
Minimum Memory Vectorisation
of Wavelet Lifting

David Barina and Pavel Zemcik

Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

{ibarina,zemcik}@fit.vutbr.cz

Abstract. With the start of the widespread use of discrete wavelet
transform the need for its effective implementation is becoming increas-
ingly more important. This work presents a novel approach to discrete
wavelet transform through a new computational scheme of wavelet lift-
ing. The presented approach is compared with two other. The results
are obtained on a general purpose processor with 4-fold SIMD instruc-
tion set (such as Intel x86-64 processors). Using the frequently exploited
CDF 9/7 wavelet, the achieved speedup is about 3× compared to naive
implementation.

Keywords: discrete wavelet transform, lifting scheme, parallelization,
vectorisation, SIMD

1 Introduction

The discrete wavelet transform (DWT) is mathematical tool which is able to de-
compose discrete signal into lowpass and highpass frequency components. Such
a decomposition can be performed at several scales. DWT is often used as the
basis of sophisticated compression algorithms. This is the case of JPEG 2000
and Dirac compression standards in which CDF 9/7 wavelet [4] is employed for
lossy compression. Responses of this wavelet can be computed by a convolution
with two FIR filters, one with 7 and the other with 9 coefficients. For the DWT
computation, the well known Mallat’s [8] filtering scheme can be used. Alterna-
tively, one can use usually faster scheme called lifting which was presented by I.
Daubechies and W. Sweldens in [5]. Lifting data flow graph consists of regular
grid computational scheme suitable for SIMD vectorisation. Both of the algo-
rithms can be performed over some approximation of real numbers. This paper
focuses on single-precision floating-point format.

In contemporary personal computers (PCs), the general purpose microproces-
sor with SIMD instruction set is often found. In case of the x86-64 architecture,
the appropriate instruction set used here is SSE (Streaming SIMD Extensions).
This 4-fold SIMD set fits exactly the CDF 9/7 lifting data flow graph.

In this work, we discuss vectorisation (parallelization) of 1-D discrete wavelet
transform on processors with SIMD extensions. Two of the discussed methods

mailto:ibarina@fit.vutbr.cz
mailto:zemcik@fit.vutbr.cz
http://www.fit.vutbr.cz


can be used in memory limited systems. Specifically, we focus on the PC and
similar platforms.

The rest of the paper is organized as follows. More traditional approaches to
DWT computation are reviewed in Section 2. Section 3 describes opportunities
for lifting scheme parallelizations and presents the proposed approach. The vec-
torisation methods are compared in Section 4. Finally, Section 5 concludes the
paper.

2 Related Work

In 2000, the problem of minimum memory implementations of lifting scheme
was addressed in [3] by Ch. Chrysafis and A. Ortega. This approach is very
general and it is not focused on parallel processing. Anyway, this is essentially the
same method as the on-line or pipelined computation mentioned in other papers
(although not necessarily using lifting scheme nor 1-D transform). Especially,
its variation was presented six year later in [6] which is specifically focused on
CDF 9/7 wavelet transform. The work was also later extended to [2] where
same authors addressed a problem of minimum memory implementation of 2-D
transform.

In [7] R. Kutil et al. presented SIMD parallelizations of several frequently
used wavelet filters. This vectorisation is applicable only on those filters dis-
cussed in their paper. Specifically, vectorisation of CDF 9/7 wavelet computed
using lifting scheme is vectorised here by a group of four successive pairs of co-
efficients. Unlike a general approach proposed in our paper, their 1-D transform
vectorisation handles coefficients in blocks. Our vectorisation process pairs of co-
efficients one by one immediately when available (without packing into groups).

According to the number of arithmetic operations, the lifting scheme [5]
is today’s most efficient scheme for computing discrete wavelet transforms. Any
discrete wavelet transform with finite filters can be factored into a finite sequence
of N pairs of predict and update convolution operators Pn and Un. Each predict

operator Pn corresponds to a filter p
(n)
i and each update operator Un to a filter

u
(n)
i . Block diagram of such a system is depicted in Figure 1.

Pn(z) =

gn∑
i=−ln

p
(n)
i z−i (1)

Un(z) =

fn∑
i=−mn

u
(n)
i z−i (2)

This factorisation is not unique. For symmetric filters, this non-uniqueness
can be exploited to maintain symmetry of lifting steps.

Consider the decomposition of the signal of length of L samples. Without
loss of generality one can assume only signals with even length L. Possible re-
maining coefficient can treated separately in the prolog or epilog phases together
with border extension. Thus, the transform contains S = L/2 pairs of resulting



...P0(z) U0(z)x

z−1

s

d

PN−1(z) UN−1(z)

↓2

↓2

Fig. 1. Block diagram of lifting scheme. The system consists of 2N lifting steps. For
simplicity, the scaling of the resulting coefficients was ommited.

wavelet coefficients (s, d). The s coefficients represent a smoothed signal. On the
contrary, the d coefficients form a difference or detail signal.

In their paper [5], Daubechies and Sweldens demonstrated an example of
CDF 9/7 transform factorisation which resulted into four lifting steps (N = 2)
plus scaling of coefficients. In this example, the individual lifting steps use 2-tap
symmetric filters for the prediction as well as the update. This can be graphically
described as shown in Figure 2. Here, outer arrows represents 2-tap symmetric
filter and inner arrow represents predicted (resp. updated) coefficient. In all
figures shown in this paper, the coefficients of these four 2-tap symmetric filter
are denoted α, β, γ and δ respectively.

Fig. 2. Elementary lifting operation (Pn or Un) of the CDF 9/7 wavelet. The flow
in the middle is just added into result at the bottom. Side flows are multiplied by a
constant first.

When coefficient scaling is omitted, the calculation of a pair of the DWT
coefficients at the position l (sl and dl) is performed by four such a lifting steps.

Intermediate results (s
(n)
l and d

(n)
l ) can be appropriately shared between neigh-

bouring pairs of coefficients (sl and dl). Finally, the calculation of the complete
CDF 9/7 DWT is depicted in Figure 3. This is an in-place implementation,
which means the DWT can be calculated without allocating auxiliary memory.
Resulting coefficients (sl and dl) are interleaved in place of the input signal.

3 Vectorisation

The calculation scheme described in the previous section can be realized in a
number of different ways. In this work, three of such ways are described. The
main difference between them is in the order of lifting steps evaluation. Alterna-
tively, the data flow graph in Figure 3 can be split into areas that are evaluated
sequentially according to their data dependencies.



α

β

γ

δ

Fig. 3. Complete data flow graph of CDF 9/7 wavelet transform. The input signal
is on top, output at the bottom. The graph borders must be treated in a special way
using prolog and epilog phases.

3.1 Naive approach

The naive approach of data flow graph evaluation directly follows the lifting
steps (n). Thus, all intermediate s(1) and d(1) coefficients are evaluated in the
first step. Then, all s(2) and d(2) are evaluated in second step, etc. For a better
understanding see the block diagram in Figure 4. Unfortunately, this algorithm

requires several reads and writes of the intermediate results s
(n)
l and d

(n)
l . For

long signals, these intermediate results will be several times evicted from the
CPU cache in favor of other intermediate results. Consequently, many cache
misses during such a computation will occur.

z−S

z−S

...U0(z)P0(z)x

z−1

s

d

PN−1(z) UN−1(z)

z−S

z−S

z−S

z−S

z−S

z−S↓2

↓2

Fig. 4. Block diagram of the horizontal lifting scheme vectorisation. The parts bounded
with a dashed line correspond to the areas of parallel computation.

In this paper, this method is called the horizontal vectorisation. This name
reflects the fact that the data flow graph is split in horizontal areas as in Figure
5. In each area, elementary calculations are independent and can be computed
in parallel. For simplicity, the scaling of coefficients and the prolog and epilog
phases were omitted in the referenced figure. An entire signal of 2S samples must
be loaded into the memory which is not suitable for memory limited systems.

3.2 Vertical vectorisation

Another way of lifting data flow graph evaluation is the double-loop approach
[6]. This approach is referred to as the vertical vectorisation. Earlier, it was
described in [3] focusing on low memory systems but without vectorisation.



α

β

γ

δ

Fig. 5. The horizontal vectorisation of the CDF 9/7 data flow graph. The scaling of co-
efficients was omitted. The computation within the highlighted areas can be processed
in parallel.

The Pn and Un filters need not be causal. In general, non-causal systems
requires storing the whole input signal into memory (as can be seen from Fig-
ure 5). This is not suitable for fast or memory limited signal processing as well
as for a vectorisation. Therefore, it would be appropriate to convert non-causal
lifting steps (Pn and Un) to causal systems. The key to force these filtering steps
to be causal is the introduction of appropriate delays.

Pn(z) = z−lnPn(z) =

gn+ln∑
i=0

p
(n)
i−lnz

−i (3)

Un(z) = z−mnUn(z) =

fn+mn∑
i=0

u
(n)
i−mn

z−i (4)

The transition from non-causal to causal system introduce a delay z−ln on
both inputs of the prediction filtering step Pn. In the bottom input s, the delay
can be distributed into both branches. This leads to a causal system Pn as
in (3). Analogously, a delay of mn samples is introduced on both inputs of
update step Un. Again, this delay can distributed into branches of upper input
d. The resulting equation is shown in (4). For simplicity, the adjacent delays can
combined into single one. Finally in (5), delays of ηn, µn and νn samples appear
around each pair of filtering steps Pn and Un. The resulting block diagram is
shown in Figure 6.

ηn = ln (5a)

µn = ln +mn (5b)

νn = mn (5c)

In this method, the lifting computation is transformed into one loop instead
of multiple loops over all the coefficients. Therefore, one pair of lifting coeffi-
cients sl and dl is computed in each iteration of such a single loop. However, the



z−µN−1

z−νN−1

UN−1(z)PN−1(z)

z−ηN−1z−ν0

z−µ0

U0(z)P0(z)

z−η0↓2z−1

...

s

d

x

↓2

Fig. 6. Block diagram of vertical lifting scheme vectorisation. The part bounded with
dashed line correspond to the area of parallel computation.

computations within each of these areas cannot be directly parallelized due to
data dependencies. Even so, this procedure is advantageous because the coeffi-
cients are read and written only once. Consequently, this prevents unnecessary
cache misses. In our 1-D case, the SIMD vectorisation of this method lies in
processing of four adjacent areas in parallel like in [7]. The data flow graph is
split in vertical areas of width of two coefficients as in Figure 7. Furthermore,
this approach is particularly useful for multidimensional (e.g. 2-D) transform on
PC platform where several data rows are processed in single loop at once using
n-fold SIMD instructions.

α

β

γ

δ

Fig. 7. Vertical vectorisation of the CDF 9/7 data flow graph. The computation within
the highlighted areas cannot be processed in parallel due to data dependencies.

3.3 Proposed method

The main contribution of this paper is the following approach. This method is
referred to as the diagonal vectorisation here. It is especially useful on limited
memory systems because it can start iteration of vectorised loop immediately
when a new pair of coefficients is available. Another area of application can be
the Intel x86-64 or similar architecture equipped with small CPU cache and
SIMD instruction set.

The subsequent lifting operations Pn and Un inside the area of vectorisation
above cannot be computed in parallel due to data dependencies. To eliminate
these dependencies another delay of one sample is introduced on both lines s
and d, see Figure 8.



z−1 ↓2

z−µ0−1

z−ν0−1

z−1

z−ηN−1

z
−µ
N−1−1

z
−ν
N−1−1

... PN−1(z)P0(z) U0(z) UN−1(z)

z−1

z−1

z−1z−η0

s

d

x

↓2

Fig. 8. Block diagram of diagonal lifting scheme vectorisation. In contrast to the
vertical vectorisation, a delay of 1 sample is introduced on both lines s and d. This
removes immediate data dependencies between subsequent lifting operators Pn and
Un. Consequently, these lifting operators can be evaluated in parallel.

Similarly to the case of vertical vectorisation, multiple loops of naive ap-
proach are transformed into the single loop over all the coefficients. One pair of
resulting coefficients s and d is produced in each iteration. Unlike the vertical
approach, the elementary lifting operations evaluated in single loop iterations
are shifted with respect to each other. This shift removes the data dependency
within these loop iteration. Therefore, the elementary operations can be now
computed in parallel. This is advantageous especially on the PC platform for
processing with SIMD instructions. This approach in called diagonal vectorisa-
tion here. Corresponding slices of the data flow graph are depicted in Figure 9.

α

β

γ

δ

Fig. 9. Diagonal vectorisation of the CDF 9/7 data flow graph. The computation
within the highlighted areas can be processed in parallel.

In contrast to the vertical vectorisation, the proposed method does not re-
quire buffering of the input samples into groups of width corresponding to the
used SIMD instruction set. A pair of resulting coefficients is available immedi-
ately after processing a pair of input samples. On the other hand, it is necessary
to choose a wavelet with one such lifting factorisation which has the same number
of lifting steps (i.e. 2N) like components of the SIMD set. Depending on the in-
struction set being used, more shuffling instruction may be needed to implement
the proposed diagonal vectorisation (which is the case of Intel’s SSE).

Considering the CDF 9/7 wavelet with N = 2 pairs of lifting steps, the
diagonal vectorisation can be accelerated e.g. using Intel’s MMX instruction set
with 16-bit integer or fixed-point numbers, SSE set with single-precision floating-



point numbers, SSE2 set with 16-bit integer or fixed-point numbers or AVX set
with double-precision floating-point numbers.

4 Evaluation

The implementations of the approaches described in the previous section was
evaluated on two x86-64 computers. This comparison was performed on 1-D
forward DWT using CDF 9/7 wavelet. All the implementations work over a
sequence of single-precision floating point numbers. According to platform per-
formance, a length of the sequence was progressively extended from vector of 32
samples with geometrical step of 1.28 up to 55 millions of samples. The transform
was computed including a final coefficient scaling and correct border extensions.
The resulting coefficients remain interlaced at their original positions.

The first platform used in this paper is a classical PC with x86-64 CPU. All
the results are obtained on Intel Core2 Duo CPU E7600 at 3.06 GHz with 32 kB
of Level 1 data cache and 3 MB of Level 2 cache. The Level 1 data cache is 8-way
set associative with cache lines of 64 bytes. The processor is equipped with 4-
fold SSE instruction set. Thus, the SSE instructions are able to perform simple
operation on four 32-bit single-precision floating point numbers in parallel. The
evaluated programs ran under 64-bit Linux system and had been compiled by
GCC 4.6.3 with -O2 option. All programs were executed on a lightly loaded
system. In addition, the K-best measurement system have been used.

Measurement results were verified on a second PC with x86-64 CPU. In this
case, the results are obtained on AMD Athlon 64 X2 4000+ at 2.1 GHz with
64 kB L1 data cache and 512 kB of L2 cache. The L1 data cache is 2-way set
associative cache with cache lines of 64 bytes. As well as Intel Core2, the Athlon is
equipped with SSE set. Programs ran under 64-bit Linux and had been compiled
by GCC 4.7.2 with -O2 option. Although running at lower frequency compared
to Intel, the AMD is in general faster in this task.

The evaluation is shown in Figure 10 and Figure 11. The horizontal vectori-
sation fails with samples exceeding the CPU cache size due to extensive cache
misses. In contrast, the vertical and diagonal vectorisation show stability with
increasing input length. In case of the proposed method, the achieved speedup
is up to 3.1× on Intel and 3.1× on AMD.

The created implementation of all three algorithms used in this paper can be
downloaded from the Internet.1 The vertical and diagonal vectorisation methods
were implemented using SSE intrinsics and inline assembly (no auto-vectorisation
of GCC was used). In both cases, aligned memory access instructions was used
to access the coefficients. This required merging of several loop iterations (the
areas in Figure 7 and Figure 9) into the single one.

Table 1 shows the comparison of the different algorithms in terms of mem-
ory consumption. Each of the method require t samples to start iteration of the
vectorised loop and b memory cells to store intermediate results. The horizontal

1 http://www.fit.vutbr.cz/research/view_product.php?id=211

http://www.fit.vutbr.cz/research/view_product.php?id=211


1n

10n

100n

1µ

10 100 1k 10k 100k 1M 10M 100M

se
co

n
d
s

/
sa

m
p
le

samples

horizontal
diagonal
vertical

Fig. 10. Comparison of all three vectorisation approaches on the AMD x86-64 plat-
form. The vertical line represents the size of the L2 CPU cache.

1n

10n

100n

1µ

10 100 1k 10k 100k 1M 10M 100M

se
co

n
d
s

/
sa

m
p
le

samples

horizontal
diagonal
vertical

Fig. 11. Comparison performed on the Intel x86-64 platform. The vertical line shows
the size of the L2 CPU cache.



vectorisation needs whole signal of 2S samples (S pairs of coefficients) to be
loaded into memory. On this signal, up to S independent operations can evalu-
ated in parallel. In contrast, the vertical vectorisation needs only 2T samples to
start iteration of the vectorised loop in that T lifting operators can be evaluated
in parallel. In the case of 3-tap P and U operators, this vectorisation needs only
2N memory words to store intermediate results between such subsequent iter-
ations. Finally, the diagonal vectorisation requires only 2 new samples for each
iteration which evaluate 2N lifting operators in parallel.

vectorisation t samples b coefficients q operations

horizontal 2S 2S S
vertical 2T (8) 2N (4) T (4)
diagonal 2 (2) 6N − 2 (10) 2N (4)

Table 1. Memory consumption of vectorisation methods. Each method needs t samples
to start iteration and b memory words to pass intermediate results between them.
In each iteration, up to q operations can be evaluated in parallel. The numbers in
parentheses are related to SSE implementations of the CDF 9/7 transform.

Table 2 shows execution times of the algorithms measured up to 55 millions of
samples. The vertical and diagonal vectorisation were implemented using mostly
SSE intrinsics and in specific cases inline assembly (to have more control over
the register allocation). Theoretical speedup in both cases is 4× due to using of
the SSE instructions. Note, that the speedup in Table 2 is shown relatively to the
implementation of the horizontal vectorisation (first row) which is significantly
slowed down due to extensive cache misses. This is the reason why there is a
value higher than the theoretical speedup 4×. Figure 11 and Figure 10 shows
that the vertical and diagonal vectorisation exhibit similar properties. In these
two cases, the actual speedup approaching the theoretical one. This is specifically
apparent for lengths of an input vector bigger than the CPU cache size.

vectorisation
Intel AMD

ns/sample speedup ns/sample speedup

horizontal 15.8 1.0 16.4 1.0
vertical 3.6 4.4 5.4 3.0
diagonal 5.1 3.1 5.3 3.1

Table 2. Execution times per sample measured for 55 millions of samples. All times
are related to SSE implementations of the CDF 9/7 transform.



5 Conclusion

This paper presented a novel method of minimum memory discrete wavelet trans-
form utilizing SIMD instructions. The proposed method was compared to two
other approaches – the naive implementation and similar vectorisation intro-
duced in [7]. The achieved speedup goes asymptotically to 3.1× on the Intel
Core2 Duo CPU and 3.1× on the AMD Athlon 64 X2 CPU. This speedup was
achieved for CDF 9/7 wavelet using SSE instruction set. The data flow graph
of this transform consists of 4 elementary lifting operations which exactly fits
into 4-fold SSE registers in the proposed diagonal vectorisation. Moreover, the
proposed method requires only two new samples to start iteration of SIMD vec-
torised loop.

Our next research will focus to an adaptation of the proposed approach to
the 2-D wavelet transform. Specifically, we will use the diagonal vectorisation in
the single-loop approach proposed by R. Kutil in [6]. The other direction may
be an adaptation to other architectures, e.g. ARM processors or FPGA-based
systems. It would also be interesting to compare the single-precision floating-
point implementation with fixed-point implementations or implementations of
reversible integer-to-integer (ITI) wavelet transform [1].

Acknowledgements This work has been supported by the EU FP7-ARTEMIS
project IMPART (grant no. 316564) and the national Technology Agency of the
Czech Republic project RODOS (no. TE01020155).

References

1. Adams, M.D.: Reversible integer-to-integer wavelet transforms for image coding.
Ph.D. thesis, Department of Electrical and Computer Engineering, University of
British Columbia, Vancouver, BC, Canada (September 2002)

2. Chrysafis, C., Ortega, A.: Line-based, reduced memory, wavelet image compression.
IEEE Transactions on Image Processing 9(3), 378–389 (2000)

3. Chrysafis, C., Ortega, A.: Minimum memory implementations of the lifting scheme.
In: Proceedings of SPIE, Wavelet Applications in Signal and Image Processing VIII.
SPIE, vol. 4119, pp. 313–324 (2000)

4. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly sup-
ported wavelets. Communications on Pure and Applied Mathematics 45(5), 485–560
(1992)

5. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Journal
of Fourier Analysis and Applications 4(3), 247–269 (1998)

6. Kutil, R.: A single-loop approach to SIMD parallelization of 2-D wavelet lifting.
In: Proceedings of the 14th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP). pp. 413–420 (2006)

7. Kutil, R., Eder, P., Watzl, M.: SIMD parallelization of common wavelet filters. In:
Parallel Numerics ’05. pp. 141–149 (2005)

8. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. With contribu-
tions from Gabriel Peyré. Academic Press, 3 edn. (2009)


	Minimum Memory Vectorisation of Wavelet Lifting

