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Abstract—Many algorithms have been proposed to accelerate
regular expression matching via mapping of a nondeterministic
finite automaton into a circuit implemented in an FPGA. These
algorithms exploit unique features of the FPGA to achieve high
throughput. On the other hand the FPGA poses a limit on
the number of regular expressions by its limited resources.
In this paper, we investigate applicability of NFA reduction
techniques – a formal aparatus to reduce the number of states
and transitions in NFA prior to its mapping into FPGA. The
paper presents several NFA reduction techniques, each with a
different reduction power and time complexity. The evaluation
utilizes regular expressions from Snort and L7 decoder. The best
NFA reduction algorithms achieve more than 66% reduction in
the number of states for a Snort ftp module. Such a reduction
translates directly into 66% LUT-FF pairs saving in the FPGA.

I. INTRODUCTION

The number of rules in Network Intrusion Detection Sys-
tems (NIDS)[1] grows each year as grows the number of
threats and attacks on the Internet. Many of these rules include
Regular Expressions (RE) to match malicious strings in a
packet payload. Regular expression matching is also used in
other network applications. For example L7 decoder[2] uses
RE to identify application protocols or hidden traffic.

Current processors do not provide sufficient processing
power to match large sets of regular expressions on multigi-
gabit speeds [3]. Therefore many hardware architectures have
been created to accelerate RE matching using FPGA [4], [5],
[6]. Nevertheless, these architectures are able to achieve high
speed only for small sets of REs due to the limited FPGA
resources. The hardware architectures based on Deterministic
Finite Automata (DFA) [3], [7], [4] are limited by the size
and speed of a memory as the determinization leads to a
significant growth of the number of states and transition tables.
The architectures based on Nondeterministic Finite Automata
(NFA) [8], [5], [9] are limited by the size and capacity of
FPGA chips since the transition table is mapped directly into
the FPGA logic.

With the growing amount of attacks, worms and viruses,
NIDS systems have to match more and more REs. It means that
the amount of required FPGA logic increases not only due to
the increasing speed of network links but also due to the growth
of RE set. It is important to reduce the amount of consumed
FPGA logic to support more REs. A significant effort has
already been done in this direction. Clark reduced [5] the size
of the NFA circuit by a shared character decoder and by a
prefix sharing. Lin extended Clark’s architecture by infix and

suffix sharing [6]. Subsequently, Sourdis improved mapping
of NFA to FPGA by better representation of the counting
constraint [9] and also improved representation of character de-
coders. Becchi introduced an optimization of the NFA in [10]
which is close to the NFA reduction. The optimization is based
on modified subset construction algorithm. The shortcomings
of this method is its sensitivity to a placement of epsilon
transitions and it does not allow to share suffixes belonging
to a single regular expression. Unfortunately no comparison
is given with respect to NFA reduction. Moreover, the NFA
reduction performs better according to the results in this paper.

Our focus and main contribution is a study of NFA re-
duction techniques in the field of RE matching in FPGA. In
particular,

• we survey several variants of NFA reduction tech-
niques,

• we evaluate NFA reductions on NIDS REs and we
provide synthesis results for the FPGA technology,

• we modify the NFA reduction to fit the purpose of RE
searching.

The NFA reduction techniques are well known in the
research field of formal verification but, to the best of our
knowledge, have not been utilized in the field of regular
expression matching in the FPGA. The NFA reduction forms a
formal aparatus to reduce the number of states and transitions
in the NFA. The reduction may easily complement most of
the NFA-to-FPGA mapping algorithms and render the ad hoc
optimizations unnecessary.

The article is divided into five sections. Brief summary
of the NFA reduction algorithms and their utilization for
regular expression matching follows the introduction. The
NFA reduction algorithms are extended in the third chapter
to identify the matched expression. The achieved results are
presented in the fourth chapter, followed by the conclusion.

II. NFA REDUCTION

Regular expression matching on the FPGA may utilize
reconfigurability of the FPGA and optimize the hardware
architecture to a given set of regular expressions. The circuit is
not usually constructed from the regular expressions directly.
The expressions are transformed into the NFA and the NFA is
mapped into the FPGA. The NFA reduction should be applied
in between these two steps to remove a redundancy in the
assembled NFA. The redundancy of the NFA automaton is



caused by REs themselves, by the RE to NFA conversion and
by the similarity between the RE. Removing the redundancy
impacts the size of the circuit implemented in an FPGA
directly. The proposed workflow is shown in Fig. 1.
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Fig. 1. Workflow with NFA reduction

In case of the DFA the redundancy can be eliminated by
minimization algorithm [11].

Since the NFA minimization is a PSPACE-complete prob-
lem [12] it is not applicable for large automata which are
typically derived from NIDS sets of REs. Therefore many
algorithms trade off the time complexity for the degree of the
NFA minimization. It is possible to significantly reduce the
NFA even in the less than the polynomial complexity. Most
of these NFA reduction algorithms have been used to reduce
labeled transition systems [13], [14], [15] in formal verification
and in a language theory [16], [17], [18], [19]. But we are not
aware of any study that applies these algorithms in the field
of RE matching engines targeting FPGAs.

The following paragraphs present the reduction algorithms
based on an equivalence relation and a preorder relation on a
set of NFA states. We pick these two approaches due to their
low time complexity but other NFA reduction approaches with
higher complexity may be used as well.

The equivalence based reduction algorithm uses left and
right equivalence over NFA states. The reduction algorithm
merges right (left) equivalent states. The algorithm repeats
reduction by left and right equivalence until further state merge
is impossible. The time complexity of the algorithm for NFA
M = (Q,Σ, δ, S, F ) is O(|δ|log|Q|) and space complexity is
O(|δ| + |Q|) [18]. For more information see [16], [17], [18],
[13].

The preorder based reduction algorithms make use of left
and right preorder over NFA states. The reduction algorithms
combine left and right preorders in various ways to identify
mergeable states. Three different algorithms ware selected. The
first algorithm repeats reduction by left and right preorder until
further state merge is impossible [20]. The second algorithm
uses both left and right preorders simultaneously in each
reduction step and repeats those steps until no further reduction
is possible [18]. The last one constructs mediated preorder
from left and right preorder and the mediated preorder is
repeatedly used to determinate mergeable states [15]. Preorder
based reduction algorithms are more powerful in terms of NFA
reduction then equivalence based [18]. An efficient algorithm
is able to compute the preorder relation on NFA in time
complexity of O(|Σ||P ||Q|+ |P ||δ|) and space complexity of
O(|Σ||P ||Q|), where P is the size of a final partition [15]. For
detailed descriptions see [19], [18], [13], [15].

III. NFA REDUCTION FOR REGULAR EXPRESSIONS

SEARCHING

Many network applications need to know which RE is
matched. For example, NIDS rises an alert according to

the matched RE, L7 decoder identifies different application
protocols by different REs. Information about a matched RE
is represented by final states in generated NFA. Unfortunately,
the NFA reductions join the final states and the relation
between the final states and the REs is lost. The reduced NFA
is still able to detect but not to identify which RE is matched.

Therefore we define modified NFA and alter the reduction
method to preserve final states together with the relationship
to the REs.

We define Multi-language Nondeterministic Finite Au-
tomaton (MNFA), which extends the NFA definition by a finite
set of labels (corresponding to REs) and mapping of labels to
the final states.

Definition 3-1. Multi-language nondeterministic finite
automaton (MNFA) is seven-tuple M = (Q,Σ, δ, S, F, L, l)
where:

L is a finite set of labels of accepted languages
(REs)

l ⊆ FxL is a function mapping the final states to the labels
of accepted languages

The final states are marked by the labels to represent
different REs. Those states with the different labels can not
be in equivalence relation and can not be joined. This way the
algorithm preserves at least one final state for every RE.

We can define an equivalence and preorder relations on
MNFA.

Definition 3-2. Right and left equivalence relation on
MNFA M . Let M = (Q,Σ, δ, S, F, L, l) be MNFA. Then ⊆R

is defined as coarsest equivalence relation on Q satisfying:

∀p, q ∈ F : p ≡R q ⇒ l(p) = l(q) (1a)

≡R ∩(F × (Q\F )) = ∅ (1b)

∀p, q ∈ Q, ∀a ∈ Σ,

p ≡R q ⇒ [∀q
′

∈ δ(q, a), ∃p
′

∈ δ(p, a), q
′

≡R p
′

]∧

[∀p
′

∈ δ(p, a), ∃q
′

∈ δ(q, a), p
′

≡R q
′

] (1c)

Left equivalence relation ≡L is symmetrically defined on
reverse MNFA.

Definition 3-3. Right and left preorder relation on
MNFA M . Let M = (Q,Σ, δ, S, F, L, l) be MNFA. Then ⊆R

is defined as coarsest preorder relation on Q satisfying:

∀p, q ∈ F : p ⊆R q ⇒ l(p) = l(q) (2a)

⊆R ∩(F × (Q\F )) = ∅ (2b)

∀p, q ∈ Q, ∀a ∈ Σ,

(p ⊆R q ⇒ ∀q
′

∈ δ(q, a), ∃p
′

∈ δ(p, a), p
′

⊆R q
′

) (2c)

Left preorder relation ⊆L is symmetrically defined on reverse
MNFA.

Despite the altered definition it is still possible to calculate
these relations with algorithms mentioned in Section II. The
only modification to these algorithms is caused by the first
condition in the definition (Equations 1a and 2a) which allows
the equivalency of final states belonging only to the same RE.
The condition affects the calculation of the initial relation. The
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Fig. 2. Reduction of: a) MNFA by equivalence b) NFA by equivalence c) NFA by modified subset construction. The (M)NFA was constructed from REs:
/Img:(tool|wool)/, /a.*ef|aef/ and /abc/

rest of reduction algorithm remains unaltered. Overall compu-
tational complexity of reduction algorithms is not affected by
altered definition. The difference between NFA and MNFA
reduction is shown in Fig. 2. Both reductions use equivalence
relations. It can be seen that the MNFA reduction preserves
final states and thus is able to recognize matched RE. Reduced
NFA contains one shared final state and can detect only a
match. Since more restrictions are introduced for equivalence
and preorder relations, the reduction power of the algorithms
for MNFA is lower than the reduction power of the algorithms
for NFA. This can be seen in Fig. 2, where a reduced NFA
consists of 13 states whereas a reduced MNFA consists of 15
states.

IV. EVALUATION

The algorithms of MNFA and NFA reductions are evaluated
on a set of 25 randomly selected modules of the Snort IDS and
on the REs available in L7 decoder. Netbench framework [21]
is used to evaluate all algorithms. First, the algorithms are
evaluated in terms of reduction of NFA states and transi-
tions. Individual REs are converted into small NFAs and
subsequently these NFAs are combined into a single NFA.
In case of the modified subset construction (MSC) algorithm
the NFA construction is performed as described in [3]. In case
of other reduction algorithms, all ǫ–transitions are removed
after automata union. Subsequently each reduction algorithm
is performed and the results are compared. The same procedure
is also used to evaluate the MNFA reduction algorithms.

Fig. 3 shows the results of average NFA and MNFA state
reduction for all 25 Snort sets. It can be seen that the reduction
algorithm based on the MSC is among the least efficient
algorithms. We can also see that the NFA reduction algorithms
based on the equivalence (EQ), repeated use of preorders
(PRE1), simultaneous use of preorders (PRE2) and mediated
preorders (MPRE) offer almost the same reduction power
despite the different time complexity and the fact that preorder
based algorithms have in theory better reduction power than
the equivalence ones. As can be seen in Fig. 3, the algorithms
exhibit similar results in terms of transitions as well.

We also estimate the amount of utilized FPGA resources
which is needed to map the reduced NFA and MNFA into the
FPGA. We use one of the basic NFA mapping methods and two
of the advanced methods. The basic one is Clark’s [22] method
with shared decoder of characters and character classes, the
first advanced one is Sourdis’ [9] with shared character
classes, blocks of constrained repetitions and static subpatterns
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Fig. 3. Reduction of (M)NFA states and transitions for 25 Snort modules,
various reduction algorithms.

and the second advanced one is at-most two-hot encoding
(AMTH) [23]. The amount of lookup tables (LUT), flip-flops
(FF) and LUT-FF pairs after Place&Route (PAR) for all three
methods is given in Table I. We used Xilinx Virtex-5 155
LXT FPGA for the evaluation. The NFA and MNFA reduction
is carried out by algorithm which achieves the best results
in previous experiments. Columns NFA and MNFA indicate
achievable reduction of LUTs, FFs and LUT-FF pairs using
the NFA and MNFA reduction algorithms. It can be seen that
significant reduction of utilized FPGA resources is achieved for
the basic Clark’s method of mapping. For more sophisticated
Sourdis’ method the reduction is lower but still quite high in
some cases. The results demonstrate how the NFA reduction
complements the optimization of the mapping algorithms. The
impact of NFA and MNFA reductions on maximal achievable
frequency after PAR is depicted in Table II.

V. CONCLUSIONS

The paper described several NFA reduction algorithms
with polynomial time complexity and provided comparison
of these algorithms on the NFAs. According to the results
the algorithms provided a significant reduction for particular
sets of REs. For example, NFA states were reduced by more
than 35% in the NFA generated from 25 Snort modules. The
results also showed that the NFA reduction helps to save FPGA
resources and is complementary to the mapping optimizations.
The NFA reduction joins all final states to a single state. As
a result the matched RE can not be identified. Therefore we
have defined MNFA automaton and defined MNFA reduction
which is able to preserve final states. The MNFA reduction
provides worse results than NFA reduction which is in line
with the expectation. Nevertheless, NFA states are still reduced



TABLE I. REDUCTION OF FPGA LOGIC UTILIZATION AFTER PAR FOR XILINX VIRTEX-5 155 LXT FPGA, VARIOUS NFA AND MNFA REDUCTIONS

Clark [22] Sourdis [9] AMTH [23]

NFA MNFA NFA MNFA NFA MNFA

LUT FF LUT-FF LUT FF LUT-FF LUT FF LUT-FF LUT FF LUT-FF LUT FF LUT-FF LUT FF LUT-FF

Rule set [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

L7 15.53 20.36 17.38 8.36 9.86 8.00 13.93 18.54 14.45 8.20 9.72 6.52 21.15 21.11 20.86 9.43 9.55 8.77

backdoor 28.29 29.94 30.02 15.90 15.96 15.56 15.85 18.38 19.26 2.26 2.85 3.42 30.53 31.92 32.09 17.29 18.37 16.68

web-php 40.16 47.66 40.79 20.49 22.81 19.21 39.27 45.89 40.16 20.54 22.47 28.14 33.75 46.99 35.42 16.88 21.05 17.56

ftp 71.00 65.77 65.55 9.78 8.70 8.72 37.18 32.32 34.39 10.29 10.63 8.14 57.25 65.60 57.75 10.45 10.92 10.35

nntp 57.67 58.10 57.76 1.37 1.26 1.33 33.38 25.60 32.28 6.85 4.78 7.31 57.00 57.85 57.20 2.12 1.81 2.05

voip 39.11 47.48 39.73 14.67 14.61 14.17 21.01 39.33 23.80 8.89 11.52 9.57 48.75 38.68 38.68 15.81 17.45 15.35

Snort 25 35.36 37.52 36.60 10.31 10.62 11.32 23.45 26.13 25.67 10.22 11.52 10.69 33.06 37.20 33.77 10.83 11.75 10.60

TABLE II. IMPACT OF (M)NFA REDUCTIONS ON MAXIMAL

ACHIEVABLE FREQUENCY AFTER PAR FOR XILINX VIRTEX-5 155 LXT

Clark [22] Sourdis [9] AMTH [23]

MNFA NFA MNFA NFA MNFA NFA

Rule set [%] [%] [%] [%] [%] [%]

L7 7.31 -13.65 7.29 -13.82 0.37 -33.52

backdoor 0.34 3.36 0.00 2.68 -0.27 -0.82

web-php -10.44 -17.70 -10.44 -17.52 14.41 -10.65

ftp 0.00 -29.17 0.00 -29.17 0.00 -19.19

nntp 0.00 0.00 0.00 0.00 0.00 0.96

voip 0.00 26.37 0.00 26.37 9.21 8.94

Average (Snort 25) -0.69 -5.14 -0.72 -5.00 0.23 -4.46

by more than 10% for 25 selected Snort modules. We have
also evaluated the impact of NFA and MNFA reduction on
different mappings algorithms. The result showed that the NFA
reduction has a direct impact on the FPGA logic utilization
even for highly optimized mapping of NFA to FPGA. The
NFA reduction was able to decrease the amount of LUT-FF
pairs by 65.55% for Snort ftp module and MNFA reduction
was able to decrease the amount of LUT-FF pairs by 28.14%
for Snort web-php module.
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