
Incremental Cholesky Factorization
for Least Squares Problems in Robotics ?

Lukas Polok, Marek Solony, Viorela Ila, Pavel Smrz and Pavel Zemcik ∗

∗ Brno University of Technology, Faculty of Information Technology.
Bozetechova 2, 612 66 Brno, Czech Republic

({ipolok,isolony,ila,smrz,zemcik}@fit.vutbr.cz)

Abstract: Online applications in robotics, computer vision, and computer graphics rely on
efficiently solving the associated nolinear systems every step. Iteratively solving the non-linear
system every step becomes very expensive if the size of the problem grows. This can be mitigated
by incrementally updating the linear system and changing the linearization point only if needed.
This paper proposes an incremental solution that adapts to the size of the updates while keeping
the error of the estimation low. The implementation also differs form the existing ones in the
way it exploits the block structure of such problems and offers efficient solutions to manipulate
block matrices within incremental nonlinear solvers. In this work, in particular, we focus our
effort on testing the method on simultaneous localization and mapping (SLAM) applications,
but the applicability of the technique remains general. The experimental results show that our
implementation outperforms the state of the art SLAM implementations on all tested datasets.

Keywords: Robotics, Least squares problems, SLAM, Incremental solvers

1. INTRODUCTION

Many problems in robotics, computer vision and computer
graphics can be formulated as nonlinear least square opti-
mization. The goal is to find the optimal configuration
of the variables that maximally satisfy the set of non-
linear constraints. For instance in robotics, SLAM finds
the optimal configuration of the robot positions and/or
landmarks in the environment given a set of measurements
from the robot sensors. In computer vision, structure from
motion (SfM) and bundle adjustment (BA) problems are
mathematically equivalent to SLAM, where the variable
set includes all camera poses and 3D object points, with
some slight differences on the types of constraints, in
computer vision we emphasise on uncalibrated setups and
associated self-calibration methods.

Finding the optimal configuration, often called the maxi-
mum likelihood, is obtained by solving a sequence of least-
squares minimization problems. In practice, the initial
problem is nonlinear and it is usualy addressed by repeat-
edly solving a sequence of linear systems in an iterative
Gauss-Newton (GN) or Levenberg-Marquardt (LM) non-
linear solver or recently used in SLAM, Powell’s Dog-Leg
trust-region method Rosen et al. (2012). The linearized
system can be solved either using direct methods, such as
matrix factorization or iterative methods, such as conju-
gate gradients. Iterative methods are more efficient from
the storage (memory) point of view, since they only require

? The research leading to these results has received funding
from the European Union, 7th Framework Programme, grants
316564-IMPART and 247772-SRS, Artemis JU grant 100233-R3-
COP, and the IT4Innovations Centre of Excellence, grant n.
CZ.1.05/1.1.00/02.0070, supported by Operational Programme Re-
search and Development for Innovations funded by Structural Funds
of the European Union and the state budget of the Czech Republic.

access to the gradient, but they can suffer from poor
convergence, slowing down the execution. Direct methods,
on the other hand, produce more accurate solutions and
avoid convergence difficulties but they typically require a
lot of storage.

The challenge appears in online applications, where the
state changes every step. In an online SLAM application,
for example, every step the state is incremented with
a new robot position and/or a new landmark and it
is updated with the corresponding measurements. For
very large problems, updating and solving the nonlinear
system in every step can become very expensive. Every
iteration of the nonlinear solver involve building a new
linear system using the current linearization point. This
can be alleviated by changing the linearization point only
when the error increases. This means solving the nonlinear
systems only when needed and in between providing an
approximate estimate of the solution computed at the last
linearization point.

The solution is to incrementally update the linear system
in the already factorized form and perform one backsub-
stitution to compute the solution. This idea was intro-
duced in Kaess et al. (2008) where the factor R, obtained
applying QR factorization of the linear system matrix, is
updated every step using Givens rotations. This method
becomes advantageous when the batch steps are performed
periodicaly. The batch steps involve changing the lineariza-
tion points by solving the nonlinear system. They are
needed for two important reasons; a) the error increases if
the same linearization point is kept for a long time and b)
the fill-in of the factor R increases with the incremental
updates slowing down the backsubstitutions. Therefore,
the system proposed in Kaess et al. (2008) performs such



periodic updates, typically every 10 or every 100 steps to
obtain efficient incremental solutions.

The new method introduced in this paper has the advan-
tage that it adapts to the size of the updates and performs
batch steps only when needed while still keeping the option
to set the frequency of the batch steps. It is based on
several optimizations of the incremental algorithm and its
implementation a) selects between three types of updates,
depending on the size of the the update and the error
b) uses double-constrained ordering by blocks c) performs
backsubstitution by blocks d) uses efficient block-matrix
scheme for storage and arithmetic operations. These op-
timizations allow for very fast online execution of the
algorithm and provide very accurate solutions every step.

2. RELATED WORK

Several successful implementations of nonlinear least
squares optimization techniques for SLAM already exist
and have been used in robotic applications. In general,
they are based on similar algorithmic framework, repeat-
edly applying Cholesky or QR factorizations in an iterative
Gauss-Newton or Levenberg-Marquardt nonlinear solver.
g2o Kümmerle et al. (2011) is an easy to use, open-
source implementation which has been proven to be very
fast in batch mode. It exploits the sparse connectivity
and operates on the block-structure of the underlying
graph problem. A similar scheme was initially imple-
mented in SSBA Konolige (2010) and SPA K. Konolige
and R.Vincent (2010) and it is based on block-oriented
sparse matrix manipulation. Using blocks is a natural way
to optimize the storage, nevertheless, taking care about
the layout of the individual blocks in the memory is very
important, otherwise the overhead of handling the blocks
can easily outweigh the advantage of cache efficiency. Our
implementation takes care about this aspect, providing
increased efficiency.

However, in SLAM the state changes every step when
new observations need to be integrated into the system.
For very large problems, updating and solving every step
can become very expensive. Incremental smoothing and
mapping (iSAM) allows efficiently solving a nonlinear
optimization problem in every step Kaess et al. (2008).
The implementation incrementally updates the R factor
obtained from the QR factorization and performs back-
substitution to find the solution. The sparsity of the R
factor is ensured by periodic reordering. Recently, the
Bayes tree data-stucture Kaess et al. (2010, 2011, 2012)
was introduced to enable a better understanding of the
link between sparse matrix factorization and inference
in graphical models. The Bayes tree was used to obtain
iSAM2 Kaess et al. (2011, 2012), which achieves high effi-
ciency through incremental variable reordering and fluid
relinearization, eliminating the need for periodic batch
steps. When compared to the existing methods, iSAM2
performance finds a good balance between efficiency and
accuracy. But still the complexity of maintaining the Bayes
tree data structure can introduce several overheads.

The solution proposed in this paper provides accurate so-
lutions every step and has an increased efficiency through
above mentioned optimizations. The paper is structured
as follows. The next section succinctly formalizes SLAM

as a nonlinear least squares problem. Incremental updates
are described in Section 4. Then, in Section 5 we introduce
the new algorithm and the characteristics of our new im-
plementation. In the experimental evaluation in Section 6
we show the increased efficiency of our proposed scheme
over the existing implementations. Conclusions and future
work are given in Section 7.

3. SLAM AS A NONLINEAR LEAST SQUARES
PROBLEM

In robotics, SLAM is often formulated as a nonlinear
least squares problem Dellaert and Kaess (2006), which
estimates a set of variables θ = [θ1 . . . θn] containing
the robot trajectory and the position of landmarks in
the environment, given a set of measurement constraints
z between those variables. The constraints come from
control inputs and measurements (odometric, vision, laser,
etc.). The joint probability distribution can be written as:

P (θ, z) ∝ P (θ0)

n∏
z

P (zk | θik , θjk), (1)

where P (θ0) is the prior and zk are the constraints between
the variables θik and θjk . The goal is to obtain the
maximum likelihood estimate (MLE) for all variables in
θ, given the measurements in z:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z)} . (2)

In SLAM, those constraints involve rotations and are
nonlinear. For every measurement zk, we assume Gaussian
distributions:

zk = hk(θik , θjk)− vk , (3)

P (zk | θik , θjk)∝ exp

(
−1

2
‖ hk(θik , θjk)− zk ‖2Σk

)
,(4)

where h(θik , θjk) is the nonlinear measurement function,
and where vk is the normally distributed zero-mean noise
with the covariance Σk. Finding the MLE from (2) is done
by solving the following nonlinear least squares problem:

θ∗ = argmin

{
m∑

k=1

‖hk(θik , θjk)− zk‖2Σk

}
, (5)

where we minimize the sum of squared residual of the type:

rk = hk(θik , θjk)− zk . (6)

Gathering all residuals in r(θ) = [r1, . . . , rm]
>

and the
measurement noise in Σ = diag([Σ1, . . . ,Σm]) , the sum
in (5) can be written in the vectorial form and expressed
in terms of 2-norm:

‖r(θ)‖2Σ = r>(θ) Σ−1r(θ) =
∥∥∥Σ−>\2r(θ)

∥∥∥2

. (7)

Methods such as Gauss-Newton or Levenberg-Marquardt
are often used to solve the nonlinear problem in (5) and
this is usualy addressed by iteratively solving the sequence
of linear systems. Those are obtained based on a series of
linear approximations of the nonlinear functions r around
the current linearization point θ0:

r̃(θ0) = r(θ0) + J(θ0)(θ − θ0) , (8)

where J is the Jacobian matrix which gathers the deriva-
tive of the components of r(θ0). The linearized problem to
solve becomes:

δ∗ = argmin ‖A δ − b‖2 , (9)



where theA = Σ−>\2J is the system matrix, b = −Σ−>\2r
the right hand side (r.h.s.) and δ = (θ−θ0) the correction
to be calculated. This is a standard least squares problem
in δ. For SLAM problems, the matrix A is in general
sparse, but it can become very large when the robot
performs long trajectories. The normalized system has the
advantage of remaining of the size of the state even if the
number of measurements increases:

δ∗ = argmin ‖Λδ − η‖2 , (10)

where Λ = A>A is the information matrix and η = A>b
is the information vector.

3.1 Linear Solver

The linearized version of the problem introduced above
can be efficiently solved using sparse direct optimization
methods based on factorizing the system matrices A or Λ
followed by backsubstitution.

QR factorization can be applied directly to the matrix
A in (9), yielding A = Q R. The solution δ can be
directly obtained by backsubstitution in Rδ = d where
d = R−> A> b. Note, that Q is not explicitly formed;
instead b is modified during factorization to obtain d.

Cholesky factorization yields Λ = L L>, where L = R> is
the Cholesky factor, and a forward and back substitutions
on Ld = A>b and L> δ = d first recovers d, then the
actual solution δ. In general, QR factorization has better
numerical properties but Cholesky factorization performs
faster.

3.2 Incremental SLAM

Online robotic applications require fast and accurate
methods for the estimation of the current position of the
robot and of the map. In an online application, the state is
incremented with a new robot position and/or a new land-
mark every step and it is updated with the corresponding
measurements.

The system in (9) can be incrementally built by appending
the matrix A with new columns corresponding to each new
variable (pose/landmark) and new rows corresponding
to each measurement. For each new measurement, the
new block row is sparse and the only nonzero elements
correspond to the Jacobians of the new residual.

For the normalized system in (10), the size of the matrix
increments in number of rows and columns with the size
of each new variable and it is updated by adding the new
information to Λ and η. For simplicity of the notations,
in the following formulations, we drop the k subindices
since it will always refer to the last measurement, instead,
the system matrices are split in parts that change (e.g.
Λ22) and parts that remains unchanged (e.g. Λ11 and
Λ21). To match with the formulation in section 3, we keep
the subindex k for the kth residual and its corresponding
covariance. With that, the update step can be written as:

Λ̃ =

(
Λ11 Λ>21
Λ21 Λ22 + Ω

)
; η̃ =

[
η1

η2 + ω

]
, (11)

where Ω = H>Σ−1
k H, ω = −HΣ

−1\2
k rk and H is:

H =
[
Jj
i . . . 0 . . . J i

j

]
, (12)

Jj
i and J i

j are the derivatives of the r(·) function with
respect to θi and θj . The sparsity and the size of the Ω
matrix are important for the incremental updates of the
system:

Ω =



Jj
i Σ−1

k Jj
i

>
. . . 0 . . . Jj

i Σ−1
k J i

j
>

...
...

0 . . . 0
...

...

J i
j Σ−1

k Jj
i

>
. . . 0 . . . J i

j Σ−1
k J i

j
>


. (13)

For very large problems, updating every step become
very expensive. Therefore, this paper proposes an efficient
method to update directly the matrix factorization only
when needed and provide good estimation every step.

4. INCREMENTALLY UPDATING THE CHOLESKY
FACTOR

In this section we show how to directly update the
Cholesky factor L = R> in order to avoid unnecessary
and expensive matrix factorizations every step. Observe
that in (11) only a part of the information matrix and the
information vector is changed in the update process and
the same happens with the lower trinagular factor L. The
updated L̃ factor and the corresponding r.h.s. d̃ can be
written as:

L̃ =

(
L11 0

L21 L̃22

)
; d̃ =

[
d1

d̃2

]
. (14)

From Λ̃ = L̃ L̃>, (11) and (14) it derives:

Λ22 + Ω = L21 L
>
21 + L̃22 L̃

>
22 , (15)

and the part of the L̃ factor that changes after the update
can be computed by applying Cholesky decomposition to
a reduced size matrix:

L̃22 = chol(Λ22 + Ω− L21 L
>
21) , (16)

L̃22 = chol(Λ̃22 − L21 L
>
21) , (17)

L̃22 = chol(L22 L
>
22 + Ω) . (18)

Further in this paper we will refer to (17) as Lambda-

updates because it uses parts of the Λ̃ to update L and
to (18) as Omega-updates because it directly uses Ω to
update L.

The part of the r.h.s. affected by the new measurement
can also be easily updated:

d̃2 = L̃22\(η2 + ω − L21 d1) (19)

d̃2 = L̃22\(η̃2 − L21 d1) (20)

where the \ is the matrix left division operator. After

obtaining L̃ and d̃, backsubstitution is performed to find
the solution of the linear system L̃> δ = d̃.

In mobile robotic applications, odometric measurements
have higher rate but they link only consecutive robot



0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 2000 4000 6000 8000 10000

n
u

m
b

er
 o

f 
n

o
n

-z
er

o
 e

le
m

en
ts

 

variables 

AMD by elements AMD by blocks

Constrained AMD by blocks Incremental L

Fig. 1. The comparison in terms of nonzero elements of
several ordering heuristics and the actual number of
non-zero elements in Incremental L.

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

4.5E+04

5.0E+04

0 2000 4000 6000 8000 10000

n
u

m
b

er
 o

f 
n

o
n

-z
er

o
 e

le
m

en
ts

 

variables 

AMD by blocks Constrained AMD by blocks Incremental L

Fig. 2. The fill-in relative to the best heuristic in Fig.1,
which is AMD by elements.

poses, which translate in small Ω sizes and fast updates.
Loop-closure involve links between variables far apart in
the system, and the updates can be slower. Next section
proposes solutions to those problems.

5. IMPLEMENTATION DETAILS

Online applications such as SLAM, require extremely fast
methods for building, updating and solving the sequence
of linearized systems. In this section, we introduce several
optimizations towards high performance SLAM based on
incremental updates of the factored representation.

5.1 Adaptive updates

The proposed methodology adapts to the most favourable
incremental update scheme, depending on the size of the
updates. It considers three ways to update the system: 1)
Omega-updates, 2) Lambda-updates and 3) updating the
entire L, and applies heuristics to select the best strategy.
Omega-updates in (18) are fast for small-size Ω because
they involve the multiplication of small matrices L22 L

>
22

but with large fill-in. Therefore, this is not suitable when
Ω is obtained from measurements that are far apart (e.g.
loop-closure). In this case Lambda-updates in (17) are
faster since they involve the multiplication of very sparse
matrices L21 L

>
21.

Updating very large loops becomes expensive due to book-
keeping. When loop length approaches the number of vari-
ables in the system, recalculating L by applying Cholesky
decomposition to the Λ matrix becomes more efficient.
Full factorization can be slow, however, due to the fact
that the ordering heuristics are applied to the entire Λ, it
considerably reduces the fill-in of the factor L and speeds
up the backsubstitution.

5.2 Efficient ordering strategies

The fill-in of the factor L directly affects the speed of the
backsubstitution and the updates. Its sparsity depends
on the order of the rows and columns of the matrix Λ,
called variable ordering. Unfortunately, finding an ordering
which minimizes the fill-in of L is NP-complete. Therefore,
heuristics have been proposed in the literature P. Amestoy
and Duff (2004) to reduce the fill-in of the result of the
matrix factorization. In our implementation we use con-
strained AMD ordering, available as a part of SuiteSparse
family of libraries Davis (2006).

In an incremental SLAM process, the new variable, either
the next observed landmark or the next robot pose, is
always linked to the current pose in the representation.
In order to be able to perform efficient incremental up-
dates on the Cholesky factor, the last pose is constrained
to be ordered last. This especially helps when updating
using odometric constraints between consecutive poses.
For landmark SLAM, one landmark is often observed from
several poses. Without an additional constraint, a recently
observed landmark can be ordered anywhere in the matrix,
possibly causing large-size updates. To alleviate this prob-
lem, our implementation constraints recently observed
landmarks to immediately precede the last pose. Figures
1 and 2 show that the used ordering restrictions barely
affect the fill-in. Furthermore, due to the inherent block
structure, and in order to facilitate further incremental
updates, the ordering is done by blocks. Figure 2 shows
that applying ordering by blocks instead of element-wise
has very small influence in the fill-in of the L factor. This
influence is caused mostly by the fact that the diagonal
blocks in L are half empty, but still have to be stored as
full blocks.

5.3 Block matrix scheme

SLAM involves operations with matrices having a block
structure, where the size of the blocks corresponds to the
number of degrees of freedom of the variables. Sparsity of
such problems plays an important role, therefore, sparse
linear algebra libraries such as CSparse Davis (2006) or
CHOLMOD Davis and Hager (1997) are commonly used
to perform the matrix factorization. Those are state of the
art element-wise implementations of operations on sparse
matrices. The element-wise sparse matrix schemes provide
efficient ways to store the sparse data in the memory and
perform arithmetic operations. The disadvantage is their
inability or impracticality to change matrix structurally or
numerically once it has been compressed. The block-wise
schemes are complementary, their advantages include both
easy numeric and structural matrix modification, at the
cost of slight memory overhead, and slightly worse arith-
metic efficiency. Since block sizes in SLAM problems are



known in advance, the individual blocks in a sparse block
matrix can be processed using vectorized SSE instructions
and the performance is increased. Our implementation
combines the advantages of block-wise schemes convenient
in both, numeric and structural matrix modification and
element-wise, which allows efficient arithmetic operation
on sparse matrices.

On the other hand, some operations are faster when per-
formed element-wise and in a dense fashion. For example
applying dense Cholesky on fixed-size matrices is faster
than sparse Cholesky, up to certain size where faster SSE
implementation gets beaten by the fact that it operates
mostly on zeroes when L is very sparse. Therefore, dense
Cholesky is applied for up to 5 blocks× 5 blocks matrices.

5.4 Other optimizations

Backsubstitution has proven to be more advantageous
when performed block-wise. Since the r.h.s. vector is dense,
it is possible to accelerate backsubstitution using SSE,
similar to the other operations. Also, in the context of
our implementation, having backsubstitution performed
block-wise avoids converting the block-wise L factor to a
sparse element-wise matrix.

For simplicity, the formulation introduced in Section 4
is done using the lower-triangular factor L. The imple-
mentation uses the upper-triangular R = L> for several
reasons. The most important fact is that the CHOLMOD
and CSparse libraries only use upper-triangular part of
a matrix to calculate Cholesky factorization. That means
only the upper-triangular part of Λ needs to be calculated
and stored. In order to be able to perform the partial
updates of the factor using this upper triangular Λ, the
factor also needs to be upper triangular.

Some of the operations can benefit from keeping Λ up
to date at all times and our implementation allows for
efficient storage of sparse block matrices. Furthermore,
incrementally updating Λ is virtually free using our block
matrix schemes, as updates to Λ are additive. Therefore,
the implementation keeps both, Λ and R.

5.5 Incremental Algorithm

Our approach is described by pseudocode in Alg. 1. It
can be seen as having three distinct parts. The first part
is keeping the Λ matrix up to date. This can be done
incrementally by adding Ω, unless the linearization point
changed. The change in the linearization point is stored in
the haveΛ flag.

The second part of the algorithm updates the L factor.
The algorithm employs a simple heuristic to decide which
update method is the best. In case of large updates, inval-
idating a substantial portion of L, or if the linearization
point changed, L is recalculated from Λ. This step involves
calculating a suitable ordering using the constrained AMD
algorithm. On the other hand, if L is up to date and the
size of the update is relatively small, it is faster to update
L using either (18), which is faster for very short updates,
or using (17). The r.h.s. vector d is updated in a similar
manner.

θc ← Increment-L(θ, r,Σz , L,d,Λ,η, haveL, haveΛ,maxIT, tol)

1: (Ω,ω) ← ComputeOmega((θik, θjk) , rk ,Σk)
2: if ¬haveΛ then
3: (Λ,η) ← LinearSystem(θ , r)
4: haveΛ ← true
5: else
6: (Λ,η) ← UpdateLinearSystem(Λ, η,Ω,ω)
7: end if
8: loopSize ← Columns(Ω)
9: if ¬haveL ‖ loopSize > bigLoopThresh then

10: L ← Chol(Λ)
11: d ← LSolve(L ,η)
12: haveL ← true
13: else
14: if loopSize < smallLoopThresh then
15: L ←

[
L11, 0; L21, Chol(Ω + L22 L>22)

]
16: else
17: L ←

[
L11, 0; L21,Chol(Λ22 − L21 L>21)

]
18: end if
19: d ← [d1; LSolve(L22,η2 − L21 d1)]
20: end if
21: if maxIT ≤ 0 ‖ ¬ hadLoop then
22: exit
23: end if
24: it = 0
25: while it < maxIT do
26: if it > 0 then
27: (Λ,η) ← LinearSystem(θ , r)
28: δ ← CholSolve(Λ ,η)
29: haveΛ ← true
30: else
31: δ ← LSolve(L ,d)
32: end if
33: if norm(δ) ≥ tol then
34: θ ← θ ⊕ δ
35: haveΛ ← false
36: haveL ← false
37: else
38: exit
39: end if
40: it+ +
41: end while

Algorithm 1: Incremental-L algorithm.

The third part of the algorithm is basically a simple Gauss-
Newton nonlinear solver. An important point to note is
that the nonlinear solver only needs to run if the residual
grew after the last update. This is due to two assumptions;
one is that the allowed number of iterations maxIT is
always sufficiently large to reach the local minima, and the
other is that good initial priors are calculated. Without a
loop closure, the norm of δ would be close to zero and the
system would not be updated anyway. The first iteration
uses updated L factor, and the subsequent iterations use Λ
as it is much faster to be recalculated after the linearization
point changed.

6. EXPERIMENTAL RESULTS

In order to evaluate the proposed incremental algorithm
and its implementation this section compares timing
and sum of squared errors with similar state of the
art implementations such as iSAM Kaess et al. (2008),
g2o Kümmerle et al. (2011), and SPA K. Konolige and
R.Vincent (2010) (a 2D SLAM variant of SSPA). These
implementations are easy to use on standard datasets.



Manhattan 10k CityTrees10k Intel Killian V ictoriaPark

Fig. 3. The datasets used in our evaluations.

Table 1. Evaluation times of optimizers on multiple datasets (the best high accuracy solution
times are in bold).

Manhattan 10K CityTrees10k Intel Killian Victoria Park

SPA 23.8834 515.2880 n/a 1.4763 5.6260 n/a
g2o 94.9096 2134.3000 659.1590 5.0513 20.8899 293.1010

iSAM 64.5844 1768.8400 434.7500 4.4647 19.7519 209.1740
iSAMb10 9.9222 334.3650 60.2726 0.9442 3.6273 29.5268
iSAMb100 4.7142 289.7870 25.2429 1.3648 4.2522 12.6860

allBatch− Λ 10.0038 329.1840 22.7070 0.8424 2.1485 28.0194
Inc− L 5.0274 183.3850 25.5549 0.7032 2.5719 16.0173

Inc− Lb10 5.0275 166.7970 25.3064 0.6861 2.4637 14.6821

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Manhattan 10K cityTrees10k Intel Killian Victoria Park

[s
] 

p
er

 v
ar

ia
b

le
 

iSAM iSAM b10 iSAM b100 allBatch-Λ Inc-L Inc-L b10

≈ 

Fig. 4. Time comparison of multiple optimizers on
datasets.

0.00E+00

7.00E+04

1.40E+05

2.10E+05

2.80E+05

3.50E+05

0 2000 4000 6000 8000 10000

ch
i2

 

variables 

allBatch-Λ iSAM b100 iSAM b10 Inc-L b10 Inc-L

Fig. 5. Comparison of chi-squared errors.

iSAM2 Kaess et al. (2011, 2012), on the other hand, is
an incremental algorithm based on gtsam library, and,
at the time of writhing this paper the source code for
iSAM2 was not available among the examples of the gtsam
library. The reported results from iSAM2 papers Kaess
et al. (2011, 2012) cannot be used for comparisons since
they were measured on a radically different platform.

The evaluation was performed on three standard sim-
ulated datasets - Manhattan, Olson (2008), 10k and
CityTrees10k, Kaess et al. (2007) and three real datasets -
Intel, Howard and Roy (2003), Killian Court, Bosse et al.
(2004) and Victoria park dataset. The solution for each
dataset is shown in Fig.3.

All the tests were performed on an Intel Core i5 CPU 661
with 8 GB of RAM and running at 3.33 GHz. This is a
quad-core CPU without hyperthreading and with full SSE
instruction set support. During the tests, the computer
was not running any time-consuming processes in the
background. Each test was run ten times and the average
time was calculated in order to avoid measurement errors,
especially on smaller datasets.

Table 1 and Fig. 4 show the execution times of different im-
plementations evaluated on the above mentioned datasets.
The b10 and b100 flags represent the frequency of batch
computations - after each 10 and after each 100 new added
variables, respectively. For the results without those flags,
the nonlinear system was solved every step in order to
obtain the current estimation or, only when needed in the
case of our new Incremental-L algorithm. Unlike g2o and
SPA, iSAM and our implementation provide a solution
every new update, even when the batch solver runs each
10 or each 100. This is an important characteristic for
online applications. Therefore, and in order to make the
visualization easy, Fig. 4 shows timing results only for the
iSAM and our implementation.

All the times below the horizontal line in the table 1 are
obtained using our implementation. The execution time
of the Algorithm in Alg. 1 is indicated by Inc − L. The
Inc − Lb10 is obtained by forcing batch every 10, but
observe that this is not the natural way to execute our
algorithm and has been introduced only for comparison
purposes. allBatch − Λ is a similar algorithm to the one
introduced in Alg. 1 with the difference that it keeps
and updates only the Λ matrix and performs matrix
factorization every time a new linearization point needs to



be calculated. From the point of view of estimation quality,
recalculating the system every time the linearization point
changes, is the best the nonlinear solver can do but it
can sometimes become computationally expensive. Even
though, our optimized implementation performs very well
also in the allBatch− Λ case.

Figure 5 compares the quality of the estimations measured
by the sum of squared errors - the χ2 errors. The test
was performed for the 10k dataset. Observe that our new
algorithm, Inc − L (in red in Fig. 5), nicely follows the
allBatch − Λ (in green in Fig. 5). Spikes appear when
performing periodic batch solve in iSAMb100, iSAMb10
and Inc − Lb10 due to the fact that the error increases
between the batch steps and drops afterwards.

As an overall remark, the Inc − L has, in general, the
best performance and provides very accurate results every
step. Therefore, it is the most suitable implementation for
online applications which involve nonlinear least squares
solvers.

7. CONCLUSION

In this paper, we proposed a new, incremental least squares
algorithm with applications to robotics. We targeted prob-
lems such as SLAM, which have a particular block struc-
ture, with the size of the blocks corresponding to the num-
ber of degrees of freedom of the variables. This enabled sev-
eral optimizations which made our implementation faster
than the state-of-the-art implementations, while achiev-
ing very good precision. This was demonstrated by the
comparison with the existing implementations on several
standard datasets.

Even though the algorithm already proved efficient, several
further improvements can be made. The current imple-
mentation does not allow for a fluid reordering of the
variables, therefore the fill-in of the L factor is not the best
we can obtain using well known heuristics such as AMD.
This can be resolved by reordering the variables when
performing Omega and Lambda-updates. Current imple-
mentation keeps the original variable order and performs
reordering only when re-computing the entire L-factor.

The implementation itself could be improved by imple-
menting Cholesky factorization by blocks in order to avoid
the conversions between block and element-wise sparse
matrix representations. Finally, the data structure was
designed with hardware acceleration in mind. This is very
important for large scale problems, which can run faster
on a wide range of accelerators, from DSPs to clusters of
GPUs.

REFERENCES

Bosse, M., Newman, P., Leonard, J., and Teller, S. (2004).
Simultaneous localization and map building in large-

scale cyclic environments using the Atlas framework.
Intl. J. of Robotics Research, 23(12), 1113–1139.

Davis, T.A. (2006). Direct Methods for Sparse Linear
Systems (Fundamentals of Algorithms 2). Society for
Industrial and Applied Mathematics.

Davis, T.A. and Hager, W.W. (1997). Modifying a sparse
cholesky factorization.

Dellaert, F. and Kaess, M. (2006). Square Root SAM:
Simultaneous localization and mapping via square root
information smoothing. Intl. J. of Robotics Research,
25(12), 1181–1203.

Howard, A. and Roy, N. (2003). The robotics
data set repository (Radish). URL http://radish.
sourceforge.net/.

K. Konolige, G. Grisetti, R.K.W.B.B.L. and R.Vincent
(2010). Efficient sparse pose adjustment for 2d mapping.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 22–29.

Kaess, M., Ila, V., Roberts, R., and Dellaert, F. (2010).
The Bayes tree: An algorithmic foundation for proba-
bilistic robot mapping. In Intl. Workshop on the Algo-
rithmic Foundations of Robotics.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard,
J., and Dellaert, F. (2011). iSAM2: Incremental smooth-
ing and mapping with fluid relinearization and incre-
mental variable reordering. In IEEE Intl. Conf. on
Robotics and Automation (ICRA). Shanghai, China.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard,
J.J., and Dellaert, F. (2012). iSAM2: Incremental
smoothing and mapping using the Bayes tree. Intl. J.
of Robotics Research, 31, 217–236.

Kaess, M., Ranganathan, A., and Dellaert, F. (2007).
iSAM: Fast incremental smoothing and mapping with
efficient data association. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 1670–1677. Rome,
Italy.

Kaess, M., Ranganathan, A., and Dellaert, F. (2008).
iSAM: Incremental smoothing and mapping. IEEE
Trans. Robotics, 24(6), 1365–1378.

Konolige, K. (2010). Sparse sparse bundle adjustment.
In British Machine Vision Conference. Aberystwyth,
Wales.

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K.,
and Burgard, W. (2011). g2o: A general framework for
graph optimization. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). Shanghai, China.

Olson, E. (2008). Robust and Efficient Robot Mapping.
Ph.D. thesis, Massachusetts Institute of Technology.

P. Amestoy, T.A.D. and Duff, I.S. (2004). Amd, an ap-
proximate minimum degree ordering algorithm). ACM
Transactions on Mathematical Software, 30(3), 381–388.

Rosen, D., Kaess, M., and Leonard, J. (2012). An in-
cremental trust-region method for robust online sparse
least-squares estimation. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 1262–1269. St. Paul,
MN.


