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Abstract—The paper deals with classification of highly imbal-
anced data with accuracy constraints for the minority class. We
solve this problem by our proposed meta-learning method that
uses cost-sensitive logistic regression to generate initial candidate
models. These models can be used as an initial solutions for
various optimization algorithms. This paper is aimed for using
Particle Swarm Optimization (PSO) to handle the constrained
imbalanced classification problem. Experiments, comparing with
Genetic Algorithm (GA), show that the swarm intelligence
approach is suitable for this problem and outperforms GA.

Index Terms—Data mining, imbalanced classification, con-
straints, PSO, Genetic Algorithm.

I. INTRODUCTION

Every day, a huge amount of data is generated from various

sources. Usually, such amount of data contains some hidden

and undiscovered knowledge that could prove useful. Knowl-

edge discovery from databases, sometimes also referred to as

data mining, is an approach that is trying to address this issue.

Classification belongs to one of the most used tasks of data

mining. Given input data and their attributes, classification

algorithm tries to learn and create a model that correctly

classifies data into a number of different classes. There is an

enormous number of different algorithms capable of learn-

ing various types of classification models. Most of these

algorithms equally assume that the distribution of classes is

balanced. However, in many real-world applications most of

the data belong to some majority class and only a small

fraction of them to the minority class. Medical datasets are

the typical example of this phenomenon, e.g. , cancer tests

contain very few records with positive test result compared

to all performed tests. The issue with the standard learning

algorithms is that they tend to classify all the data to the

majority class. Thus, we are unable to reveal cases of the

minority class, which is in most cases the more important

one. The problem of learning from imbalanced data has been

identified as a crucial problem of data mining and machine

learning. Many methods suggesting how to deal with data

imbalance has been presented, including[1].

Based on our experience, in some applications, accuracy

constraints for the minority class can be defined. To give an

example, it is desirable to reveal high percentage, e.g., 99

percent, of all rare examples. In this case, it is necessary

to modify current algorithms for imbalanced data mining

or to develop new ones. Recently, we presented in [2] a

method that deals with this problem on a large dataset and

results in a model capable of very fast prediction of the new

data. This method utilizes both cost-sensitive learning using

logistic regression and subsequent optimization using Genetic

Algorithm (GA).

In this paper, we present a way of addressing this issue

by using different optimization algorithm – Particle Swarm

Optimization (PSO), which has been already used in various

applications in the field of data mining. The contributions of

this paper could be listed as follows:

1) Present Swarm Intelligence approach for solving con-

strained classification of imbalanced data and other

strategies on how to deal with constrained learning.

2) Provide comparison of behavior of these strategies to-

gether with comparison of learning from initial weight

models from Cost Sensitive Logistic Regression (CS-

LR) or starting with random solutions.

3) Show comparison of this approach with the Genetic

Algorithm optimization.

The paper is organized as follows. Section II describes the

problem of imbalanced learning and evaluation metrics in

greater detail. In Section III, we introduce related optimization

algorithms. Section IV presents the strategies used for handling

constraints in optimization algorithms and their usage for im-

balanced classification. Finally, section V provides description

of the experiments on the large dataset from our Internet

research.

II. LEARNING FROM IMBALANCED DATA

As already mentioned, imbalanced data are characterized by

a large disproportion of data between the classes. Typically,

in the binary classification problem, there is a huge amount

of data belonging to majority class and only few instances

from the minority class. The imbalance in the data can be

either intrinsic or extrinsic, profoundly described in [3]. To

deal with the imbalanced data problem, various methods have

been published to work either at the data level, or at the

algorithmic level. At the data level, sampling techniques are

used; from the algorithmic perspective, cost-sensitive learning,

active learning, ensemble methods are used. Other methods

can be found in [3].
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Predicted minor Predicted major

Actual minor 0 > 1

Actual major 1 0

Table I
COST MATRIX FOR MAJORITY AND MINORITY CLASS.

The idea behind sampling methods is to modify the class

distribution so that the proportion of instances of each class is

balanced. We can distinguish between random and informed

methods for over and under-sampling. Random oversampling

randomly selects a group of minority class instances and

duplicates them. In contrast, random under-sampling randomly

selects a group of majority class instances and removes them

from the training set. The over-sampling approach has an ad-

vantage in that no information is lost, on the other hand, under-

sampling is more time and memory efficient. To improve the

quality of sampling, more complex informed sampling meth-

ods were presented. The best known is the Synthetic Minority

Oversampling Technique (SMOTE) [4], which takes advantage

of both approaches. It creates new artificial instances using k-

nearest neighbors algorithm and also uses under-sampling of

majority class instances. The drawback of informed methods

is that they are less time efficient.

Cost-sensitive learning methods do not modify input data

but they penalize the misclassification of minority class in-

stances more than than the instances from the majority class.

To achieve this, they utilize the cost-matrix, which contain

penalties/costs for all right and wrong classifications. Based

on user demands, it is necessary to specify these costs as the

input for an algorithm. The example of a cost-matrix, which

can be used for binary imbalanced classification, is in Tab.

I. It is clear that correct classifications are not penalized and

that classifying a minor class instance as major is penalized

more than a major class instance as minor. Notice, that in

the case of binary classification, it is worth setting only

one cost. To perform cost-sensitive learning using existing

algorithms, MetaCost was presented in [5] as an effective cost-

sensitive framework/wrapper. The other way is to incorporate

this functionality directly into an algorithm. According to some

studies such as [6], cost-sensitive learning beats using sam-

pling methods. On the other hand, some researchers combine

both approaches to achieve better results [7], [8].

As in other classification tasks, the approach of building

ensemble of various base classifiers has been utilized to

improve performance. For example, according to [9], using

ensembles can improve performance dramatically.

A. Evaluation

Accuracy and error rate are considered as typical evaluation

metrics for classifiers. These measures are irrelevant for an

imbalanced data set because they are unable to prioritize the

minority class. Most used metrics instead of accuracy are

Area under ROC curve (AUC), and Geometric mean (G-mean),

which is defined as:

G−mean =
√
TPR× TNR =

√

TP

TP + FN
× TN

TN + FP
,

(1)

where TP, FP, TN and FN comes from a confusion matrix;

i.e., number of True/False Positives and True/False Negatives.

TPR and TNR represent the ability of the classifier to recog-

nize the positive and negative class respectively. In the medical

application, TPR is often called as sensitivity and it refers to

the more important class, i.e., in the context of imbalanced

data usually the minority class. Similarly, TNR is denoted as

specificity. Because of that and for easier readability we use

sensitivity for accuracy on the minority class and specificity

for accuracy on the majority class.

B. Constrained classification of imbalanced data

As already mentioned in the introduction, there are some

applications where there are accuracy constraints imposed on

the minority class. For example, given constraint is to have

sensitivity at least 0.99, the task is to find the solution with

highest specificity. To deal with such problem, we recently

presented a method in [2] based on Cost Sensitive Logistic

Regression (CS-LR) and optimization using Genetic Algorithm

(shortened as LR/GA). The method is depicted in Figure 1.

First, meta-learning procedure using CS-LR is run to find

initial models for the subsequent optimization. It uses various

cost settings for CS-LR and threshold moving with heuristic

optimizations to find these models faster. After initial models

are found, they are given as the input solution for the Genetic

Algorithm optimization, which is used to improve the overall

quality of the proposed solution. Having the minority class

accuracy constraint set to 0.99, the GA always improved the

candidate solution given by the CS-LR for a large input dataset

from our Internet research with over 5mil. records. The ex-

periments showed that the use of genetic algorithm improved

the final model generated by CS-LR dramatically. Moreover,

resulting model of weights enables very fast classification of

unknown data in the production environment.

III. STOCHASTIC OPTIMIZATION ALGORITHMS

Many stochastic methods have been utilized for classifica-

tion in the past. These methods incorporate randomness into

the learning. Two stochastic algorithms that have been used

for data mining are described in this section, i.e., Genetic

Algorithm and Particle Swarm Optimization.

A. Genetic algorithm

Genetic algorithm (GA) can be described as a stochastic

optimization method based on principle of natural selection

and biological evolution. The input problem is encoded into a

set of chromosome-like structures, so called population, which

is then randomly modified by the algorithm using the typical

GA operations: 1) selection – algorithm simply copies selected

chromosomes into the new population, 2) mutation – new

chromosome is produced by randomly altering parts of the

original chromosome within defined bounds (attribute domain,
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Figure 1. Cost Sensitive Logistic Regression and Genetic Algorithm.

etc.), 3) crossover - two chromosomes split into (usually) 2

parts are used to produce 2 new chromosomes by joining

the parts together respectively. GA is an iterative algorithm

that is trying to produce improved population as a result of

each iteration. The quality of a population is based on the

quality of each chromosome from that population. The quality

of the individual chromosome is determined by its fitness

value that is computed by the algorithm’s fitness function. The

definition of a suitable fitness function is the crucial part of the

whole process; the function should be able to evaluate each

chromosome with regards to the desired outcome as well as

given restrictions.

The use of genetic algorithm for data mining has been

proposed in [10] . Its main potential lies in the search per-

formance since the algorithm can be very easily parallelized.

Nowadays, genetic algorithm is being used as an optimization

technique for other data mining methods, mostly for feature

subset selection [11], in hybrid decision structures [12], or for

rule induction [13].

B. Particle Swarm Optimization

Opposed to GA, PSO is a typical candidate from the swarm

intelligence algorithm family. Swarm intelligence studies the

collective behavior of unsophisticated agents that interact

locally through their environment [14]. The research takes

inspiration from a social behavior of insects such as ants or

bees, or flock of birds. PSO was firstly used to simulate birds

searching for food. Every bird in a population is denoted as

particle, and the whole population of particles as swarm. The

basic idea of PSO is that every particle has its velocity, which

is continuously updated based on two factors – 1) towards

own personal best solution and 2) towards the best solution of

particles in its neighborhood (the neighborhood can be defined

in various ways). In the global variant the particle moves

toward the best solution of all the particles in the swarm. The

initial particles are initialized by random and then, continuous

update of their velocities causes the swarm to move towards

the desired optimum.

More formally, a new updated position xi of the particle i

is computed as follows:

xt+1
i = xt

i + vt+1
i (2)

where i = 1, 2, . . . N and N is the size of the population;

xt
i is the old position and vt+1

i is the current velocity, which

is calculated as:

vt+1
i = χ(ωvt

i + c1r
t
i1(pbest

t
i−xt

i)+ c2r
t
i2(gbest

t−xt
i)) (3)

where pbest and gbest are personal and global best solution;

χ is a constriction factor used to control velocities; ω is

the inertia factor; c1and c2are two learning factors, called

cognition and social learning rate respectively; rt
i1 and rt

i2

are uniformly distributed random numbers between 0 and 1.
The PSO has been used in data mining for various purposes.

For classification, in [15] an algorithm for mining classification

rules based on PSO was proposed. Recently, it has been

used in [8] for solving imbalanced data problem, where PSO

optimized the input parameters for Cost Sensitive SVM. More

usages of PSO and other swarm intelligence methods can be

found in [16].

Besides PSO, there are also two known algorithms from

the swarm intelligence family that are used for data mining –

Ant Colony Optimization (ACO) algorithm and Artificial Bee

Colony.

IV. MODIFICATIONS FOR CONSTRAINED IMBALANCED

LEARNING

Optimization methods described in the section III are in-

tended for searching unconstrained optimum. This section

describes the modifications for the constrained classification

imbalanced data.

A. Genetic algorithm

As already mentioned, it is the fitness function what de-

termines the course of genetic algorithm. The most straight-

forward way of employing class accuracy constraints is ,

naturally, to modify the fitness function accordingly. The

general pattern we use in our application is fitness value fv

defined as follows:

fv = (Accminor ∗ C1 +Accmajor ∗ C2) ∗ Constr

+(Accminor ∗ C3 +Accmajor ∗ C4),
(4)

where Accminor, Accmajordenotes minority and majority

class accuracy respectively; Constr ∈ {0, 1}; Constr =
1 when the given accuracy constraint is met, otherwise

Constr = 0;C1, C2, C3, C4 are user-defined constants that

determine the importance ratio between class accuracies, in

some cases some of them can be 0, which depreciates the

related class accuracy. This fitness pattern proved functional

during performed experiments while still being flexible enough

to leave some space for user-tuning and customization so the

results are as desired.
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B. Particle Swarm Optimization

In a general optimization problem, there are usually mech-

anisms for dealing with constraints. In [17], feasible initial

solutions for PSO were generated by random. Unfortunately,

in some cases this approach has a high computation cost. This

method is slightly similar to our solution in a way that we

also feed the initial swarm population with some feasible or

almost feasible solutions. In contrast to their method, we do

not generate it randomly but with the use of Cost Sensitive

Logistic Regression. Other researchers in [18] tried to handle

the problem with small population size. We dealt with the

constraints using two strategies – 1) the penalty function

approach, which is based on the work of [19] and 2) using

strategy with modified updating.

1) Penalty function: The idea of this approach is penalizing

the solutions violating given constraints. In a maximization

task, the penalty value is subtracted from the original objective

function and the resulting penalty function becomes a new

objective. According to [19], the penalty function is defined

as:

F (x) = f(x)− h(k)H(x), x ∈ S ⊂ Rn, (5)

where f(x) is the original objective function, h(k) is

dynamically modified with the current algorithm iteration k

and H(x) is the penalty factor, defined as:

H(x) =

m
∑

i=0

θ(qi(x))qi(x)
γ(qi(x)), (6)

where qi(x) = max{0, gi(x)}, i = 1, . . . ,m and is denoted

as relative violated function; θ(qi(x)) is multi-stage assign-

ment function; γ(qi(x)) the power of the penalty function and

gi(x) are the constraints in the form:

gi(x) ≤ 0, x ∈ S ⊂ Rn. (7)

For our purpose, we have only one constraint:

sensitivity > minSensitivity and following the given

form minSensitivity − sensitivity ≤ 0. The functions

h(.),θ(.) and γ(.) are problem dependent. In experiments we

used h(k) = 1, causing that the penalty factor is still the

same. For the two other functions we adapted and modified

the strategy that was recommended in [20] and [19]. The

γ(q(x)) is computed as:

γ((q(x)) =

{

1 if 0 < q(x) < 1

2 if q(x) >= 1
(8)

The θ((q(x)) function is defined as follows:

θ((q(x)) =



















5 if 0 < q(x) < 0.001

10 if 0.001 ≤ q(x) ≤ 0.1

50 if 0.1 < q(x) ≤ 1

100 if q(x) >= 1

(9)

Recall that q(x) ≥ 0 and, as expected, for q(x) = 0 the

penalty H(x) is always 0. To sum up, the optimization process

is the same as for PSO described in the previous section,

the only difference is the modified objective function with a

penalty.
2) Strategy with modified updating: As opposed to the pre-

vious unchanged optimization process, this approach slightly

modifies updating strategy of the personal best solution of a

particle. Typically, the personal best solution is updated, if the

new particle has better value of an objective function. In our

case, this means greater specificity. However, the update does

not account for constraints so the personal best is replaced by

the new one if at least one of the following condition is true:

1) gbest.Sensitivity < minSensitivity ∧
xi+1.Sensitivity > pbest.Sensitivity – the global

best doesn’t satisfy the sensitivity constraint and the

new particle has greater sensitivity than its personal

best.

2) xi+1.Specificity > pbest.Specificity ∧
(xi+1.Sensitivity ≥ minSensitivity ∨
gbest.Sensitivity ≥ minSensitivity) – the particle

has greater specificity than its best, and either the

particle or the best neighbor satisfies the constraint.

Here, the dot notation is used for the measure of a particle, thus

gbest.Sensitivity is a sensitivity of the global best particle.

At first, the algorithm tries to reach a solution that satisfies

the conditions. After such solution is found, particles follow

other particles with greater specificity.

V. EXPERIMENTS

In our experiments, we focused on comparing the behavior

of the two strategies used for constrained optimization and

with Genetic Algorithm. Also, we provide the comparison of

learning from random initial weights to initial models from

Cost Sensitive Logistic Regression (CS-LR) used in [2].

Experiments were performed on a large data set from our

Internet security research. The data has two highly imbalanced

classes with the ratio 1:34 between a minority and a majority

class. The dataset contains more than 5 000 000 data cases

described by 120 binary attributes. The goal was to reach

a model with the highest possible specificity (accuracy on

the majority class) and satisfying the sensitivity constraint

minSensitivity = 0.99.
We provide two types of evaluations. The first was one per-

formed with widely used cross-validation and the second one

shows, where the algorithms converge after reasonable number

of iterations. In both types of evaluation, three different types

of initial candidates were given as the input of the optimization

algorithms:

1) Solutions with highest G-mean from CS-LR, denoted as

Uncons. (unconstrained) in tables,

2) solutions with highest G-mean satisfying the

minSensitivity constraint, denoted as Cons., and

3) uniformly distributed random weights, denoted as Rand.

In all experiments, we set the size of the swarm in PSO to n =
70 and population n = 5000 for GA. Moreover, we present a

behavior of the strategies in a graphic form to demonstrate the

growth of objective functions in the first 300 iterations. In all

the following tables, GA stands for Genetic Algorithm, PSO 1

is PSO with the penalty strategy and PSO 2 the strategy with

modified updating.
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A. Cross-validation

The performance of a classifier is typically evaluated with

the cross-validation (CV). Here we performed 5-fold stratified

CV, where each fold has the same class ratio, which is neces-

sary for imbalanced data. First, 1000 iterations of optimization

algorithm were performed and then the resulting model was

evaluated using testing data. Because of the stochastic char-

acter of the algorithms, we also ran the whole CV procedure

5 times with the same folds. We took the the mean and the

standard deviation of all the objective function results and also

mean and standard deviation of the maximum solutions for

each fold. The results are in Tab. II.

We can see that best results were achieved by penalty

strategy for PSO given initial models satisfying the minSensi-

tivity constraint. This stands for both mean and the maximum.

Genetic algorithm performed slightly worse. Updating penalty

had worst results, especially when given models satisfying the

minSensitivity constraint. Only initial models with the greatest

G-mean achieved mean value above 0.55.
Comparing strategies, we can conclude that PSO 1 had

better results with Cons. initial models, PSO 2 with the Cons.

GA has very similar results for both initial models. Starting

from randomly generated initial solutions, all the approaches

achieved lower objective function values than with initial

models from CS-LR. The greater standard deviation value for

starting from random solution shows that the solutions are

much less stable.

It is worth mentioning that the sensitivity constraint was

narrowly violated in some measurements but did not drop

under 0.9899.

B. Training and testing on the same dataset

This part shows, how good solutions the algorithms were

able to produce during the optimization. In the terms of

classification evaluation, this means evaluating on the training

data set. Similarly as for cross validation, for each method,

the mean, the best and also the worst solution achieved in 10

runs were obtained and reported in Tab. III.

The results show that the values are higher than in cross-

validation, which was expected. For almost all cases the values

slightly correlate with the previous evaluation. The difference

is PSO 2 strategy, which performed significantly better than in

cross validation. It is also clear that in all cases starting from

initial weights from CS-LR leads to better results than from

random ones.

C. Behavior of algorithms

To demonstrate different behavior of the approaches, we

provide the following graphs with objective function value in

the first 300 iterations. For each approach, it. GA, PSO1, PSO,

there is separate figure each containing the three types of initial

solutions. The first graph on the Fig. 2 shows the GA, the Fig.

3 the PSO 1 and the Fig. 4 the PSO 2.

The GA and PSO 1 has similar behavior for all the initial

solutions. For Cons., the algorithm utilizes that the solution

already satisfies the constraint and only grows, with steeper

Figure 2. First 300 iterations of GA.

Figure 3. First 300 iterations of PSO with modified update strategy – PSO1.

growth in PSO 1. For Uncons. the objective function falls

rapidly in the beginning because the initial solutions do not

satisfy the constraint. PSO 1 begin to rise earlier than GA. For

Rand. we can observe faster growth in the objective function

for GA.

Starting from random solution, the modified version of

updating strategy (PSO 2) has similar behavior as the other

two, only the growth is much slower. For Cons. it very quickly

gain local maximum but it is unable to find other solution. On

the other hand, for Uncons. it grows slower but outperforms

the Cons. initial models.

We also experimented with the neighborhood of particles.

The local setting with 10 closest neighbors worked better

compared to the taking the whole population.

VI. CONCLUSIONS

In this paper we presented a way how PSO stochastic

optimization algorithm can be used for constrained classifica-

tion of highly imbalanced data. Two strategies for constrained

optimization together with Genetic Algorithm were compared

in experiments performed on the large dataset. Experiments

showed that the penalty function approach outperformed the

GA and together with the initial weights provided by CS-LR,

it can converge fast to a very good solution. Cross-validation

also showed that the constraint is violated only narrowly while

provided unknown data.
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Mean Maximum

GA PSO1 PSO2 GA PSO1 PSO2

Uncons. 0.5661± 0.0049 0.5641± 0.0081 0.5596± 0.0029 0.5682± 0.0039 0.5679± 0.0058 0.5618± 0.0024

Cons. 0.5536± 0.0055 0.5834± 0.0037 0.4988± 0.0001 0.5595± 0.0042 0.5855± 0.0018 0.4989± 0.0000

Rand. 0.5452± 0.0127 0.4849± 0.0388 0.4970± 0.0276 0.5618± 0.0091 0.5353± 0.0165 0.5271± 0.0137

Table II
THE RESULTS FROM THE CROSS-VALIDATION.

Mean Maximum Minimum

GA PSO 1 PSO 2 GA PSO 1 PSO 2 GA PSO 1 PSO 2

Uncons. 0.5672± 0.0029 0.5469± 0.0130 0.5804± 0.0091 0.5700 0.5603 0.5930 0.5620 0.5286 0.5679

Cons. 0.5548± 0.0003 0.5817± 0.0074 0.5373± 0.0046 0.5601 0.5871 0.5426 0.5412 0.5666 0.4916

Rand. 0.5469± 0.0179 0.5506± 0.0190 0.5290± 0.0235 0.5680 0.5748 0.5566 0.5200 0.5221 0.4923

Table III
THE RESULTS FROM THE EVALUATION WITH TRAINING AND TESTING ON THE SAME DATASET.

Figure 4. First 300 iterations of PSO with modified update strategy – PSO2.

In the future work, we would like to focus on utilization

of unlabeled data with methods of semi-supervised learning.

It would be also useful to obtain more data sets and explore

how these optimization algorithms and strategies work with

such data.
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