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Abstract—Efficiently solving nonlinear least squares (NLS)
problems is crucial for many applications in robotics. In online
applications, solving the associated nolinear systems every step
may become very expensive. This paper introduces online,
incremental solutions, which take full advantage of the sparse-
block structure of the problems in robotics. In general, the
solution of the nonlinear system is approximated by incrementally
solving a series of linearized problems. The most computationally
demanding part is to assemble and solve the linearized system at
each iteration. In our solution, this is mitigated by incrementally
updating the factorized form of the linear system and changing
the linearization point only if needed. The incremental updates
are done using a resumed factorization only on the parts affected
by the new information added to the system at every step. The
sparsity of the factorized form directly affects the efficiency.
In order to obtain an incremental factorization with persistent
reduced fill-in, a new incremental ordering scheme is proposed.
Furthermore, the implementation exploits the block structure of
the problems and offers efficient solutions to manipulate block
matrices, including a highly efficient Cholesky factorization on
sparse block matrices. In this work, we focus our efforts on
testing the method on SLAM applications, but the applicability
of the technique remains general. The experimental results show
that our implementation outperforms the state of the art SLAM
implementations on all the tested datasets.

I. INTRODUCTION

Many applications ranging from robotics, computer graph-
ics, computer vision to physics rely on efficiently solving large
nonlinear least squares (NLS) problems. The goal is to find
the optimal configuration of a set of variables that maximally
satisfy the set of soft nonlinear constraints. For instance
in robotics, simultaneous localization and mapping (SLAM)
estimates the optimal configuration of the robot positions
and/or landmarks in the environment given a set of sensor
measurements [6, 7, 10, 11, 14]. The variables can have several
degrees of freedom (e.g. 3DOF for 2D problems or 6DOF for
3D problems). Therefore, the associated system matrix can be
interpreted as partitioned into sections corresponding to each
variable, called blocks, which can be manipulated at once.

In practice, the initial problem is nonlinear and it is usually
addressed by repeatedly solving a sequence of linear systems.
The linear system can be solved either by matrix factorization
or gradient methods. The latter are more efficient from the
storage point of view, since they only require access to the
gradient, but they can suffer from poor convergence, slowing
down the execution. Matrix factorization, on the other hand,
produces more accurate solutions and avoids convergence
difficulties but typically requires a lot of storage.

The problems in robotics are in general sparse, which
means that the associated system matrix is primarily populated
with zeros. Many efforts have been recently made to develop
efficient methods to store and manipulate sparse matrices.
CSparse [3], developed by Tim Davis [4] is one of the most
used sparse linear algebra libraries. It is highly optimized in
terms of run time and memory storage and it is also very
easy to use. CSparse stores the sparse matrices in compressed
column format (CCS) which considerably reduces the memory
requirements and is suitable for matrix operations.

The block structure and the sparsity of the matrices can
bring important advantages in terms of storage and matrix
manipulation. Some of the existing implementations rely on
sparse block structure schemes [14, 13]. In the existing
schemes, the block structure is maintained until the point
of solving the linear system. Here is where CSparse [4] or
CHOLMOD [5] libraries are used to perform the element-wise
matrix factorization. Once it has been compressed, it becomes
impractical and inefficient to change a matrix structurally
or numerically. This motivated us to find efficient solutions
to matrix storage and operations on matrices, especially the
matrix factorization, to avoid the need of converting from
blockwise to elementwise CCS format and back.

In online applications the state changes every step. In
SLAM, for example, the state is augmented with a new robot
position or a new landmark from the environment and it is
updated with the corresponding measurement. Every iteration
of the nonlinear solver involves building a new linear system
using the current linearization point and solving it using matrix
factorization. For very large problems, updating and solving
the nonlinear system every step can become very expensive.
The literature proposes elegant incremental solutions, either
by working directly on the matrix factorization [10] or by
using a graphical model-based data structure called the Bayes
tree, which allows efficient incremental algorithms [12, 11].
In their early work, Kaess et al. [10] introduced the idea of
keeping the factorized form of the linear system and only
recalculating parts that are affected by the incremental updates.
This method becomes advantageous when the batch steps are
performed periodically. The batch steps involve changing the
linearization point by solving the nonlinear system and are
needed for two important reasons; a) the error increases if the
same linearization point is kept for a long time and b) the fill-in
of the factorized form increases with the incremental updates,
slowing down the backsubstitution. Later, they introduced the



Bayes tree data structure [12], which provides insights on the
connection between graphical model inference and sparse ma-
trix factorization. This offered the possibility of eliminating the
need for periodic batch steps obtaining incremental variable
re-ordering to reduce the fill-in and fluid relinearization to
guarantee good linearization points [11].

The work introduced in this paper combines the efficiency of
operating directly on the matrix factorization with the insights
gained from the Bayes tree data structure to produce highly
efficient incremental solutions. Our incremental solution is
based on directly updating the Cholesky factorization of
the linear system and changing the linearization point only
if the error increases. This guarantees both fast and high
quality estimations. The proposed algorithm is based on a
resumed Cholesky factorization which recalculates only the
parts affected by the new updates, together with an incremental
reordering scheme which maintains the factorization sparse
without the need of periodic batch steps.

Our implementation maximally exploits the sparse block
structure of the problem. On one hand, the block matrix
manipulation is highly optimized, facilitating structural and
numerical matrix changes while also performing arithmetic
operations efficiently. On the other hand, the block structure
is maintained in all the operations including the matrix fac-
torization, eliminating the cost of converting between sparse
elementwise and sparse blockwise. Our block Cholesky fac-
torization implementation proves to be significantly faster than
the existing state of the art elementwise implementations.

The contributions of this work are introduced as follows.
The next section succinctly formalizes SLAM as a nonlinear
least squares problem. Incremental updates are described in
Section III. Then, Section IV explains the details of the
proposed algorithm and implementation. In the experimental
evaluation in Section V we show the increased efficiency
of our proposed scheme over the existing implementations.
Conclusions and future work are given in Section VI.

II. NONLINEAR LEAST SQUARES PROBLEM IN ROBOTICS

In robotics, simultaneously localizing a robot and mapping
the environment is often formulated as a nonlinear least
squares problem (NLS) [6]. The goal is to obtain the maximum
likelihood estimate (MLE) of a set of variables θ = [θ1 . . . θn],
usually containing the robot trajectory and/or the position of
landmarks in the surrounding environment, given the set of
measurements z:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z)} . (1)

For every measurement zk = hk(θik , θjk)−vk we assume the
Gaussian distribution:

P (zk | θik , θjk) ∝ exp

(
−1

2
‖ hk(θik , θjk)− zk ‖2Σk

)
,(2)

where h(θik , θjk) is the nonlinear measurement function, and
where vk is the normally distributed zero-mean noise with the

covariance Σk. Finding the MLE from (1) is done by solving
the following nonlinear least squares problem:

θ∗ = argmin
θ

{
1

2

m∑
k=1

‖hk(θik , θjk)− zk‖2Σk

}
. (3)

Methods such as Gauss-Newton or Levenberg-Marquardt are
often used to solve the NLS in (3) and this is usually addressed
by iteratively solving the sequence of linear systems. Those
are obtained by linear approximations of the nonlinear residual
functions around the current linearization point θi:

r̃(θi) = r(θi) + J(θi)(θ − θi) , (4)

where r(θ) = [r1, . . . , rm]
> is the set of all nonlinear residuals

of type rk = hk(θik , θjk) − zk and J is the Jacobian matrix
which gathers the derivative of the components of r(θi). The
linearized problem to solve becomes:

δ∗ = argmin
δ

1

2
‖A δ − b‖2 , (5)

where the A = Σ−>\2J is the system matrix, b = −r(θi) the
right hand side (r.h.s.) and δ = (θ − θi) the correction to be
calculated [6]. This is a standard linear least squares problem
in δ. For SLAM problems, the matrix A is in general sparse,
since every measurement depends only on a few variables,
but it can become very large when the robot performs long
trajectories. The normal system equation has the advantage
of remaining of the size of the state even if the number of
measurements increases:

δ∗ = argmin
δ

1

2
‖Λδ − η‖2 , (6)

where Λ = A>A is the information matrix and η = A>b is
the information vector.

The solution of the linear system can be obtained by sparse
matrix factorization followed by backsubstitution. In general,
QR factorization of A has slightly better numerical properties,
but Cholesky factorization on Λ performs much faster. In this
paper we are interested in obtaining very fast online solutions,
therefore we apply Cholesky factorization.

The Cholesky factorization of a square symmetric positive
definite matrix Λ has the form LL> = Λ , where L is a lower
triangular matrix with positive diagonal entries. The forward
and backsubstitutions on Ld = A>b and L> δ = d first
recovers d, then the actual solution δ. After computing δ,
the new linearization point becomes θi+1 = θi ⊕ δ, where
⊕ is the exponential map operator [14]. The Gauss-Newton
iterates until the norm of the correction becomes smaller than
a tolerance.

III. INCREMENTAL SYSTEM UPDATES

In online robotic applications such as SLAM, new variables
(robot poses and/or landmarks) are integrated every step and
new measurements frequently update the system. Integrating
a new variable involve augmenting the system with the size of
the new variable and updating it with the corresponding mea-
surement. Integrating a measurement may become expensive,
without carefully performing the involved operations.
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Fig. 1. Incremental updates on Λ-system and L-system. The blocks are color-
coded according to the way they are affected by the update. Green - NOT
affected, red - affected, pink - affected by performing resumed factorization.

A. Incrementally updating the system matrix

Updating the system with a new measurement is additive
in information form. We denote Ω = H>Σ−1

k H and ω =

−HΣ
−1\2
k rk to be the increments in information, where H is

the Jacobian of the new measurement. In general, in SLAM,
the measurement function hk(·) involves only two variables,
(θi, θj). For this reason and for simplicity, the following
formulation will be restricted to measurements between two
variables but its application remains general. The correspond-
ing Jacobian, H , is very sparse H =

[
0 . . . Jj

i . . . 0 . . . J i
j

]
and this translates into a sparse Ω and ω. The update step only
partially changes the information matrix Λ and the information
vector η. For simplicity of the notations, in the following
formulations, the system matrices are split in parts that change
(Λ11, η1) and parts that remain unchanged (Λ00, Λ10 and η0):

Λ̂ =

[
Λ00 Λ>10

Λ10 Λ11 + Ω

]
; η̂ =

[
η0

η1 + ω

]
, (7)

In the formulation above we deliberately considered that the
current measurement to be integrated involves the last variable
added to the system. This is the situation usually encountered
in incremental SLAM problem. Note that this assumption is
not necessarily needed, the formulation in (7) stays general.
Fig. 1 illustrates the unaffected part of the system matrix and
r.h.s in green and the affected in red. When the measurement
involves a new variable, the state is augmented with a zero
block-row and a zero block-column (block-size depending on
the size of the new variable) and updated with the correspond-
ing measurement. This is an inexpensive process since the new
variable always links to variables recently added to the system,
but the update step, in general, can become very expensive if
the new measurement links variables far apart.

B. Incrementally updating the Cholesky factor

As shown above, only a small part of the information matrix
and the information vector are changed in the update process
and the same happens with its factorized form L. The updated
L̂ factor and the corresponding r.h.s. d̂ can be written as:

L̂ =

[
L00 0

L10 L̂11

]
; d̂ =

[
d0

d̂1

]
. (8)

From Λ̂ = L̂ L̂>, (7) and (8) the updated part of the Cholesky
factor and the r.h.s can be easily computed:

L̂11 = chol(L11 L
>
11 + Ω) (9)

d̂1 = L̂11\(η̂1 − L10 d0) . (10)

The part unaffected by the update is shown in green in
the Fig. 1, and the affected parts are shown in red and
pink. Variable ordering plays an important role in the matrix
factorization, and this directly influences the fill-in of the L
factor. Later in the paper it is shown that, in order to maintain
the factorization sparse, we will recalculate both, L10 and L11

using a resumed Cholesky factorization applied to a reordered
Λ̂. This is illustrated in Fig. 1 using pink color for L10.

This form of incrementally updating the Cholesky factor
is very similar to the incremental updates proposed in [10],
where the authors use Givens rotations to update R = L>

and d. Even if this is one of the fast incremental approaches,
there are still two important problems. Firstly, without peri-
odic reorderings, the factorized form becomes less and less
sparse, slowing down the solving. Another problem is that
within an iterative nonlinear solver the linearization point can
change every iteration, invalidating the entire factorization.
The recently introduced data structure, the Bayes tree [12],
offers the possibility to develop incremental algorithms where
reordering and re-linearization are performed fluidly, without
the need of periodic updates. Inspired by the above-mentioned
incremental strategies, this paper proposes an elegant and
highly efficient solution which combines the efficiency of
matrix implementation and considers the insights gained using
the Bayes tree data structure.

IV. INCREMENTAL BLOCK-CHOLESKY FACTORIZATION

This section will discuss several aspects to be considered in
the proposed incremental solution such as the block structure
of the targeted problems and the importance of the incremental
reordering; then, it will describe the block-factorization itself
and will conclude proposing an efficient incremental algorithm
for the SLAM problem.

A. Block Matrix Scheme

SLAM, and similar problems such as structure from motion
(SfM) and bundle adjustment (BA), involve operations with
matrices having a block structure, where the size of the
blocks corresponds to the number of degrees of freedom
of the variables. Sparsity of such problems plays an impor-
tant role, therefore, sparse linear algebra libraries such as
CSparse [4] or CHOLMOD [5] are commonly used to perform
the matrix factorization. Those are state of the art element-
wise implementations of operations on sparse matrices. The
element-wise sparse matrix schemes provide efficient ways to
store the sparse data in the memory and perform arithmetic
operations. The disadvantage is their inability or impracticality
to change matrix structurally or numerically once it has been
compressed. The block-wise schemes are complementary, their
advantages include both, easy numeric and structural matrix
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Fig. 2. The comparison in terms of nonzero elements of several ordering
heuristics and the actual number of non-zero elements in Incremental L.

modification, at the cost of small memory overhead, and
slightly worse arithmetic efficiency.

Our implementation combines the advantages of block-wise
schemes convenient in both, numeric and structural matrix
modification and element-wise, which allows fast arithmetic
operation on sparse matrices. This is achieved by a careful
design of the block matrix storage for cache efficiency in
combination with the use of vectorized SSE instructions [?
].

B. Incremental Ordering

The fill-in of the factor L directly affects the speed of the
backsubstitution and the updates. Its sparsity depends on the
order of the rows and columns of the matrix Λ, called variable
ordering. Unfortunately, finding an ordering which minimizes
the fill-in of L is NP-complete. Therefore, heuristics have
been proposed in the literature [1] to reduce the fill-in of the
result of the matrix factorization. In our implementation we use
constrained AMD ordering, available as a part of SuiteSparse
family of libraries [4].

In an incremental SLAM process, the new variable, either
the next observed landmark or the next robot pose, is always
linked to an existing pose in the representation. In order to be
able to perform efficient incremental updates on the Cholesky
factor, the last pose is constrained to be ordered last. Figure
2 shows that the constrained ordering barely affect the fill-
in. It also illustrates in red how the fill-in rises when the
reordering is performed only every 100 steps. Furthermore,
due to the inherent block structure, and in order to facilitate
further incremental updates, the ordering is done by blocks.
Figure 2 shows that applying ordering by blocks instead of
element-wise has very small influence on the fill-in of the
L factor. This influence is caused mostly by the fact that the
diagonal blocks in L are half empty, but still have to be stored
as full blocks.

The work in [12] highlights the importance of reordering the
variables every step, as well as offers an elegant solution based
on their Bayes tree data structure. Guided by these insights,
in this paper we propose a scheme that facilitates efficient

partial reordering in the incremental block matrix factorization.
Figure 2 shows that this strategy is efficient in terms of factor
sparsity, but it runs much faster, compared to full reordering.
As mentioned before, the reordering is done on the system
matrix Λ, therefore the proposed method keeps the Λ matrix
up to date. The matrix is sparse and the updates are additive,
therefore this additional process is inexpensive. In Section
IV-E we show how this is used in an incremental ordering
process assuring a reduced fill-in of the matrix factorization.

C. Block Matrix Factorization

The Cholesky factorization algorithm is a fast way of
computing decompositions in form A = LL>. It is based on
two simple operations, cdiv and cmod. Cdiv comprises division
of a row or a column of the factor by a square root of its
diagonal entry. Cmod modifies a row or a column by a multiple
of the previous row or column. The L factor is obtained by
repeatedly applying those two steps on Λ matrix. Cholesky
factorization, unlike other factorizations, does not require any
pivoting for numerical stability. Sparse Cholesky factorization,
however, relies on symbolic ordering of the matrix. If the
matrix is not ordered properly, the cmod steps introduce fill-in.

The current element-wise implementations of the Cholesky
factorization such as CSparse and CHOLMOD are, in general,
based on four steps: reordering, calculating the elimination
tree, symbolic factorization and numeric factorization. The
elimination tree captures the dependencies between the indi-
vidual columns or rows of the matrix. It is also the input to the
symbolic factorization, which is required for calculation of the
nonzero pattern of the factor, in order to be able to produce it in
a sparse compressed matrix. CSparse relies on row-Cholesky
factorization, which produces one row of the result matrix at
a time. At each row, nonzero pattern is computed from the
elimination tree. CSparse keeps a dense vector which is loaded
with a row and then the cmod operation is executed on that.
This approach is not suitable for block Cholesky factorization,
as storing one block row as a dense matrix would require
substantial amounts of memory.

In our implementation, block Cholesky factorization is
employed. The result of this factorization is numerically equiv-
alent to elementwise sparse factorization of the same matrix.
The general algorithm is similar, with the only difference
that in cdiv step, the division is replaced by backsubstitution
and the square root is replaced by Cholesky factorization
of a dense block. Since the block matrix Λ is symmetric,
the diagonal blocks are guaranteed to be square and this
factorization is therefore well defined. Similarly, in cmod,
the scalar multiplication is replaced by matrix multiplication.
Unlike elementwise sparse Cholesky factorization, blockwise
factorization does not require symbolic factorization as the
matrix can be conveniently changed both structurally and
numerically.

D. Incremental SLAM Algorithm

Our approach to incremental SLAM is described by the
pseudocode in Alg. 1, which can be seen as having three



INCREMENTAL-L(θ, r,Σk, L,Λ,η,o,maxIT, tol, newLP )

1: (Ω,ω) ← COMPUTEOMEGA((θi, θj) , rk ,Σk)
2: if newLP then
3: (Λ̂, η̂) ← LINEARSYSTEM(θ , r)
4: else
5: (Λ̂, η̂) ← UPDATELINEARSYSTEM(Λ, η,Ω,ω)
6: end if
7: (L̂, d̂, ô) ← UPDATE-L(i, j,Ω,ω, L,Λ,η,o, newLP )
8: newLP ← FALSE
9: if maxIT ≤ 0 ‖ ¬ hadLoop then

10: exit
11: end if
12: it = 0
13: while it < maxIT do
14: if it > 0 then
15: (Λ̂, η̂) ← LINEARSYSTEM(θ , r)
16: (L̂, d̂, ô) ← UPDATE-L(i, j,Ω,ω, L,Λ,η,o, newLP )
17: newLP ← FALSE
18: end if
19: δ ← LSOLVE(L̂ , d̂)
20: if norm(δ) ≥ tol then
21: θ ← θ ⊕ δ
22: newLP ← TRUE
23: else
24: exit
25: end if
26: it+ +
27: end while

Algorithm 1: Incremental SLAM algorithm.

distinct parts. The first part is keeping the Λ matrix up to
date. This can be done incrementally by adding Ω, unless the
linearization point changed. The change in the linearization
point is stored in the newLP flag. The second part of the
algorithm updates the L factor along with the associated
ordering and it is explained in detail in the next section.
The third part of the algorithm is basically a simple Gauss-
Newton nonlinear solver. An important point to note is that
the nonlinear solver only needs to run if the residual grew
after the last update. This is due to two assumptions; one
is that the allowed number of iterations maxIT is always
sufficiently large to reach the local minima, and the other is
that good initial priors are calculated. Without a loop closure,
the norm of δ would be close to zero and the system would
not be updated. The first iteration uses updated L factor, and
the subsequent iterations use Λ as it is much faster to be
recalculated after the linearization point changed.

E. Incremental Block Cholesky Factorization

In order to update the L factor and the r.h.s. vector b, it is
possible to use (9) and (10), respectively. Without a proper
ordering, L will quickly become dense, slowing down the
computation. Λ can be reordered to reduce the fill-in. This
has one major disadvantage that L factor changes completely
with the new ordering, impeding incremental factorization.

The solution is to only calculate the new ordering for parts
of L which are being affected by the update. In order to be
able to calculate ordering incrementally, the updated Λ̂ matrix

(L̂, d̂, ô) ← UPDATE-L(i, j,Ω,ω, L, Λ̂, η̂,o, newLP )

1: if newLP ‖ COLUMNS(Ω) = COLUMNS(Λ̂) then
2: ô← CAMD(Λ̂)
3: L̂← CHOL(Λ̂,o)
4: d̂← LSOLVE(L̂ , η̂)
5: else
6: olo ← MIN(o[i],o[j])
7: ohi ← COLUMNS(Λ)
8: Λ̂p ← PERMUTE(Λ̂,o)
9: ocut ← MIN(WAVEFRONT(Λ̂p)[olo : ohi])

10: Λ̂p11 ← Λ̂p[ocut : ohi, ocut : ohi]
11: onew ← CAMD(Λ̂p11)[olo − ocut : end]
12: ô← [o[0 : olo],onew]
13: if onew = Identity then
14: L̂ ←

[
L00, 0; L10, CHOL(Ω + L11 L

>
11

)
]

15: d̂ ←
[
d0, LSOLVE(L̂11, η̂1 − L̂10 d0)

]
16: else
17: Λ̂ord1 ← PERMUTE(Λ̂, ô)[olo : ohi, :]
18: L̂← RESUMEDCHOL(L[0 : olo, :], Λ̂ord1 , olo)
19: d̂← RESUMEDLSOLVE([L̂10, L̂11], η̂1,d, olo)
20: end if
21: end if

Algorithm 2: Incremental Block Cholesky Factorization.

is permuted with the ordering from the previous step, leading
to Λ̂p (see Fig. 3).

To delimit the area in Λ̂p affected by the update, two indices
are introduced. The first one, olo is given by the minimum
variable index after the ordering (line 6 of the Alg. 2). The
second one, ohi, is simply the size of the matrix. Let Λ̂p11

be
the lower right submatrix of Λ̂p delimited by those indices.

Calculating the new ordering as AMD on Λ̂p11 is not
sufficient and also leads to massive fill-in. This is caused
by the AMD library not having any information about the
nonzero entries in Λ̂p10

= Λ̂>p01, which are also affected by
this ordering (depicted by the blue blocks in Fig. 3).

A useful ordering can be calculated as AMD of full Λ̂p

with constraints applied to make sure that the ordering of
the elements unaffected by the update is not disturbed. This
is, however, a computationally expensive operation since the
update is typically much smaller than Λ̂p, and a significant
number of ordering constraints needs to be applied.

Fortunately, it is not necessary to calculate the ordering
using the entire Λ̂p. It is possible to use a slightly expanded
Λ̂p11 (see Fig. 3) that satisfies the conditions of being square
and not having any nonzero elements above or left from
it (Λ̂p10

= Λ̂>p01
are null). The ordering calculated on this

submatrix is then combined with the original ordering (lines
11 and 12 in Alg. 2), yielding a similar result as constrained
ordering on full Λ̂p in much smaller time. The minimal size
of the expanded Λ̂p11

can be calculated in worst-case O(n)
time. First, a matrix wavefront is calculated. This is a vector
containing the lowest positions of the nonzero elements per
each column of Λ̂p. Only a part of this vector is used, the
one between olo and ohi, and its minimum will give us the
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represents the parts that will change. The explanation is simplified to updates
involving only two variables. Note that the green parts in Λ̂p are unchanged
respect to the previous step not respect to original Λ̂.

index of the highest nonzero element, ocut. This is done in
Alg. 2 on line 9, and in the Fig. 3 it is depicted as the line,
keeping the blue nonzero blocks out of Λ̂p10 . Extending Λ̂p11

guarantees that AMD knows about all the nonzero elements
that will cause fill-in, leading to a better ordering.

Once the new ordering is calculated, factorization can be
performed. In the case that the ordering is identity, it is pos-
sible to only update L11 and d1 using (9, 10). Otherwise, the
resumed Cholesky algorithm is employed. The row Cholesky
is capable of calculating one row of the factor at a time,
while only reading the values above it. This algorithm can
be used to ”resume” the factorization in the lower part of L
while only using the corresponding part of Λ̂p and L00 as
inputs. The advantage of this algorithm is overall simplicity
of the incremental updates to the factor, while also saving
substantial time by avoiding recalculation of L00, compared
to the conventional approach.

Please note, that this is a simplified version of the algorithm,
handling the type of updates where no new variables are
introduced in the system. It is here where the fill-in is
introduced and where the ordering is really needed.

V. EXPERIMENTAL EVALUATION

This section evaluates both, the implementation of the
incremental algorithm and of the incremental block Cholesky
factorisation by comparing timing and the quality of the result
with similar state of the art implementations. The evaluation
was performed on five standard simulated datasets - Manhat-
tan [15], 10k, City10k [9], CityTrees10k [9] and Sphere [14]
and four real datasets - Intel [8], Killian Court [2], Victoria
park and Parking Garage [14]. Fig.4 shows the final solutions
for all the tested datasets. All the tests were performed on an
Intel Core i5 CPU 661 with 8 GB of RAM and running at

3.33 GHz. This is a quad-core CPU without hyperthreading
and with full SSE instruction set support. During the tests, the
computer was not running any time-consuming processes in
the background. Each test was run ten times and the average
time was calculated in order to avoid measurement errors.

A. Tested Implementations

We compared the proposed incremental algorithm and
its implementation with state of the art implementations
such as g2o [14], iSAM [10] and the gtsam implementation
of the iSAM2 algorithm [11, 12]. For SPA the svn
revision 39478 of ROS (http://www.ros.org/) was used;
for g2o, we tested the version 91A858D available at
https://github.com/RainerKuemmerle/g2o.1 For iSAM we
used the version 1.6 from https://svn.csail.mit.edu/isam
and for gtsam we used the version 2.3 from
https://collab.cc.gatech.edu/borg/gtsam.

SPA and g2o are both based on similar sparse block matrix
scheme which is maintained until the matrix factorization is
performed. At this point, they switch to CCS format to be able
to use CSparse or CHOLMOD to perform the factorization.
This is a time consuming process which is avoided in our
approach. While SPA implementation is optimized for the
specific 2D SLAM problem, g2o is general, allowing any type
of SLAM and BA.

iSAM and iSAM2 are based on completely different algo-
rithms. The one used in iSAM is very similar to our algorithm
but it requires periodic batch steps to reduce the fill-in. The
algorithm used in iSAM2 is based on the Bayes tree data
structure and the factorization is done through elimination on
factor graphs. One important characteristic is that it allows
incremental reordering and fluid relinearization. In this direc-
tion, our algorithm allows similar incremental reordering but
changes the entire linearization point when needed. In order
to test the iSAM2 we used the incremental test example from
the library and extended it to work with landmark-based and
3D SLAM datasets.

The proposed block Cholesky (BC) factorization is part of
a new nonlinear least squares open-source library available for
download at http://sourceforge.net/projects/slam-plus-plus/.
The main characteristic of this new library is its ability to
manipulate block matrices and to produce efficient incremental
solutions. In this paper we test the BC factorization on both,
an algorithm that operates only on the information matrix Λ
performing batch updates every step (denoted Inc Λ) and an
incremental algorithm, which maintains the matrix factoriza-
tion L up to date (denoted Inc L). The latter corresponds to
the algorithm in 1. The new library offers the possibility to
switch between the native BC factorization and the Cholesky
factorization form CSparse (CS) and CHOLMOD (CM).

B. Performance and Accuracy

Table I shows the execution times and accuracy of the
above described implementations evaluated on the datasets in

1We thank the authors for providing the link and support

http://www.ros.org/
https://github.com/RainerKuemmerle/g2o
https://svn.csail.mit.edu/isam
https://collab.cc.gatech.edu/borg/gtsam
http://sourceforge.net/projects/slam-plus-plus/
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Fig. 4. The datasets used in our evaluations. ”Sphere“and ”Garrage Parking“ datasets are 3D pose graphs.

Manhattan 10K City10k CityTrees10k Sphere Intel Killian Victoria Park Parking Garage
SPA 24.161 518.339 309.562 N/A N/A 1.486 5.669 N/A N/A
g2o 22.514 500.374 302.495 175.124 145.486 1.298 5.019 81.194 20.372

iSAM (b100) 4.829 279.926 77.572 22.926 36.220 1.287 4.213 11.921 52.2167
iSAM2 4.932 91.738 60.978 32.687 31.274 0.618 1.196 16.349 3.658

Inc Λ − CS 8.603 287.702 202.839 19.531 216.487 0.651 1.705 23.162 17.317
Inc Λ − CM 10.725 236.276 181.139 24.478 71.487 0.786 2.100 28.264 23.929
Inc Λ −BC 7.209 242.209 188.849 17.566 78.375 0.508 1.242 18.707 11.342
Inc L−BC 3.046 79.651 53.951 19.308 9.865 0.353 1.045 11.202 3.410

χ2 iSAM2 6205.92 171600 31951.6 794.868 775.28 559.07 0.00008 370.14 1.2635
χ2 Inc L−BC 6119.83 171919 31931.4 12062.6 727.72 558.83 0.00005 144.91 1.3106

TABLE I
PERFORMANCE AND ACCURACY TESTS ON MULTIPLE DATASETS.
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Fig. 5. Quality of the estimations measured on 10k dataset.

Fig.4. For every test we evaluate both, building the system
and computing the solution. The first one is necessary because
changing the matrix numerically and structurally is different
for each implementation and this makes significant difference
in an incremental approach.

The proposed incremental algorithm is different from the
one employed in SPA and g2o, where the batch solve is done
every n new variables added to the system and no solutions
are available in between. Therefore, the time comparison with
these implementation is orientative. The comparison stays only
for n = 1, where the solution is available every step and
our Inc Λ solver. iSAM, iSAM2 and Inc L provide solution
every step. The main difference is that iSAM requires the
periodic batch solves, the default setting of n = 100 is used
in the comparison. But keeping the same linearization point
for too long deteriorate the estimation. This can be seen by
plotting the the sum of squared errors (χ2 in Fig. 5). Spikes
appear when performing periodic batch solve due to the fact
that the error increases between the batch steps and drops
afterwards. Observe that Inc−L (in red in Fig. 5) and iSAM2
nicely follow the Inc−Λ (in green in Fig. 5), which represent

Fig. 6. Cholesky factorization benchmark.

the most accurate solution one can get solving the nonlinear
problem.

Our implementation reaches the best times for the best
accuracy on all evaluated datasets and this is shown in bold in
table I. Except for the CityTrees10k dataset, the execution of
the Inc L outperforms all the implementations. This particu-
lar result is given by the dense structure of the problem. In this
case, reordering every step is slightly more advantageous than
incremental ordering. The closest time to Inc L is reached
by the iSAM2. The difference between iSAM2 and Inc L is
that iSAM2 changes only the affected blocks of the L factor
and relinearizes only affected variables, while Inc L changes
parts of the L factor and relinearizes all the affected variables
when needed. iSAM2 was run with a defaull reliniarization
threshold set to 10. This leads to slightly better accuracy of
the estimation provided by Inc L (see the last two rows of the
table I) and favours iSAM2 in the execution time comparison.

The proposed Cholesky factorization algorithm was tested
on full system matrices of the same datasets used in the
incremental algorithm evaluation. The results are shown in
Fig. 6. Our block Cholesky implementation (BC) is always



faster than the CSparse (v3.0.2) and CHOLMOD (v2.1.2).
Also note that the speedup grows with the block size, for 6×6
blocks it is more than double. The quality of the factorization
is also good, the worst norm of difference between block
Cholesky and CSparse was 2.6016 · 10−13 and occurred on
the City10k dataset.

VI. CONCLUSION AND FUTURE WORK

A new incremental NLS algorithm with applications to
robotics was proposed in this paper. We targeted problems
such as SLAM, which have a particular block structure, where
the size of the blocks corresponds to the number of degrees of
freedom of the variables. This enabled several optimizations
which made our implementation faster than the state-of-the-art
implementations, while achieving very good precision. This
was demonstrated through the comparison with the existing
implementations on several standard datasets.

Recently, many efforts have been made to develop both,
efficient incremental algorithms and implementations. This
paper complements the recent advances by introducing new
incremental ordering scheme which allows to incrementally
update the factorized form of the linearized system while
maintaining a reduced fill-in. The incremental updates are
done using a resumed block Cholesky factorization only on
the parts affected by the new information. The block Cholesky
factorization itself proved to be more efficient than the current
implementations of elementwise Cholesky factorizations while
the precision is equally high.

Several further algorithmic improvements can be made. It
is possible to update only the affected blocks in L, instead
of a whole part of the factor, and to change only the affected
variables in a similar way iSAM2 does. Also, similarly to
how the matrix factorization and the associated ordering are
updated incrementally, other parts of the algorithm can be
optimized, such as the calculation of the AMD ordering
heuristic.

The data structure was designed with hardware acceleration
in mind. This is very important for large scale problems, which
can run faster on a wide range of accelerators, from multicore
CPUs to clusters of GPUs.
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