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Abstract. We describe the initial experiments in the field of automated
classification of spectral line profiles of emission line stars. We attempt
to automatically identify Be and B[e] stars spectra in large archives and
classify their types in an automatic manner. To distinguish different types
of emission line profiles, we propose a completely new methodology, that
seems to be not yet used in astronomy. Due to the expected size of
spectra collections, the dimension reduction is required. We propose to
perform the discrete wavelet transform (DWT) of the spectra, compute
the wavelet power spectrum and other statistical metrics over the wavelet
coefficients, and use them as feature vectors in classification. The results
show that using proposed method of data transformation we can reduce
the number of attributes and the processing time to a small fraction, and
moreover increase the accuracy.
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1 Introduction

Technological progress and growing computing power are causing data avalanche
in almost all sciences, including astronomy. The full exploitation of these massive
distributed data sets clearly requires automated methods. One of the difficulties
is the inherent size and dimensionality of the data. The efficient classification
requires that we reduce the dimensionality of the data in a way that preserves
as many of the physical correlations as possible.

Be stars are hot, rapidly rotating B-type stars with equatorial gaseous disk
producing prominent emissionHα lines in their spectrum [17]. The emission lines
are bright lines in a spectrum caused when the atoms and molecules in a hot
gas emit extra light at certain wavelengths [7]. The distribution of these lines in
a spectrum is unique for each chemical element. Hα line is created by hydrogen
with a wavelength of 656.28 nm. Be stars show a number of different shapes of
the emission lines, as we can see in Fig. 1. These variations reflect underlying
physical properties of a star.
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Fig. 1: Examples of typical shapes of emission lines in spectra of Be stars

As the Be stars show a number of different shapes of emission lines like
double-peaked profiles with or without narrow absorption (called shell line) or
single peak profiles with various wing deformations, it is very difficult to con-
struct a simple criteria to identify the Be lines in an automatic manner as re-
quired by the amount of spectra considered for processing. However, even simple
criteria of combination of three attributes (width, height of Gaussian fit through
spectral line and the medium absolute deviation of noise) were sufficient to
identify interesting emission line objects among nearly two hundred thousand of
SDSS SEGUE spectra [18].

To distinguish different types of emission line profiles (which is impossible
using only Gaussian fit) we propose a completely new methodology, that seems to
be not yet used (according to our knowledge) in astronomy, although it has been
successfully applied in recent years to many similar problems like a detection of
particular EEG activity. As the number of independent input parameters has to
be kept low, we cannot use directly all points of each spectrum but we have to
find a concise description of the spectral features, however conserving most of
the original information content.

We propose to perform the discrete wavelet transform (DWT) of the spec-
tra, compute the wavelet power spectrum and other statistical variables over
the wavelet coefficients, and use them as feature vectors for classification. This
method has been already successfully applied to many problems related to recog-
nition of given patterns in input signal as is identification of epilepsy in EEG
data [9]. Extensive literature exists on wavelets and their applications, e.g. [13,
6, 10, 15, 16, 11]. In astronomy the wavelet transform was used recently for esti-
mating stellar physical parameters from Gaia RVS simulated spectra with low
SNR [14]. However, they have classified stellar spectra of all ordinary types of
stars, while we need to concentrate on different shapes of several emission lines
which requires the extraction of feature vectors first.



In next chapters we describe the experiment with feature extraction using
DWT in an attempt to identify the best method as well as verification of the
results using classification of both extracted feature vectors and original data
points.

2 Data

The source of data is the archive of the Astronomical Institute of the Academy
of Sciences of the Czech Republic (AI ASCR). The data set consists of 2164
spectra of Be stars and also normal stars divided into 4 classes (with 408, 289,
1338, and 129 samples) based on the shape of the Hα line. The original sample
contains approximately ~2000 values around Hα line.

For better understanding of the categories characteristics there is a plot of
25 random samples in Fig. 2 and characteristic spectrum of individual categories
created as a sum of all spectra in corresponding category in Fig. 3.
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Fig. 2: Random samples of spectra from all categories [2]



Fig. 3: Characteristic spectrum of individual categories created as a sum of all
spectra in corresponding category [2]. Categories 1, 2, and 4 consists of spectra
of Be stars, category 3 contains spectra of normal stars. Spectra in cat. 1 are
characterized by a pure emission in Hα spectral line. Cat. 2 contains a small ab-
sorption part (less than 1/3 of the height), cat. 3 contains larger absorption part
(more than 1/3 of the height). Spectra of normal stars in cat. 3 are characterized
by a pure absorption.

3 Data Transformation

3.1 Centering

First, the centers of emission (resp. absorption) lines are aligned to the center,
so that the influence of the position of the emission in a spectrum on the clas-
sification is minimized, as we are interested only in the shape of the emission
line.

Centering is done by subtracting the median of a spectrum from the spectrum
and alignment of the maximal magnitude of the spectrum to the center.



3.2 Wavelet Transform

The wavelet transform was performed using the Cross-platform Discrete Wavelet
Transform Library [1]. The selected data samples were decomposed into J scales
using the discrete wavelet transform as

Wj,n = 〈x, ψj,n〉, (1)

whereWj,n is a wavelet coefficient at j-th scale and n-th position, x is a data
vector, and ψ is the CDF 9/7 [4] wavelet. This wavelet is employed for lossy
compression in JPEG 2000 and Dirac compression standards. Responses of this
wavelet can be computed by a convolution with two FIR filters, one with 7 and
the other with 9 coefficients.

3.3 Feature Extraction

Different methods of computing a feature vector were used and then compared.
The feature vector

v = (vj)1≤j<J (2)

consists of J elements vj calculated for each obtained subband (scale) j of
wavelet coefficients using one of the methods described below.

All elements in one feature vector were computed by the same method. Some
of the individual methods are further explained in details.

Wavelet power spectrum measures the power of the transformed signal at
each scale of the employed wavelet transform. The bias of this power spec-
trum was futher rectified [12] by division by corresponding scale. The WPS
for the scale j can be described by

vj = 2−j
∑
n

|Wj,n|2. (3)

Euclidean norm is given by

vj =
(∑

n

|Wj,n|2
)1/2

. (4)

Similarly, the other descriptors were calculated using the following metrics
which are listed without well known definitions.

Maximum
Mean
Median
Variance
Standard deviation



4 Classification

Classification of resulting feature vectors is performed with the support vector
machines (SVM) [5] using the LIBSVM [3] library. The radial basis function
(RBF) is used as a kernel function. This kernel nonlinearly maps samples into
a higher dimensional space so it, unlike the linear kernel, can handle the case
when the relation between class labels and attributes is nonlinear. The second
reason is the number of hyperparameters which influences the complexity of the
model. The RBF kernel has fewer hyperparameters than the other kernels [8].

There are two hyperparameters for a RBF kernel: C and γ. It is not known
beforehand which C and γ are best for a given problem, therefore some kind of
model selection (parameter search) must be done. The goal is to identify optimal
C and γ so that the classifier can accurately predict unknown data. However, it
may not be useful to achieve high training accuracy, because of the overfitting
problem.

A common strategy to deal with the overfitting problem is known as cross-
validation. In v-fold cross-validation, the training set is divided into v subsets
of equal size. Sequentially one subset is tested using the classifier trained on the
remaining v−1 subsets. Thus, each instance of the whole training set is predicted
once so the cross-validation accuracy is the percentage of data which are correctly
classified. The cross-validation procedure can prevent the overfitting problem.

A strategy known as grid-search was used to find the parameters C and γ and
to give the results of classification. Various pairs of C and γ values were tried and
each combination of parameter choices was checked using 5-fold cross validation.
The results are given by the best cross-validation accuracy. We have tried expo-
nentially growing sequences of C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23).

5 Results

We present the results of classification using different feature extraction methods
and we compare them with the results without using any feature extraction
method. Besides formerly described feature vectors, we used also the original
data, the data after centering, and all the DWT coefficients. The results are in
Table 1. It includes the length of a feature vector, the accuracy and the values of
parameters C and γ of RBF kernel given by the best cross-validation accuracy
of grid search, and measured time. The evaluation was performed on desktop
PC equipped with AMD Athlon 64 X2 processor at 2.1GHz.

The Table 1 shows that the accuracy of all tested feature vector descriptors
is very similar and moreover in most of the cases even better than the accuracy
of the original data. We can also see that the classification of the original data is
very time-consuming. Using proposed method of data transformation (centering,
DWT, and one of the descriptors) we can reduce the number of attributes and
the processing time to a small fraction, and moreover increase the accuracy.



Feature vector Length Accuracy [%] Time [min.] log2 C log2 γ

Original data 1997 96.716 ~330
Centering 1997 98.2886 ~330
DWT 1997 98.1961 ~330

Median 10 97.6411 1.72 7 −3
Std. deviation 10 97.2248 2.02 7 1
Euclid. norm 10 97.1785 1.93 9 −5
Maximum 10 97.0398 1.85 7 −3
Mean 10 96.531 2.08 13 −1
WPS 10 94.6809 2.22 15 1
Variance 10 94.4496 2.48 15 −5

Table 1: Results of classification of different feature vectors. The table includes
the length of a feature vector, the accuracy and the values of parameters C and
γ of RBF kernel given by the best cross-validation accuracy of grid search, and
measured time.

6 Conclusion

In this paper, we describe the experiment with classification of spectra of Be
stars using different feature extraction methods based on the discrete wavelet
transform in an attempt to identify the best method. We present the results of
classification of different extracted feature vectors as well as the original data.

From the results we can see that the classification of the original data is
very time-consuming. Using proposed method of data transformation (centering,
DWT, and one of the descriptors) we can reduce the number of attributes and
the processing time to a small fraction, and moreover increase the accuracy.

In future work, we will compare different classification methods and use the
results for comparison with the clustering results. Based on this, we will try to
find the best clustering model and its parameters, which will then be possible to
use for clustering of all spectra in the archive of AI ASCR, and possibly to find
new interesting candidates.
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