by Shi and Tomasi [18] relies
on the same second moment matrix M as the Harris detector does, but explicitly computes
its eigenvalues according to Eq. (2) unlike Harris. This results in higher computational
demands but also in feature points which are more stable for tracking.

DoG: The Difference of Gaussian is the detector part of the so called SIFT (Scale Invariant
Feature Transform) combined feature detector and descriptor proposed by Lowe [14]. In
this paper, we only use the detection part. This detector is multiscale, which is achieved
by building a scale space

L(x, σ) = g(σ) ∗ I(x) (4)

at each point x and scale σ as the convolution of the Gaussian g(σ) with an image I. Feature
points are detected as extrema in the difference of Gaussian function D(·) convolved with
the image, which can be computed from the difference of two nearby scales separated by
a constant factor k

D(x, σ) = L(x, kσ)− L(x, σ) . (5)
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Fast Hessian: This is the detector part of the so called SURF (Speeded up Robust Features)
combined feature detector and descriptor proposed by Bay et al. [15]. In this paper, we
only use the detection part. This detector approximates the Hessian matrix

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(6)

at each image point x at scale σ. Lxx(x, σ) is the convolution of the Gaussian second

order partial derivative ∂2

∂x2 g(σ) with image at point x and similarly for Lxy(x, σ) and
Lyy(x, σ). A scale space is thus created by applying filters with increasing σ. A 3×3×3-
neighbourhood non-maximum suppression [19] is then applied in the scale space to filter
the strongest feature points.

FAST: The Features from Accelerated Segment Test (also called “local intensity comparison”)
method by Rosten and Drummond [20] considers a pixel to be a possible corner point if it
has n contiguous surrounding pixels on a circle, which are either brighter or darker than the
central pixel. The value of n effectively controls a threshold angle θ which describes which
features will be detected (both corners and edges or just corners). The circle considered
usually has a radius of 3 pixels in practical applications.

BRISK: The Binary Robust Invariant Scalable Keypoints method by Leutenegger et al. [16] is
a combined feature detector and descriptor. In this paper, we only use the detection part.
It is a multiscale detector, utilizing the FAST detector at each scale. The scale of each
feature point is obtained in the continuous domain via quadratic function fitting.

The fundamental part of any FP detector is the computation of some kind of derivative of
the pixel values encoded in an image. The bigger the magnitude of the derivative, the stronger
the feature point detected. The design of existing FP detectors (e.g., the derivative thresholds)
assumes a display-referred LDR image, usually gamma-corrected. In this case, the magnitudes of
the derivatives of pixel values in dark and bright regions of the image would not be significantly
different. However, in a scene-referred HDR image the pixel values encode linear luminance of the
real scene2. The derivatives in the HDR image therefore increase significantly in the bright areas
and can be orders of magnitude bigger than in the dark areas. Imagine, for example, a step edge
printed on a piece of paper. While the reflectivity (and derivative) of the edge remains constant
in the real world, the reflected light (captured in an HDR image) is proportional to the reflectivity
and illumination of the patch. The strongest feature points would thus be detected primarily
in highly illuminated areas leaving the FPs in dark areas undetected, which is generally useless.
We assume that all the contemporary FP detectors would process HDR images inefficiently due
to this fact3. Our measurements confirm this hypothesis, see Section 4.

2.2. Comparison of FP Detectors

A number of papers on the comparison and evaluation of feature point detectors have been
published in the last decade. Schmid et al. [1] presented an extensive study, where they compared
FP detectors on two planar scenes under changes in rotation, viewpoint and illumination, and
artificially added image noise. They were the first to introduce and evaluate the Repeatability
Rate (abbreviated as RR) which describes (in-)dependence of FP detection on imaging condi-
tions. The feature is “useful” if it is detected in one image and it is visible in the other image

2The pixel values are typically proportional to luminance (with an unknown scaling factor) for uncalibrated
HDR images, or they represent scene luminance in candelas per square metre (cd/m2) in calibrated images.

3Humans, on the other hand, are able to cope with the vast range of luminance values by means of visual
adaptation mechanisms. Visual systems need to adapt to the background illumination to be able to distinguish
objects. This behavior is measured in detection threshold experiments, where the difference dL between stim-
ulus and background luminance increases in proportion to the background luminance L resulting in non-linear
threshold-versus-intensity (TVI) function. The linear part of TVI is known as Weber’s law [21], which in this
case states that the contrast sensitivity is constant (dL/L = const.). This implies that human response to lu-
minance may be roughly approximated by a logarithmic function (lnL). However, due to complexity of human
visual system, other compressive nonlinearities (e.g., a power function) may be more appropriate depending on
observation conditions.
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as well. The feature is “repeated” when it is detected close to the same real-world position in
the other image. The RR of features in an image pair is denoted r and it is defined as the ratio
between the number of repeated features nrepeated and the number of useful features nuseful :

r =
nrepeated
nuseful

. (7)

Mikolajczyk et al. [2] compared affine-invariant region detectors. The scenes used for their
experiments were also planar or near-planar. Fraundorfer and Bischof [4] extended the work of
Mikolajczyk et al. by introducing a new tracking method allowing the detectors to be evaluated
on non-planar scenes as well. They discovered that non-planar scenes exhibit significantly lower
repeatability rate of FP detectors than planar scenes. Rodehorst and Koschan [5] compared
performance of detectors on a set of planar and 3D scenes. The authors addressed the problem
of non-uniform distribution of FPs in the image and proposed a solution by using an adaptive
detector threshold. Moreels and Perona [6] explored the performance of combinations of detectors
and descriptors with a test bed of 3D objects. They exploited geometric constraints between
triplets of views.

More recently, several application-specific studies of FP detectors have been published. The
studies naturally focus on specific parameters of the detectors. For example, Gil et al. [8]
evaluated behavior of the detectors and descriptors with respect to their use in visual navigation.
Accordingly, they studied the stability of detected features throughout the whole image sequences
rather than just in image pairs. Rosten et al. [22] redefined the RR to express the stability of
features throughout an image sequence. The RR of features in an image sequence is denoted R
and it is defined as:

R =
Nrepeated

Nuseful
, (8)

where Nrepeated and Nuseful are numbers of features summed over all image pairs in an image
sequence:

Nrepeated =
∑
i∈seq

∑
j∈seq; j 6=i

nrepeated, (9a)

Nuseful =
∑
i∈seq

∑
j∈seq; j 6=i

nuseful, (9b)

where i and j denote images from the sequence seq.
Jazayeri and Fraser [9] concentrated on feature-based matching and close range photogram-

metry. They were also amongst the first to evaluate the speed of the detectors. Gauglitz et al. [10]
compared the detectors and descriptors with regard to real-time visual tracking; concentrating
on execution time and precision.

Recently, Kontogianni et al. [12] published a brief study comparing the number of FPs
detected by the DoG, Fast Hessian, FAST, and ORB detectors in images of architectural scenes.
The scenes were captured into single exposure LDR images and into HDR images tone mapped
using the method of Mantiuk et al. [23]. They came to the conclusion that the tone mapped
images yield more FPs than LDR images, which is in agreement with our findings in the 3D
scene, see Section 4.1. In addition, May et al. described a study of object recognition using
HDR [24] and image fusion [25]. However, they evaluated only the number of FPs in the same
views and not the repeatability and stability that heavily affect the FP applicability.

To the best of our knowledge, no study of the influence of the HDR and tone mapping on
the repeatability and stability of FP detectors has been presented so far.

2.3. Tone Mapping of HDR Images

Most of the implementations of contemporary computer vision algorithms work with ordinary
(LDR) images and they are not designed for HDR images, as was pointed out in Section 2.1.
Two possible solutions to this problem exist: (1) Adaptation of existing algorithms to be able to
work with HDR data, which is a promising avenue for future research; or (2) preceding current
methods with a suitable conversion from the HDR to LDR image, known as tone mapping.
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Methods performing tone mapping (tone mapping operators, TMOs) are typically classified
into global tone reproduction curves and local tone mapping methods. Definitions of these two
classes are not fully consistent. For our purpose, we adopt the most commonly used definition,
see [3, 26, 27]:

Global TMO: The mapping function is fixed for all pixels in an image. The same input pixel
intensities are thus mapped to the same values.

Local TMO: The mapping function can vary depending on a local neighbourhood of the
mapped pixel. The same input pixel intensities may be mapped to different values.

The classification into global and local TMOs is suitable also from the FP detection point of
view: Global and local operators may change the local contrast differently. Since the detection
of FPs is often based on derivation magnitude, which depends on local contrast, images tone
mapped with global and local operators are expected to exhibit different behaviors.

Another dimension worth exploring is the visual coherency of tone mapped images. Many
TMOs can automatically tune their parameters, but they do it independently for each image.
This potentially results in different image appearance in the set of images under consideration,
which may in turn decrease the performance of FP detectors. We have thus included a temporal
TMO into our evaluation, treating the images as if they were part of a video sequence.

We will now briefly describe the representative TMOs we used in this paper to assess the
effects of tone mapping on FP detection. The names in round brackets are the abbreviations
used throughout the rest of the paper.

Logarithmic Mapping (gLogMap) is based on the application of a logarithmic function to
the input luminance values. The most general form of logarithmic mapping is

Lo(x) =
log(1 + qLi(x))

log(1 + kLi,max)
, (10)

where Li and Lo are the input and output luminance, respectively, and k and q are con-
stants for tuning the desired appearance of the output image.

Histogram Adjustment (gLarson97) by Ward Larson et al. [28] uses a modified histogram
equalization technique [29, ch. 3]. A log2-histogram of an image is calculated and subse-
quently equalized. Finally, advanced aspects of human vision are simulated, such as glare,
color sensitivity or visual acuity.

Photographic Tone Reproduction - global part (gReinhard02) proposed by Reinhard
et al. [30] is motivated by the time-tested techniques of photographic practice of dodging-
and-burning and the zone system. The method consists of purely global component (gRein-
hard02) and an optional local part, which we analyze separately (lReinhard02). The global

component compresses mainly high luminance values as follows: Lo(x) = Lm(x)
1+Lm(x) , where

Lm is the input luminance scaled by the scene key value (geometric mean).

Dynamic Range Reduction Inspired by Photoreceptor Physiology (gReinhard05) is
a global TMO [31] that aims to mimic visual adaptation process which occurs in pho-
toreceptors on human retina. The input color channels are individually compressed using
straightforward sigmoidal function with perceptually justified parameters.

Display Adaptive Tone Mapping (gMantiuk08) automatically adjusts the HDR conver-
sion given the characteristics of the display device [32]. To that end, human visual system
models of scene and display observers are computed and used to steer a global piece-wise
linear tone reproduction curve.

Photographic Tone Reproduction - global + local part (lReinhard02) represents the
complete pipeline of the Photographic TMO [30], i.e. (gReinhard02) subsequently locally
enhanced with the automatic dodging-and-burning. The popularity of this TMO is due
to fairly stable automatic parameter estimation which makes the method easy to use in
practice.
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Gradient Domain HDR Compression (lFattal02) modifies the gradient field of the HDR
image to achieve dynamic range compression [33]. More specifically, large gradients are
attenuated, while the small ones (fine details) are preserved resulting in detail-rich and
crisp outputs. The attenuation function is blended from multiple scales to prevent halo-
like artifacts. The final image is obtained from the modified gradient field using Poisson’s
equation solver.

Contrast Mapping (lMantiuk06map) is based on multiscale processing of HDR image con-
trast [23]. Specifically, the contrast is represented using a Gaussian pyramid in the loga-
rithmic space. This way, not only local, but also global contrasts (low spatial frequencies)
may be modified. Perception-motivated monotonic transducer functions are proposed to
simulate human responses to physical contrasts.

Contrast Equalization (lMantiuk06equ) performs equalization of histogram of contrasts to
produce highly detailed, sharp and crisp images [23]. The contrasts are represented in a
way similar to (lMantiuk06map). After the equalization step, the modified contrasts are
converted back to luminances by solving an optimization problem over all scales.

Edge-Avoiding Wavelets (lFattal09) involves a wavelet lifting scheme to build an edge-
preserving multiscale decomposition of an HDR image [34]. The adaptive wavelet functions
make fast construction of such an image representation possible which in turn enables
band-independent multiscale processing in real time. The range compression is achieved by
modifying the wavelet (detail) coefficients using the following function: f(x) = sign(x)|x|β ,
where x is a detail coefficient and β < 1.

Real-Time Automated TM System for HDR video (gKiser12(t)) is a global temporal
TMO based on (gReinhard02) [35]. To stabilize the TMO parameters of the current
frame the method exploits information from previous frames in the HDR video sequence.
Specifically, a “leaky integrator” [36] is applied on parameters of global tone reproduction
curve (gReinhard02) which efficiently eliminates flicker from tone mapped videos.

The selected methods represent major trends in tone mapping research: global tone repro-
duction curves (gLogMap, gLarson97, gReinhard02, gReinhard05, gMantiuk08, gKiser12(t)), lo-
cal tone mapping operators (lReinhard02, lFattal02, lMantiuk06map, lMantiuk06equ, lFattal09),
multiscale optimization frameworks (lMantiuk06map, lMantiuk06equ, lFattal09), gradient-based
methods (lFattal02), perceptually-motivated approaches (gLarson97, gReinhard05, lMantiuk06map,
gMantiuk08), and temporal tone mapping operators (gKiser12(t)). Please refer to HDR text-
books, such as [3, 37] for more in-depth information.

3. Experimental Setup

In this section, a detailed description of our experiments is given. We first describe the scenes
created for the evaluation, how they were captured, and into which image formats were they
stored. Next, methods of feature point detection are described and the evaluation methodology
is defined.

3.1. Scenes

Planar and non-planar scenes cause different behavior of FP detectors, as shown by Fraun-
dorfer and Bischof in [4]. Two test scenes have therefore been created, see Fig. 1.

• A planar (2D) scene containing three different paper posters next to each other, attached
to the same plane.

• A 3D scene containing several non-planar rigid objects.

These scenes were placed into a totally dark room and illuminated by two 2 kW Arri tungsten
lights to create extreme lighting conditions. Fig. 2 shows the light configurations. The 2D scene
comprised a dark poster placed into a shadow, another poster lit by one light and a bright poster
lit by both lights. The 3D scene was made analogously to the 2D scene: A coarse dark statuette
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Figure 1: The test scenes used in the experiments: a 2D scene (containing just one plane; left) and a 3D scene
(containing non-planar objects of different shapes; right)

Figure 2: Configuration of the two lights, A and B, relatively to the 2D scene (a) and to the 3D scene (b).
Individual parts of the scenes are labeled with “A”, “B” or “A+B” according to the sources of illumination of
each part

of a rhino placed into a shadow, a puppet lit by one light, and a ball of creased white paper
lit by both lights. Both scenes have been designed to generate as much dynamic range of light
as possible while containing textured areas suitable for detection of FPs. The 2D scene has an
average dynamic range of 12.1 stops and the 3D scene, 13.7 stops, as can be seen in Fig. 3. Both
scenes also contain a dot pattern printed on paper used for automatic calibration of internal and
external parameters of the camera.

3.2. Image Sequences

The scenes have been captured in three different image sequences by changing the camera
viewpoint, distance, and scene lighting. Example images from the sequences can be seen in Fig. 4
and Fig. 5.

Viewpoint changing sequence. The camera moved along a circle with a center point in the middle
of the scene with a 2.5◦ step. Since the scenes were captured 21 times, the total angular range
of viewpoints was 50◦.
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Figure 3: Luminance distributions and log2-luminance histograms of example HDR images used in the experi-
ments. The images are shown in false colors to depict luminance levels present in the scenes (dark blue = lowest
luminance, dark red = highest luminance). (a) HDR image of the 2D scene in false colors, (b) log2-luminance
histogram of the 2D scene image, (c) log2-luminance histogram of the 3D scene image, (d) HDR image of the 3D
scene in false colors

Distance changing sequence. The scene was captured 7 times and the distance between the
camera and the scene increased exponentially, yielding the distance sequence of 100, 103, 109,
122, 147, 197 and 297 cm. The distance was chosen to increase exponentially rather than linearly
to examine the behavior of FP detectors under subtle as well as dramatic distance changes.

Lighting changing sequence. The scenes were also captured 7 times, each time with different
combination of 3 light sources being on or off, with at least one of them on. The light sources
used were the strip lights in the room and the two 2kW tungsten lights mentioned above. When
referencing lighting conditions in the experiments a three-digit binary code is used to represent
it where each digit represents the state of one light source in the order: (1) strip lights, (2)
tungsten light A, (3) tungsten light B. For example, the code 101 means that the strip lights
and tungsten light B were on. For the configuration of lights see Fig. 2.

3.3. Image Formats

In this section, we describe the formats used to store the image data. We also describe how
the individual formats have been created, which is illustrated in Fig. 6.

To capture all the dynamic range in the scenes, several JPG images were captured at different
exposure levels at each camera position. A Canon EOS-1Ds Mark II camera mounted on a tripod
was used for this purpose. All the images have a resolution of approx. 16 Mpx.

The multiple exposures were then combined into a single radiance map using the method
of Debevec and Malik [38]. An approximate photometric calibration was performed using the
multiplication factor obtained by the fraction between the measured illumination in the scene
and the recovered value in the radiance map. This calibrated radiance map was then tone
mapped as described later. However, in practice the HDR images are rarely calibrated and the
range of values is virtually arbitrary. To reflect this fact and to allow a fair comparison with
LDR formats stored in JPG, we added a linearly re-scaled HDR image ([0.0−256.0]) into the test
set. This scaled HDR image and the calibrated radiance map were stored using the Radiance
(.hdr) format [37, p. 95].
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Figure 4: Example images from sequences of the 2D scene. Viewpoint changing sequence: −25◦ (a), 0◦ (b)
and +25◦ (c). Lighting changing sequence: lighting conditions 010 (d), 100 (e) and 111 (f). Distance changing
sequence: 100 cm (g), 109 cm (h) and 147 cm (i). Feature points detected using the Harris corner detector are
marked with green dots. The feature points were detected only inside the Regions Of Interest (ROI) which are
marked as green and red polygons. Images with red ROIs are the reference images for each sequence (b, f, g).
The dot pattern is used solely for the purpose of automatic camera calibration

9



Figure 5: Example images from sequences of the 3D scene. Viewpoint changing sequence: −25◦ (a), 0◦ (b)
and +25◦ (c). Lighting changing sequence: lighting conditions 010 (d), 100 (e) and 111 (f). Distance changing
sequence: 100 cm (g), 122 cm (h) and 297 cm (i). Feature points detected using the Harris corner detector are
marked with green dots. The feature points were detected only inside of the area approximately marked as green
and red polygons. Images with red polygons are the reference images for each sequence (b, f, g). The dot pattern
is used solely for the purpose of automatic camera calibration
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Figure 6: Workflow of image formats generation. Each format is depicted by a box with name and file extension
used. Bold formats were used in the evaluation (non-bold ones are the intermediate formats). The names of the
tone mapped formats consist of a prefix (g for global, l for local tone maper), first author name and year (e.g.
Mantiuk06) and an optional postfix (e.g. (t) for a temporally coherent version)

We assumed that contemporary FP detectors would detect FPs only in highly illuminated
areas of the HDR image due to linear encoding of scene luminance, see discussion in Section 2.1.
Therefore, we transformed the luminance scale of the HDR image using several approaches. The
first approach was to encode the HDR logarithmically, motivated by the Weber’s law [21]. This
was achieved by applying logarithmic mapping to the calibrated radiance map, followed by linear
scaling into the interval [0.0 − 256.0]. The other approach was tone mapping. Since it was not
obvious which TMO produces the most suitable images for FP detection, we chose to apply five
global and five local operators.

To analyze whether HDR and tone mapped imagery brings any benefits over “classical” LDR
imagery, we also included single exposure images into the experiments. The best exposure was
selected from the set of all exposures by maximizing the number of well-exposed pixels inside
the ROIs.

Some of previous studies suggest that a pre-processing step should be used to enhance local
contrast when detecting features in an LDR image as low contrast can limit performance of
FP detectors. Jazayeri and Fraser [9] proposed to use Wallis filtering [39]. We have tested
pre-processing of LDR images in our previous evaluation [40] and concluded Wallis filter is
beneficial only for images with poor contrast which is not the case of images captured under
extreme lighting conditions. We thus applied two more efficient contrast enhancing methods in
this evaluation: histogram equalization and Contrast Limited Adaptive Histogram Equalization
(CLAHE) [41].

All this resulted in scenes captured in sixteen different image formats at each camera position,
see Fig. 6. The image formats are the following (here, the “HDR image” refers to the calibrated
radiance map):

• HDR: HDR image linearly scaled into the interval [0.0− 256.0].

• logHDR: HDR image transformed using logarithmic mapping and scaled into the interval
[0.0− 256.0].
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• LDR: The best exposed “single exposure” directly from the camera.

• LDR.histeq: The LDR image after histogram equalization.

• LDR.CLAHE: The LDR image with histogram equalized using CLAHE [41].

• gLogMap: HDR image tone mapped using logarithmic mapping according to Eq. (10)
with tuning parameters k = q = 1, gamma corrected.

• gLarson97: HDR image tone mapped using the Histogram Adjustment method of Ward
Larsson et al. [28], gamma corrected.

• gReinhard02: HDR image tone mapped using the global part of Photographic Tone
Reproduction method of Reinhard et al. [30], gamma corrected.

• gKiser12(t): HDR image tone mapped using the temporal TMO of Kiser et al. [35],
gamma corrected.

• gReinhard05: HDR image tone mapped using the Dynamic Range Reduction Inspired
by Photoreceptor Physiology method of Reinhard and Devlin [31], gamma corrected.

• gMantiuk08: HDR image tone mapped using Display Adaptive Tone Mapping of Mantiuk
et al. [32].

• lReinhard02: HDR image tone mapped using the complete Photographic Tone Repro-
duction method of Reinhard et al. [30] (both global and local part), gamma corrected.

• lFattal02: HDR image tone mapped using the Gradient Domain HDR Compression
method of Fattal et al. [33].

• lMantiuk06map: HDR image tone mapped using the Contrast Mapping method of Man-
tiuk et al. [23], gamma corrected.

• lMantiuk06equ: HDR image tone mapped using the Contrast Equalization method of
Mantiuk et al. [23], gamma corrected.

• lFattal09: HDR image tone mapped using the Edge-Avoiding Wavelets method of Fat-
tal [34], gamma corrected.

Images in the HDR and logHDR formats are stored in floating point values, whereas images
in the other formats are stored as 8-bit integers. Examples of the formats can be seen in Fig. 7.
Details on implementations and settings of the tone mappers we used in our experiments are
listed in Table B.2 in Appendix B.

3.4. FP Detection and Evaluation Methodology

The six FP detectors described in Section 2.1 were applied on the sixteen image formats
described in the previous section. This yielded 96 sets of FPs for each camera position. Since
we wanted the FPs to be detected only in “meaningful” areas, a polygonal Region Of Interest
(ROI) was defined in each image (see green polygons in Fig. 4 and Fig. 5). In the case of the
2D scene, the ROI covered the three posters but not the dot pattern. In the 3D scene, the ROI
covered all the items placed on the desk, except the dot pattern again. The detectors were then
applied in each ROI.

All ROIs have been divided into three non-overlapping areas (shadows, midtones and high-
lights, see Table 1), and the following evaluation was favoring image formats performing well
in all three areas. This was motivated by the aim to evaluate the suitability of HDR imaging
techniques for FP detection. In this context, it is desirable to detect features in all areas of a
scene, regardless the illumination level.
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Table 1: Partitioning of test scenes according to illumination levels.

Scene Shadows (s) Midtones (m) Highlights (h)

2D bottom-left poster top-left poster top-right poster
3D statue of rhino puppet, boxes paper ball

Since every FP detector has a measure describing FP response/strength, two possible ways
to assess the FP detectors exist:

1. Constant threshold: Specify a response threshold and let the detector find all the points
stronger than the threshold, see Sec. 3.4.1.

2. Constant number of FPs: Specify the number of the strongest FPs to be detected, no
matter how strong they are, see Sec. 3.4.2.

After computing responses of the FP detectors, we applied non-maximum suppression of
the detector responses to get rid of clusters of FPs. This is important, because in an extreme
case, where FPs are detected at every single pixel, the repeatability rate would reach 100 %,
which would make no sense. To avoid such a situation, we removed “weak” FPs by non-maxima
suppression using a 21×21 pixels window. The size of the window was chosen with respect to
the 9-pixel distance threshold for FP matching: 1 px the FP position + 9 px distance threshold
left/up + 9 px distance threshold right/down + 1 px “safety” border around = 21 px window.

Details on implementations and settings of the FP detectors we used in our experiments are
listed in Table B.1 in Appendix B.

3.4.1. Distribution of FPs

We used constant threshold to assess the distribution of FPs, i.e. how well and how many
FPs each image format is able to present. See Table B.1 in Appendix B for the threshold values
of individual FP detectors.

3.4.2. Repeatability of FPs

We used constant number of FPs to assess the repeatability of features. 300 FPs were de-
tected in each image, except for those containing less features, e.g. due to overexposure. The
repeatability of FPs was evaluated using the Repeatability Rate (RR).

To find out which FPs were repeated, we calibrated the cameras and established geometrical
relations between individual views (details are in the next section). The matches between FPs
were then established geometrically: a FP was considered as a match if it lay closer to its
expected position than a distance threshold of 9 pixels. Note that no FP descriptors were used
for the matching process.

RR was evaluated separately for areas of shadows (s), midtones (m), and highlights (h),
which are described in Table 1. The values of RR in image pairs rs, rm, and rh were calculated
according to Eq. (7). The overall RR in an image pair is then the lower bound of the three
values:

r = min(rs, rm, rh). (11)

Similarly, the values of RR in image sequences in shadows, midtones, and highlights Rs, Rm,
and Rh were calculated following Eq. (8). The overall RR in an image sequence is, again, the
lower bound of the three values:

R = min(Rs, Rm, Rh). (12)

14



3.5. Geometric Matching of FPs

We performed an automatic camera calibration in each image sequence using the Camera
Calibration Toolbox for Matlab4 and pattern-based camera pose estimation5. These calibrations
provided the internal and external camera parameters at each camera position. Based on these
parameters, we computed the geometric relations between individual views as described in [42].

In the case of the 2D scene, the geometric relation between the views is a planar homography
and can be described by a 3×3 homography matrix H. This matrix allows image coordinates
to be mapped between two images so that:

x2 = H12x1 (13)

where x1 and x2 are homogeneous image coordinates of corresponding points in first and second
view and H12 is a homography matrix describing planar homography between these two views.
The positions of the detected FPs were matched fully automatically. A FP was considered found
in an image if a point was detected in the radius of 9 pixels (which is less than 1 % of the image
size) from the predicted position, computed according to Eq. (13).

In the case of the general 3D scene, the views are related by the more complex concept of
epipolar geometry. Without a 3D model of the scene, a 1:1 mapping between pixels is impossible.
We solved this by manually annotating each view of the 3D scene sequences with a triangle mesh,
see Fig. 8. The mesh contains 572 triangles which cover the same features in each view of the
scene. Pixel coordinates inside the triangles were interpolated using barycentric coordinates. A
FP was considered found in an image if a point was detected in the radius of 9 pixels from the
predicted position, which was computed based on the triangle mesh.

Figure 8: The triangle mesh with 572 triangles used to match FPs geometrically between individual views of the
scene

4. Results

We evaluated the 2D and 3D scenes independently, because the previous work [4] indicates
different behavior of FP detectors in these scenarios. In the design of experiments (described in

4Camera Calibration Toolbox for Matlab by Jean-Yves Bouguet: http://www.vision.caltech.edu/bouguetj/
calib_doc/

5Automatic Camera Pose Estimation from Dot Pattern by George Vogiatzis and Carlo Hernández: http:

//george-vogiatzis.org/calib/
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Section 3) we made an effort to stay as general as possible. Nevertheless, the results presented
below inherently depend on the test images and scenes, and on settings of FP detectors and
TMOs. Hence all the test images are made publicly available for download [43] and the settings
of FP detectors and TM operators are documented in Appendix B.

The Shi-Tomasi FP detector had nearly identical results to the Harris corner detector, because
the “cornerness” metric of Harris is an approximation of the metric of Shi-Tomasi, see Section 2.1.
For the sake of clarity, we thus left the results of Shi-Tomasi out from further evaluation.

Applicability of any FP detector depends on (i) how many meaningful features does it detect
and (ii) how stable those features are. Following this paradigm, we first assessed the distribu-
tion of FPs in individual image formats in Section 4.1. The stability of FPs was subsequently
evaluated in Section 4.2.

4.1. Distribution of Feature Points

The first evaluated aspect was the distribution of FPs in the image. We set a constant
FP detector threshold for all image formats for this purpose (i.e. we applied the first method
described in Section 3.4). The distribution of FPs was assessed by visual inspection, which is the
usual but inherently subjective method. We inspected three areas in each scene corresponding
to shadows, midtones, and highlights, as defined in Table 1. The results are summarized in
Tables 2 and 3.

Table 2: The distribution of FPs in individual image formats in the 2D scene. “s” = shadows, “m” =
midtones, and “h” = highlights. “0” = no detectable features in image, “-” = no FPs detected. “?”, “??”, and
“???” = a few FPs, many FPs, and very many FPs detected, respectively. “÷” = FPs detected on noisy pixels.

2D
Harris DoG FastHes. FAST BRISK

s m h s m h s m h s m h s m h

HDR - ?? ?? - ??? ??? - ??? ??? - ?? ?? - ?? ??

logHDR - ??? ??? - ? ? - ?? ?? - ? - - ?? ?

LDR - ?? ?? - ?? ?? - ?? ?? - ?? ?? - ?? ??

LDR.histeq ÷ ? ?? - ? ?? - ? ?? - ? ?? - ? ??

LDR.CLAHE - ?? ?? - ??? ?? - ??? ?? - ?? ?? - ?? ??

gLogMap - ?? ?? - - - - - - - - - - - -

gLarson97 - ? ?? - ? ?? - ? ?? - ? ?? - ? ??

gReinhard02 - ?? ?? - ? ? - ? ? - ? ? - ? ?

gReinhard05 - - - - - - - - - - - - - - -

gMantiuk08 - ?? ?? - ?? ?? - ?? ?? - ?? ?? - ?? ??

lReinhard02 - ?? ?? - ?? ?? - ?? ?? - ?? ?? - ?? ??

lFattal02 - ?? ?? ?? ?? ??? ?? ??? ??? ? ?? ?? ?? ?? ??

lMantiuk06map - ?? ?? - ?? ?? - ?? ?? - ? ?? - ?? ??

lMantiuk06equ ? ÷? ÷?÷ ? ?? ?? ? ?? ?? ? ?? ÷? ? ?? ÷?

lFattal09 - ?? ÷?÷ - ?? ?? - ?? ?? - ? ?? - ?? ??

HDR. The assessment of FP distribution confirmed our assumption that FP detectors process
the linear HDR images inefficiently. As expected, the FPs were detected in bright areas of the
scenes only. More specifically, FP were detected in the highlights and the midtones (in the case
of the 2D scene due to the lower dynamic range), and exclusively in the highlights (in the case
of the 3D scene which has higher dynamic range). No FP were detected in the shadows, which
is depicted in Tables 2 and 3 as the minus sign “-”.
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Table 3: The distribution of FPs in individual image formats in the 3D scene. “s” = shadows, “m” =
midtones, and “h” = highlights. “0” = no detectable features in image, “-” = no FPs detected. “?”, “??”, and
“???” = a few FPs, many FPs, and very many FPs detected, respectively. “÷” = FPs detected on noisy pixels.

3D
Harris DoG FastHes. FAST BRISK

s m h s m h s m h s m h s m h

HDR - - ?? - - ?? - - ?? - - ? - - ??

logHDR - ? ? - ? ? - ? ? - - - - ? ?

LDR 0 ? ? 0 ? ?? 0 ? ?? 0 ? ? 0 ? ??

LDR.histeq ÷ ÷? ÷ ÷ ÷? ÷ ÷ ÷? ÷ ÷÷ ÷?÷ ÷ ÷ ÷? ÷

LDR.CLAHE 0 ?? ? 0 ? ?? 0 ?? ?? 0 ?? ? 0 ?? ??

gLogMap - ? ? - ? ? - - - - - - - ? ?

gLarson97 - ? - - ? ? - ? - - - - - ? -

gReinhard02 - ? - - ? ? - ? - - - - - ? ?

gReinhard05 ? ? - - ? - - - - - - - - ? -

gMantiuk08 - ? - - ? ? - ? ? - - - - ? ?

lReinhard02 - ? ? ? ? ? - ? - - ? ? - ? ?

lFattal02 ?? ?? ? ??? ??? ??? ??? ??? ??? ?? ??? ? ??? ??? ??

lMantiuk06map - ?? ?? - ? ?? - ? ?? - ? ? - ? ??

lMantiuk06equ ?? ??? ?? ?? ?? ?? ?? ?? ?? ? ??? ? ?? ??? ??

lFattal09 - ?? ?? - ? ?? - ? ?? - ? ? - ? ??

LogHDR. The logarithmically encoded HDR image yielded better FP distribution than the
linear HDR. More FPs were usually detected in the midtones at the cost of less FPs detected in
the highlights. This is more obvious in the case of 3D scene with its higher dynamic range, where
the logarithmic mapping efficiently uses the logarithm function with higher base. In such a case,
contrast in highlights gets more compressed and features are thus more attenuated. The base
of the logarithm is proportional to the maximum luminance value in the image, see Eq. (10).
Nevertheless, the total number of detected FPs was usually lower than in HDR, and still, no
features were detected in the shadows. The FAST detector appeared to be sensitive to such
compression, because it detected no FPs in the logHDR images of the 3D scene. It is interesting
to note that Harris corner detector showed an opposite behavior than the other detectors: in
the 2D scene, it detected more FPs in the logHDR format when compared to the HDR.

LDR. The LDR images (single exposures) naturally exhibited features only in well-exposed
areas (i.e. midtones). The dark parts of the 2D scene were underexposed in the LDR images;
no FPs were thus detected in the shadows, which can be observed in Table 2. The dark parts
of the 3D scene were underexposed even more, leaving corresponding parts of the LDR images
black. This is depicted in Table 3 as zeros “0”.

LDR + contrast enhancement. Contrast enhancing pre-processing techniques can help to detect
more features in LDR images in a limited number of cases, depending on the presence of image
noise. If large underexposed or overexposed noisy areas are present in the image, histogram
equalization overly amplifies the noise. This has a destructive effect; it increases the number of
detectable features, but they are in fact meaningless. This happened in the 2D scene when Harris
corner detector detected five “feature points” on amplified noise in the LDR.histeq format, see
the symbol “÷” in Table 2, and even more in the 3D scene when all FP detectors responded
mainly to amplified noise, see Table 3. CLAHE did not amplify the noise so strongly (because
the contrast boosting is limited), but its contribution to feature accentuation was also limited.

The tone mapped images, contrary to LDR, may contain features in all areas. However,
significant differences between global and local TMOs were discovered.
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Global TMOs. The global tone reproduction curves compress high dynamic range within the
input image at the expense of the local contrast loss. Features thus get attenuated and are hard
to detect. This behavior is more profound in the case of the 3D scene, which has a greater
dynamic range than the 2D scene (see many “-” and only a few “?” in Table 3). The least
detectable features are found in the gReinhard05 image format. The FAST detector was, again,
sensitive to the compression of contrast, because it detected almost no FPs in any globally tone
mapped image of the 3D scene.

Local TMOs. The local tone mapping methods, on the other hand, generally excel in enhance-
ment of local details. This effectively accentuates features, as can be seen in the bottom sections
of Tables 2 and 3. However, features in the shadows are still harder to detect. The only tone
mapping methods yielding detectable features in the shadows are lFattal02 and lMantiuk06equ,
although part of the features in lMantiuk06equ is merely amplified noise. Nevertheless, for the
above reasons, lFattal02 and lMantiuk06equ are the most suitable candidates for processing
of HDR images for FP detection. This is an expected result, as lFattal02 and lMantiuk06equ
operate in gradient or contrast domain respectively to enhance image contrasts, and both are
known to produce extremely detailed “hyper-realistic” HDR scene renditions. Nevertheless, the
suitability has to be verified by the evaluation of the repeatability rate.

4.2. Repeatability Rate

The criterion of FP stability is the Repeatability Rate (RR). We let the tested FP detectors
find the 300 strongest FPs in all examined image formats for this purpose (i.e. we applied the
second method described in Section 3.4). RR was then evaluated separately for areas of shadows,
midtones, and highlights, and the overall RR was obtained as a minimum of the three values, as
defined in Eq. (11) and (12).

Previous studies evaluating FP detectors state that 3D scenes may yield lower RR than 2D
scenes due to 3D phenomena such as occlusions, perspective, and clutter [4, 8]. This is, however,
not the case in our study, because the 3D scene has no clutter and occlusions are very limited.
Moreover, our study differs from the previous ones by the use of HDR scenes and imagery. The
high dynamic range of light and its handling in images are more influential phenomena than
the above mentioned 3D effects. This is even more emphasized by our definition of RR, which
is evaluated separately in shadows, midtones, and highlights, and the minimum is taken as the
overall repeatability. As a result, the average RR of the 3D scene was 16 % while the RR of
the 2D scene was only 9 %. However, the average RR for individual combinations of scenes and
image sequences differ significantly, as shown in Table 4.

Table 4: Repeatability rate of FPs in image sequences for individual scenes and image sequences according
to Eq. (12), averaged over all FP detectors and image formats used.

Distance Lighting Viewpoint Average

2D 5 % 12 % 10 % 9 %
3D 23 % 5 % 20 % 16 %

Average 14 % 9 % 15 % 13 %

Scenes and image sequences. The most difficult setting is the lighting changing sequence of the
3D scene reaching an average RR of only 5 % and having very poor RR both in shadows, mid-
tones, and highlights. The difficulty is caused by changing shadows cast by the 3D structure,
strongly altering the appearance of the scene. The distance changing sequence of the 2D scene
also reaches an average RR of only 5 %. However, in this case, it is only caused by poor repeata-
bility of features in the shadows; RR of features in the midtones and highlights is comparable
with other image sequences.

FP detectors. The average repeatability rate of individual FP detectors is shown in Table 5.
Their performance reflects mainly their insensitiveness to image noise. While DoG and Fast
Hessian are practically insensitive (an average RR of 25 %), Harris and FAST are not (an average
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Table 5: Repeatability rate of FPs in image sequences for individual FP detectors according to Eq. (12),
averaged over both scenes, all image sequences, and all image formats used.

Harris DoG FastHes. FAST BRISK

20 % 25 % 25 % 19 % 5 %

RR of 20 % and 19 %, respectively). BRISK appeared to be very prone to image noise with the
lowest average RR of only 5 %. Detailed graphs of RR in image pairs for each individual FP
detector can be found in Appendix A. The RR for individual image formats is shown in Table 6.

HDR. The linear HDR yields an average RR of 0 %, which is caused by its poor performance
in the shadows. Almost no useful features are detected, so they can hardly be repeated. This
renders the linear HDR image format useless for contemporary FP detectors. However, we
believe that future “HDR-aware” FP detectors may exploit its full potential, e.g. using adaptive
thresholds.

LogHDR. The logarithmically transformed image (logHDR) performs much better (18 % on
average), primarily thanks to its improved repeatability of FPs in the shadows. However, this
is still not the best result among the tested image formats.

LDR, and contrast enhancement. The LDR format suffers from the absence of useful features in
extreme shadows, and in highlights. This naturally causes an average RR of 0 %. The contrast
enhancing pre-processing techniques (LDR.histeq and LDR.CLAHE ) partially compensate this
issue in a limited number of cases, as discussed in the previous section, but they also amplify
potential image noise. This results in FPs at random positions, RR of which cannot be high:
9 % and 2 %, respectively.

Tone mapping. The tone mapped images yield better repeatability than HDR and LDR formats.
The performance of all global TMOs is comparable (an average RR of 13 % – 24 %), while the
performance of local TMOs is more diverse (an average RR of 1 % – 26 %).

The most similar results among the global TMOs are those of gKiser12(t) and gReinhard02,
where the former is the temporal modification of the latter. See Table 6 and Fig. 9, where the
results of the two image formats almost overlap. This indicates that the temporal coherency as
implemented in gKiser12(t) has no significant effect on the stability of features in our setup.

Similarity can also be observed between the results of gLarson97, gReinhard02, and gMan-
tiuk08. The average RR of features in these formats is, however, rather low (13 % – 15 %). This
does not outperform even the 18% RR of logHDR.

The third and the second best average RR overall is achieved by gLogMap and gReinhard05,
respectively. Please note that gLogMap is similar to logHDR, but it is succeeded by gamma
correction. gReinhard05, on the other hand, is a tone mapper inspired by the human visual
system, involving sigmoidal nonlinearity. As shown in Tables 2 and 3 nearly no FPs were
detected in images produced by gReinhard05. Nonetheless, its RR is high. This means that
features in gReinhard05 are hard to detect, but once detected, they are stable. This complies
with the fact that gReinhard05 yielded the highest RR in the shadows amongst all image formats
(RR in the shadows Rs is usually the lowest one from the triplet Rs, Rm, Rh).

The image format yielding the best average RR of 26 % is the local tone mapper operating
in gradient domain lFattal02. It is one of the two image formats with the best distribution
of FPs; the other is lMantiuk06equ. However, the two formats yield different RR: 26 % and
20 %, respectively. This implies that lFattal02 accentuates features in a stable manner while
lMantiuk06equ does not, see Fig. 10. The edge-preserving multiscale TMO lFattal09 suffers
from the same problem, yielding low average RR as well (1 %).

According to the results of our evaluation, the most suitable image format for FP detection
is lFattal02. It accentuates the features so that many FPs can be detected in the images and
simultaneously the features are stable. Generally, a TMO tailored for current FP detectors
should obey two requirements: (i) Apply a non-linear (e.g., log or sigmoid) transformation to
the luminance followed by gamma correction to make the image display-referred, and (ii) enhance
local contrast while maintaining the noise level low to accentuate features.
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Table 6: Repeatability rate of FPs in image sequences according to Eq. (12), averaged over all FP detectors
used. Small gray numbers depict repeatability rate for shadows, midtones, and highlights (the % sign is left out
for better readability). The resulting repeatability rate is the minimum of each triplet.

2D 3D

Dist. Light. Viewp. Dist. Light. Viewp. Avg.

HDR 0 %
0 38 37

0 %
0 45 49

0 %
0 50 46

1 %
1 21 57

0 %
0 8 25

0 %
0 26 51

0 %

logHDR 6 %
6 33 37

18 %
18 59 62

8 %
8 46 42

37 %
37 37 45

4 %
4 14 15

33 %
34 33 47

18 %

LDR 0 %
0 33 35

1 %
1 47 50

0 %
0 47 44

0 %
0 36 43

1 %
1 16 10

0 %
0 41 60

0 %

LDR.histeq 4 %
4 36 38

3 %
3 39 43

2 %
2 54 53

30 %
30 34 34

6 %
8 6 8

9 %
9 30 17

9 %

LDR.CLAHE 1 %
1 39 22

2 %
2 51 39

8 %
8 49 35

2 %
2 30 37

2 %
2 16 11

0 %
0 38 56

2 %

gLogMap 12 %
12 33 35

28 %
28 61 51

18 %
18 43 41

32 %
46 32 35

11 %
11 13 14

30 %
38 30 41

22 %

gLarson97 1 %
1 36 37

9 %
9 48 55

4 %
4 50 44

35 %
38 38 35

8 %
8 11 9

22 %
39 27 22

13 %

gReinhard02 4 %
4 30 36

9 %
9 56 60

4 %
4 45 41

39 %
40 39 39

8 %
8 14 12

28 %
38 36 28

15 %

gKiser12(t) 3 %
3 29 36

11 %
11 59 53

3 %
3 45 41

37 %
40 39 37

7 %
7 14 11

28 %
38 36 28

15 %

gReinhard05 21 %
31 25 21

30 %
35 30 37

31 %
47 37 31

21 %
46 34 21

10 %
12 15 10

31 %
41 31 32

24 %

gMantiuk08 2 %
2 35 40

10 %
10 53 62

5 %
5 47 46

35 %
35 38 38

4 %
4 14 13

35 %
37 35 37

15 %

lReinhard02 1 %
1 32 37

7 %
7 52 59

6 %
6 46 43

25 %
25 37 37

3 %
3 13 13

33 %
42 33 35

13 %

lFattal02 16 %
16 36 36

34 %
34 61 62

38 %
38 48 45

29 %
47 29 39

12 %
12 13 15

28 %
38 28 45

26 %

lMantiuk06map 2 %
2 34 37

8 %
8 49 60

7 %
7 43 44

19 %
19 39 49

2 %
2 15 15

18 %
18 35 44

9 %

lMantiuk06equ 12 %
12 31 29

24 %
24 39 49

21 %
27 33 21

30 %
32 30 40

6 %
6 13 13

27 %
27 28 36

20 %

lFattal09 0 %
0 25 23

1 %
1 31 39

0 %
0 27 26

5 %
5 20 37

0 %
0 9 12

1 %
1 12 26

1 %

20



Figure 9: Repeatability rate of FPs with respect to the reference image according to Eq. (11), averaged
over all FP detectors used. (left) 2D scene, and (right) 3D scene. (top) Distance changing sequence, (middle)
lighting changing sequence, and (bottom) viewpoint changing sequence. RR in four different image formats is
plotted with different colors
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Figure 10: Difference in repeatability of FPs for the image formats lFattal02 (top) and lMantiuk06equ
(bottom). Parts of consecutive images from the viewpoint changing sequence of the 3D scene (from left to right:
17.5◦, 20.0◦, 22.5◦). Visible is the front part of the upper box. Stable FPs are marked as green circles (detected
in all three images), unstable FPs are marked as red diamonds
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5. Conclusions

This paper presents an evaluation of five different FP detectors using sixteen different image
formats capturing scenes with a high dynamic range of luminance. High dynamic range in the
test environments was achieved by illuminating a planar and a 3D scene with powerful tungsten
lights in a totally dark room. The scenes were captured in three image sequences with varying
camera viewpoints, camera distances, and scene lighting. The images of the scenes were processed
in various image formats including HDR images, single exposure LDR images and tone mapped
HDR images. The aim of the study was to evaluate the suitability of the image formats for FP
detection. The evaluation was based on the investigation of the distribution and repeatability
rate of FPs with respect to the image formats used.

Our results confirm the assumption that unprocessed linear HDR images are not suitable for
current FP detectors because features are detected only in bright areas of images. This is due to
the design of contemporary FP detectors, which assume a display-referred image as their input,
and compute some kind of a derivative threshold. This strategy is inefficient in a scene-referred
linear HDR image. This finding opens a promising avenue for future research into algorithms
able to deal directly with HDR images, e.g. through the use of adaptive thresholds.

We investigated the possible work-around, using tone mapping to convert HDR images into
standard display-referred LDR images. The global TMOs usually yield moderate repeatability,
but the number of detected features is rather low due to the extensive compression of local
contrast. This is disruptive for some FP detectors, e.g. for FAST. The local TMO, on the other
hand, yield many features because the contrast is enhanced locally. However, big differences in
repeatability between individual local TMOs exist, depending on how they accentuate features
(and possibly also noise).

Our findings suggest to use a local TMO which, firstly, applies a non-linear transformation
to the luminance (e.g., log or sigmoid) followed by gamma correction to make the image display-
referred, and, secondly, enhances local contrast to accentuate features while maintaining the
noise level low. This is important when using a FP detector sensitive to noise (e.g. Harris corner
detector, FAST, and particularly BRISK). Our results indicate that the TMO method of choice
may be lFattal02 [33].

Future work will involve comparison of FP descriptors, which are often used together with
FP detectors in practice.
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Appendix A. Extended Results

Detailed charts of repeatability rate of individual FP detectors are depicted in Fig. A.1 –
A.5.
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Figure A.1: Repeatability rate of the Harris FP detector with respect to the reference image, according to
Eq. (11). (left) HDR and LDR, (center) global TMOs, (right) local TMOs. (top) distance changing sequence,
(middle) lighting changing sequence, (bottom) viewpoint changing sequence for 2D and 3D scenes
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Figure A.2: Repeatability rate of the DoG FP detector with respect to the reference image, according to Eq. (11).
(left) HDR and LDR, (center) global TMOs, (right) local TMOs. (top) distance changing sequence, (middle)
lighting changing sequence, (bottom) viewpoint changing sequence for 2D and 3D scenes
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Figure A.3: Repeatability rate of the Fast Hessian FP detector with respect to the reference image, according to
Eq. (11). (left) HDR and LDR, (center) global TMOs, (right) local TMOs. (top) distance changing sequence,
(middle) lighting changing sequence, (bottom) viewpoint changing sequence for 2D and 3D scenes
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Figure A.4: Repeatability rate of the FAST FP detector with respect to the reference image, according to
Eq. (11). (left) HDR and LDR, (center) global TMOs, (right) local TMOs. (top) distance changing sequence,
(middle) lighting changing sequence, (bottom) viewpoint changing sequence for 2D and 3D scenes
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Figure A.5: Repeatability rate of the BRISK FP detector with respect to the reference image, according to
Eq. (11). (left) HDR and LDR, (center) global TMOs, (right) local TMOs. (top) distance changing sequence,
(middle) lighting changing sequence, (bottom) viewpoint changing sequence for 2D and 3D scenes
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Appendix B. Settings of FP Detectors and TMOs

Table B.1 lists the parameter values of FP detectors, and Table B.2 lists the parameter values
of tone mapping operators used in the experiments.

Table B.1: Parameter values of FP detectors used in our experiments. Parameters not listed here were set to
default values.

FP Detector Implementation Parameter Value

Harris Matlab R2014b MinQuality 0.05
detectHarrisFeatures()

Shi-Tomasi Matlab R2014b MinQuality 0.2
detectMinEigenFeatures()

DoG VLFeat library 0.9.20 [44] PeakThresh 8
vl sift() EdgeThresh 5

Fast Hessian Matlab R2014b MetricThreshold 3000
detectSURFFeatures()

FAST Matlab R2014b MinContrast 0.2
detectFASTFeatures()

BRISK Matlab R2014b MinContrast 0.2
detectBRISKFeatures()
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Table B.2: Parameter values of tone mapping operators used in our experiments. Parameters not listed here were
set to default values.

TM Operator Implementation Parameter Value Gamma

gLogMap HDR Toolbox for Matlab 1.0.7 2.2
LogarithmicTMO()

gLarson97 HDR Toolbox for Matlab 1.0.7 2.2
WardHistAdjTMO()

gReinhard02 HDR Toolbox for Matlab 1.0.7 2.2
ReinhardTMO()

gReinhard05 PFS tools 2.0.3 1.6
pfstmo reinhard05

gMantiuk08 PFS tools 2.0.3 -
pfstmo mantiuk08

lReinhard02 HDR Toolbox for Matlab 1.0.7 pAlpha -1 2.2
ReinhardTMO() pWhite -1

pLocal true
pPhi 6.0

lFattal02 PFS tools 2.0.3 -
pfstmo fattal02

lMantiuk06map PFS tools 2.0.3 2.2
pfstmo mantiuk06

lMantiuk06equ PFS tools 2.0.3 equalize-contrast 1.0 2.2
pfstmo mantiuk06

lFattal09 Fattal’s code [45] wavelet type 1 4.0
EAW(), iEAW() dist func 1

sigma 1
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