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Lukáš Klicnar∗

Faculty of Information Technology,
Brno University of Technology
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Abstract

This paper presents an approach for detection of differences be-
tween two visually identical video sequences. The video process-
ing task for detection of short- and long-term changes between two
video sequences is defined in detail. The algorithm comparing two
video sequences (reference and query) is introduced together with
definition of particular situations that the algorithm must be able to
detect: re-written parts, removals or injected parts. The image pro-
cessing methods are selected to be robust to several practical distor-
tions that might appear in defined task. The appropriate computer-
vision methods are presented and discussed, then proposed method
and experiments are introduced and evaluated on manually gener-
ated dataset. Main focus of this work is on comparison of two dif-
ferent approaches for keyframe extraction: The first, more robust
one is based on local features tracking, which we attempt to re-
place with computationally much less-expensive global descriptor
approach with preservation of approximately the same video se-
quence dissimilarities detection success rate. Results of the differ-
ent approaches are presented and discussed.
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1 Introduction

The main task of the video comparison systems is to detect and val-
idate the differences between two visually almost identical video
sequences. In some cases, even when two video sequences are de-
clared as the identical, small differences might appear and manual
detection and validation of such video parts may become extremely
time consuming and unbearable. The example of video-pair disrup-
tion with dissimilarity types is showed on Figure 1.

When comparing the similarity between two video sequences (ref-
erence and query), we define three types of dissimilarity that might
occur:
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• Rewriting – part of the query video is rewriten by different
visual content than in reference video and the length of query
video part is the same as the reference video part

• Injection – part of the query video is new - added to original
(reference) content, so the query video part is longer than the
reference video part

• Removal – part of the query video is removed, so the query
video part is shorter than the reference video part

Presented research is focused on visual content, so audio is omit-
ted. The visual part of the video is sequence of consecutive images,
video frames, and one way of evaluating similarity between two
videos (or its parts) is to compare the similarities between video
frames and compute statistical analysis. In our work, we represent
the video sequence as the set of video-parts. Each video-part is
represented by its temporal information (begin and end) and also
by one or more key-frames. The video-part key-frames are in some
sense interesting video frames and are usually represented by image
descriptors. One of the research goals is to analyse the influence of
the density of the video-part key-frames to stability and precision
of the entire video-pair comparison approach.

2 Image and Temporal Analysis

The similarity between two images (video frames) can be in gen-
eral evaluated using two types of visual content description: global
and local. The global approach of image description extracts im-
age features from the entire image and utilizes statistics for their
representation. Global approach might be very computation cost
effective but is usually not very robust to geometrical distortions as
no spatial information is taken into account.

2.1 Global image features

We represents the image content by colour histograms combined
with a spatial pyramid over the image to jointly encode global and
local information [Chum et al. 2007]. We use several colour mod-
els (grey-scale, HSV, IO1O2). The IO1O2 colour model, known as
the opponent colour model [J. Geusebroek and Geerts 2001], is par-
tially colour normalized and simple to compute. The spatial pyra-
mid is arranged so that low number of bytes of data is describing
each pyramid level. These are appended to create the final feature
vector. On descending to the next level in the pyramid, the number
of segments the histograms are taken over increases four-fold.

Besides colour information, we compute also histograms of image
gradients to represent the image intensity changes. We improved
the stability of the existing approach by increasing of the overlap of
subdivision regions and also by weighting the values withing each
region [Sailer 2012].



Figure 1: Examples of video-pair disruption.

2.2 Local image features

The local approach extracts local image features such as corners
or blobs and represents the image content as the set of such lo-
cal features and their descriptors. The local approach is more ro-
bust to geometrical distortions but might have poor results with
noisy data and is computationally more expensive. From the nu-
merous existing methods for local image analysis and description,
we choose following approaches that differs in computational ef-
ficiency, stability and precision. One of the widely used approach
is the SIFT detector proposed by Lowe [Lowe 2004] for its high
spatial and scale precision of detected local features and also be-
cause it includes also very robust method for feature description.
Next favourite method that accelerates the Hessian-based approach
is known as SURF detector [Bay et al. 2006]. The approach intro-
duced by Rosten and Drummond known as FAST corners [Rosten
and Drummond 2006] employs machine learning to construct cor-
ner detector that outperforms all know approaches in the speed.

2.3 Temporal analysis

The temporal analysis is usually used in video processing to anal-
yse the geometrical changes in consecutive video frames. Accord-
ing to application, the analysis serves e.g. to detect cuts in video
sequences or find the visually most representative candidates of
video-parts. We have selected two distinct approaches. First ap-
proach computes the differences between several adjacent video
frames represented by global image features using Euclidean dis-
tance for metric features. The differences are evaluated over flow-
ing window.

Other approach is based on tracking of local image features over
the close video frames. The approach is motivated by work of Sivic
et al. [Sivic et al. 2006] and further developed by Klicnar and Be-
ran [Klicnar and Beran 2012] for computationally efficient video
segmentation. The existing method was adapted to a higher com-
putational speed and on-line processing. The proposed approach is
based on sparse local image features and the KLT tracker for fea-
ture trajectory computation. A RANSAC-based method is used for
initial motion segmentation, resulting motion groups are partitioned
by a spatial-proximity constraints. The correspondence of motion
groups across frames is solved by one-frame label propagation in
forward and backward directions. The method results in stable tra-
jectory bundles that represents distinctive image regions.

3 Video Sequence Comparison

This section describes basic principles of the proposed system for
video dissimilarity detection. Its design consists of several indepen-
dent consecutive steps (see also the block diagram on Figure 2):

1. Preprocessing of both, reference and query video sequences

2. Computation of similarity matrix

3. Detection of corresponding segments in both videos

3.1 Key-frame extraction

The goal of the keyframe extraction is to describe to whole video
sequence by a set of keyframes, which represents the individual
video parts. Every part is described by several keyframes – the
start frame, the end frame and possibly several frames inside.
Actually, it is possible not to detect segment boundaries, but create
keyframes directly by using every Nth frame of the video sequence.
The precision of detection of their boundaries is then dependent
on the period N and very short segments cannot be detected –
they may be simply passed unnoticed if they lie between two
keyframes. This is the reason why every frame must be inspected
and boundaries of the individual video parts must be found.

Frames are processed sequentially, a significant change in the video
is considered as a boundary between two segments (keyframes are
created). In addition, keyframes are also created periodically every
N frames (approx. every 1 second), which improves the response
and stability of long segments in their detection process. The last
thing is that how segment boundaries are detected. In this work, we
compare two approaches - by observing the global features or by
utilizing the local features and their development in time.

3.2 Similarity matrix

Similarity of the extracted keyframes is described by a so called
similarity matrix S. Its rows represent keyframes from a reference
sequence VR, while columns represent keyframes from a tested
sequence VT . Every value in this matrix represents the dissimilarity
of keyframes VR(r) and VT (t), in our case it is the distance between
descriptors of both keyframes S(r, t) = d(VR(r),VT (t)). Similar
parts of both video sequences forms evident diagonal line segments
in the matrix.

3.3 Dissimilarities detection

As the corresponding parts of both sequences appears as line
segments (with high frame-to-frame similarity) on the similarity
matrix, video matching problem can be reduced to searching for
these lines. We suppose several assumptions: First, frame rates
of both video sequences doesn’t differ, so the lines are nearly
diagonal. Also the order of the scenes is preserved, only some of
them are removed, replaced, or there is some other content inserted
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Figure 2: Basic block diagram of the proposed system for video sequence comparison.

– disconnected line segments on the similarity matrix can only
be shifted to the right and/or downwards from the previous segment.

We developed an recursive algorithm for segments detection based
on the divide and conquer technique. First, we need to define
a continuous segment, which is a line of neighbouring points
on thresholded similarity matrix ST that goes from A = (ax,ay)

to B = (bx,by). From a given starting point A1 = (a1
x ,a

1
y), the

segment can be gradually constructed by following the diagonal
or by doing a vertical/horizontal step. The segment is constructed
until An+1 = An. The length of the segment is defined as Euclidean

distance: d(A,B) =
√
(bx −ax)2 +(by −ay)2.

The algorithm works as follows: At first, the whole matrix is
searched for the point, from which the longest continuous segment
can be constructed. If the length of this segment d(A,B) > dmin, it
is accepted and the matrix is subsequently divided into these three
areas (as illustrated in fig. 3):

1. Rectangle from upper left corner to start of the segment

2. Rectangle from end of the segment to lower right corner

3. Remaining areas

Regions 1 and 2 are then processed recursively. In each of them, the
dominant continuous segment is detected and if fulfils the minimal
length criterion, it is accepted, the region is subdivided and the
recursion is repeated. We suppose that longer continuous segments
are less probable to be formed by noise, so the extraction of the
most dominant lines as first improves the robustness. Figure 3
shows how this algorithm searches for the new line segments in the
rectangular areas between the already found ones. White colour
represents areas of the matrix for the next segment detection, while
the grey colour marks already inspected or rejected regions, where
no further segments can be detected.

4 Results

The main specifics is that we need actually two sequences – one
is the reference, which is the sequence without modifications. The
modified is a query one. We created a small dataset that we used
for algorithm design and its evaluation. It consists of a 50 reference
sequences from TRECVID dataset, query sequences were made by
randomly chosing 2 of them (base sequence and a one used for
addition). 10 sequences were made containing each dissimilarity
type only, that results a total of 30 sequences.

4.1 Detection performance

We involved standard metrics for evaluation, such as Miss rate
(MR), False alarm rate (FAR) and F-measure (Fm), which indicates
the accuracy of detected dissimilarity length and position. Great
emphasis is put on necessary detection of all sequence changes,
so the detector was set to a minimal miss rate at a costs of in-
creased number of false alarms. Results are shown on Table 1,
global and local approach performs nearly the same. The relatively
low F-measure is caused partially by oversegmentation and also the
method failure on sequences, where all frames are nearly similar.

Global Local
MR FAR Fm MR FAR Fm

Injection 0.00 0.57 0.68 0.00 0.58 0.77
Removal 0.00 0.64 0.60 0.00 0.64 0.59
Rewriting 0.00 0.63 0.80 0.00 0.62 0.89

Table 1: Results of the dissimilarities extraction.

4.2 Computational speed

Performance was measured on system with Intel Core 2 Duo
T7100@1.80Ghz processor and 4GB of RAM, used sequence
contains a total of 28358 frames with resolution of 624x352px.
Achieved results in Table 2 show that global approach for
keyframes extraction is much faster than the local, tracking-based
one. Considering that both of them give similar results on the test
data, we claim the histogram-based approach sufficient.

Global Local
Comp. time (relative) 1.0x 13.0x
Framerate 172.4 frames/s 13.3 frames/s

Table 2: Performance of the whole video comparison process.

5 Conclusion

The presented work describes video processing task of detection of
short- and long-term changes between two video sequences. Two
video sequences might be declared as the identical, but small dif-
ferences might appear. Results show that both local and global
approach gives approximately the same results on the described
dataset. The main difference is that computation of the global
feature-based keyframe extraction is approximately 13 times faster.
This means that faster but less robust global approach can be used
for keyframe extraction in this application without insulting the re-
sults significantly.



(similarity matrix) (step 1a) detected segments (step 1b) matrix subdivison (step 2a) detected segments

(step 2b) matrix subdivison (step 3a) detected segments (step 3b) matrix subdivison (step 4) all segments detected

Figure 3: Example of dominant segments detection.
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