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Abstract. This paper presents a new platform for development of small
application-specific digital embedded architectures based on a data path
controlled by a microprogram. Linear genetic programming is extended
to evolve a program for the controller together with suitable hardware
architecture. Experimental results show that the platform can automat-
ically design general solutions as well as highly optimized specialized
solutions to benchmark problems such as maximum, parity or iterative
division.

1 Introduction

A general research problem, practically untouched by the genetic programming
community, is whether it is possible to concurrently evolve hardware and soft-
ware for a given task and whether the evolutionary system can discover general
solutions to the problem (under some constraints) or highly optimized solutions
to the same problem under other constraints. For example, in the case of the
n-input parity problem, one evolved solution would be a general program se-
quentially performing the XOR operation over the intermediate result and the
incoming bit (no constrains on the execution time are formulated, but the hard-
ware size is constrained), while another solution would be an n-bit parity tree
calculating the parity in parallel (no constrains on the hardware size are given,
but the execution time is constrained).

This type of problems can be investigated using a platform [1] that we have
developed for design and optimization of small HW/SW embedded systems,
in which it is impossible to employ a general purpose processor because of its
relatively high cost. The platform consists of an application specific data path
controlled by a programmable logic controller which is programmed using the
so-called microprograms. The overall architecture as well as the microprogram
are highly optimized in order to minimize area, delay and power consumption.
The designer has to determine the number of registers and their bit width, the
number of ALUs, the set of functions supported by each ALU, interconnection
options (allowed by, for example, multiplexers), instruction set etc.

Our framework allows the designer to describe the hardware part, create
a program for the logic controller, generate external stimuli and collect and



analyze the outputs of the system [1]. As the framework is fully programmable
and configurable, a suitable search algorithm can be utilized either to optimize
or even automatically design not only the program for the controller but also the
hardware architecture. The goal of research, which is reported in this paper, was
to remove some constrains given on the hardware modules in the original version
of the framework, and demonstrate that more general problems can be solved.
The proposed solution is based on extending linear genetic programming (LGP)
to concurrently evolve the program for the logic controller and the hardware
architecture.

The proposed approach can be classified as a combination of genetic pro-
gramming and evolvable hardware. We believe that our approach is new and
unique; however, some common features can be identified with conventional
hardware/software co–design based on evolutionary algorithms [2–4], co-evolution
of programs and cellular MOVE processors [5], and genetic parallel program-
ming (GPP) [6]. While GPP enables to automatically map a problem on paral-
lel resources (multiple ALUs) in order to evolve efficient parallel programs, our
method is more hardware oriented which allows for optimizing low-level proper-
ties of the underlying digital circuits.

In summary, the main contributions of this paper are as follows: (1) We
propose an extension of our previous framework [1] in which a more general re-
configurable hardware architecture is supported. (2) We validate the proposed
method of HW/SW concurrent evolution using 3 test problems. (3) We show
that both general purpose solutions and application specific solutions can au-
tomatically be evolved on the proposed platform when suitable constrains are
formulated.

The rest of the paper is organized as follows. Section 2 presents main fea-
tures of the evolvable HW/SW platform. Section 3 is devoted to extending our
platform by new features, particularly by relaxing some constraints on the or-
ganization of hardware modules. In Section 4, test problems are formulated,
experimental setup is defined, and finally, obtained results are presented. Con-
clusions are given in Section 5.

2 Previous Work

In our previous work [1], we proposed a framework capable of concurrent evo-
lution of HW and SW for application specific microprogrammed systems. This
section will briefly summarize some basic terms so they could be used in the fol-
lowing sections. The framework is responsible for evolving the HW architecture
and appropriate SW part as well as for providing the interconnections of the
architecture with environment by providing inputs and consuming outputs.

2.1 Hardware

As can be seen in Fig. 1, the HW part is composed of a configurable datapath
which is controlled by a microprogram. The components drawn in gray are re-
sponsible for instructions decoding and instruction pointer manipulation. This



part is fixed and does not udergo the evolution. The parts affected by the evolu-
tion are the registers and the modules. The registers are connected to modules
by a set of multiplexers composed in such way that every register can be con-
nected to every module. The connections from module outputs to the registers
are realized by a set of decoders.
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Fig. 1. HW architecture

Registers. The number of registers available in the architecture remains con-
stant during the evolution. Their bit widths, however, can be changed by the
genetic operators. Thus the width of the register can vary from 0 to a maximal
value specified by the user. When the bit width of the register is set to zero, the
register is considered unused, because it does not affect program execution.

Modules. Modules can be thought of as black boxes with inputs and outputs
realizing an arbitrary function. Formally the module is defined as a 6–tuple

M =< ni, no, a, p, d, fo >, (1)

where ni is the number of module inputs, no is the number of outputs, a is the
area used by the module, p is its power consumption, d : Dni → D is the function
specifying the processing delay and fo : Dni ×Q → Dno is the output function.
D denotes a user chosen data type and Q is the set of module’s possible internal
states. The whole HW part is described by the following components:

i the number of inputs
o the number of outputs
R = {r1, r2, ...rr} a set of registers
w : R → N a funcion setting widths of the registers
A = {M1,M2, ...Mm} a set of available modules
u : A → {0, 1} a function specifying module utilization



2.2 Software

Each program is composed of instructions i1, i2, ..., is, where s is the program
size. An instruction can be composed of several microinstructions which get
executed in order in which they are specified in the instruction. The internal
representation of the microinstruction is depicted in Fig. 2. The header con-
tains an operation code specifying the type of the microinstruction and a mask
defining the module usage. Then a constant may be specified, which is used
by certain types of microinstructions. Finally, there are input connections (Ik,l)
and output connections (Ok,l) specifications for individual modules used by the
microinstruction. More detailed information can be found in the aforementioned
article [1].

HEADER CONST I11 I12 I13 O11 O12 I21 I22 O21

0 31 63 71 79 ...

MOV JMP LOAD MODULES

0 1 3 7 31

CONST

FLAG
INDEX/CONST

0 1 7

Fig. 2. Microinstruction format

3 Proposed Extensions

The architecture described in previous section had several limitations that didn’t
allow the evolution to create all useful compositions of modules. As the modules
were arranged in parallel to each other, the only possible way of using the out-
puts of one module in another module was storing the results of one module in
registers and passing them to another module in the following instruction. Al-
though this method allowed the modules to use the outputs of previous modules,
such connection was quite resource consuming because of the registers needed.
Therefore, the need to pass the values between modules directly arose. Another
issue we came across was the inability of the framework to process the inputs
sequentially by one individual and in parallel by another individual. This issue
has been addressed by introducing a new type of module that can be involved in
instruction processing and allows the architecture to load virtually an arbitrary
number of inputs inside one instruction.

3.1 Evolvable Hardware Topology Related Changes

There are several possible ways of implementing this functionality. At first,
the possibility to create hardwired connection between modules was considered.
However, such solution would limit the evolved architectures so that one fixed
architecture would be used during the whole program execution. Therefore, the



decision to let the instructions choose the interconnections between modules was
made. Such a solution allows the HW architecture to vary during the program
execution to fulfill current needs.

Then it was crucial to choose a suitable encoding of variable topology. The
proposed solution exploits the encoding used in Cartesian Genetic Programming
(CGP).

Modules Order Encoding. Similarly to CGP, the modules are organized in
one row and nc columns, where nc = m. As the order of modules is not defined,
it is necessary to introduce the ordering into the chromosome, in our case by
permutation µ of the set {1, 2, ...,m}.

There are many ways to encode such a permutation in the chromosome (e.g.
[7]). Finally the encoding proposed in [8] has been chosen due to its properties
regarding genetic operators usage and fast evaluation.

This encoding represents the permutation i1, i2, ..., im of the set {1, 2, ...,m}
by an inversion sequence a1, a2, ..., am. In this sequence, each aj denotes the
number of integers in the permutation which precede j, but are greater than
j. For example, if the original permutation is 3, 2, 4, 1, the inversion sequence
would be 3, 1, 0, 0. In this case the value 3 at the 1st position in the inversion
sequence means that there are 3 values in the original permutation that precede
the value 1 and are greater than the value 1. After generating the inversion
sequence the genetic operators can be applied on it in common manner and
then the new prescription for module ordering can be easily generated from the
inversion sequence. More details can be found in [8].

Instructions Related Changes. The changes of the HW part of the archi-
tecture require some additional changes in the SW part. The changes are in
allowed ranges of inputs and outputs during their initial random generation or
mutations. In the previous version of the framework, the inputs were allowed
to be constants or register indices. To support the interconnections between
individual modules the latter one has to be changed, in order to enable the con-
nection of the input either to a specific register or to an output of a module
which precedes the current module in the module order specified by the HW
part. Therefore, the parameter nin ∈ N specifying the connection is generated
from the interval < 0, navail). The number of available connections navail for an
input of module Mi can be computed as

navail = r +

i∑

j=1

noj, (2)

where r is the registers count and noj is the number of outputs of module Mj .
This change in generating of the connections imposes also the change in instruc-
tion execution. When the instruction is executed, used modules are evaluated
one by one in order specified by the chromosome. During the module execution
the available inputs are limited to registers and outputs of preceding modules. If



any of the preceding modules used by the instruction is disabled, the parameter
specifying the input connection can be greater than the number of inputs actu-
ally available. This issue is addressed by performing the modulo operation using
the actual number of available inputs. That means the instruction stays valid
even after one of the modules used is disabled (e.g. by mutation). However, the
connection will probably point to another module output or register. This way
of instruction execution also ensures program validity when the order of modules
is changed.

The last change imposed by the change of the framework is related to the
outputs. In previous version of the framework, module outputs had to be con-
nected to registers. Considering the possibility to connect the module output
directly to another module input, there is no need for the output to be con-
nected to a register. It is now possible for an output to be specified as ’no reg’,
which ensures the output value can be used by other modules, but will not be
stored to a register.

3.2 Input Modules

As stated above, the previous version of the framework did not support the si-
multaneous evolution of individuals with sequential and parallel processing of
the inputs. This was due to the fact that the number of inputs had to be con-
stant. However, we came across some experiments, where this constraint imposed
serious limitations. For example, when there was a possible solution, that could
process four input values at once, and there were only two inputs available, the
four values had to be loaded into registers before they could be processed. In-
creasing the number of inputs would not help in this case as e.g. a sequential
solution using only two inputs would not be possible.

This issue has been addressed by introducing a new module type. According
to the convention specified by formula 1, the input module is defined as

Mi =< 0, 1, 0, 0, din, fo > . (3)

As each input module represents one input, k–input system could be modeled
by instantiation of k such modules.

The user can create several input modules and group them to form a specified
number of input groups. Then the sequences of the input values have to be
supplied for individual groups. After that the framework will set all the input
modules to point to the first input value of a respective input group sequence
and when the input module is executed, all modules of the same input group
are updated to point to the next input value. When all the inputs from a given
input group are already processed during the simulation and an input module
from such an input group is executed, it returns the default value specified for
this input group (e.g. 0).

3.3 Problem Encoding and Search Method

A candidate solution is represented in the chromosome as a string of integers.
The first part of the chromosome is devoted to the program which is encoded in



the LGP-like style [9] as a sequence of instructions, each of which consisting of
several microinstructions (Fig. 2). The second part of the chromosome defines
the hardware—the usage and bit widths of the registers, the usage of the modules
and the µ permutation. It is ensured that the program stays valid independently
of the HW architecture changes.

The initial population is generated randomly. The fitness is represented by
a vector of components containing functionality, area and speed. The NSGA-II
algorithm [10] is utilized because it allows for non-dominated sorting of candidate
solutions and a multiobjective optimization is naturally supported. Selection is
performed by a tournament method with base 2. A two-point crossover operates
at the level of (micro)instructions in the software part and at the level of modules
in the hardware part. Mutation modifies the specification of registers, modules
or the program (microinstruction type and parameters).

4 Experimental Results

Several experiments were carried out to evaluate the proposed method. It is
important to keep in mind that comparison with other methods can serve only
as a rough assessment of how fast the proposed method is, because the pro-
posed method evolves HW and SW part simultaneously and has, therefore, to
explore larger search space than the methods evolving just a program. All the
experiments utilize a slightly modified version of NSGA-II algorithm. When
the individuals are compared, first, their functionality fitness component is com-
pared. If the value of this fitness component is the same for both the individuals,
the NSGA-II is carried out on other fitness components. Therefore the selection
prefers the individuals with the highest functionality.

4.1 Newton-Raphson Division

This experiment was chosen mainly to verify the ability of the new version of
framework to evolve solutions for iterative problems. We solved this task with a
modified version of CGP in [11].

Problem Description. Newton-Raphson iterative division is an algorithm that
finds the quotient of numbers N and D (0.5 ≤ D ≤ 1.0), iteratively. The main
principle of this algorithm lies in finding the reciprocal of the divisor D and
then multiplying it by N to find the desired quotient. The iterative expression
for finding the reciprocal is

Xi+1 = Xi +Xi(1−DXi) = Xi(2 −DXi) (4)

This experiment was limited to finding the reciprocal of D such as in [11].
The parameters of LGP used for this experiment are listed in Table 1. The fitness
function is defined as

fo =
1

∑s

i=1

∑nit

j=1

|Yij−Tij |
|Yij−1−Tij−1|

, (5)



where s is the number of different target reciprocals (randomly generated), nit

is the number of iterations, Y is an output value and T is the expected value.

Table 1. LGP parameters used for Newton-Raphson division

Parameter Value

Population size 20
Max. generation count 100,000
Crossover probability 0.05
Mutation probability 0.7
Max. logical time 15,000
Max. program length 15
Modules used 2xADD, 2xMUL
s 10
nit 10

Results. After performing 200 independent runs the results were analyzed. A
solution was found in 17.5 % of runs and the computational effort needed to find
a solution with 99 % probability is 2.2×107. That is quite an interesting result, as
the computational effort of CGP was of the same magnitude, despite that CGP
search space was significantly smaller. After detailed analysis of all the solutions
it was found that all of them had a similar structure. The Newton–Raphson
expression was always found in an expanded form Xi+1 = Xi + Xi − XiDXi

and there was no solution which would utilize the constant 2. This result is not
surprising as CGP [11] produced the same one.

4.2 Finding the Maximum

This experiment was chosen to verify the ability of the framework to find various
(sequential and parallel) different solutions during one run of LGP.

Problem Description. The main goal is to find an architecture calculating the
maximum out of 8 input values. There are no further constraints on the number
of inputs or processing time. After providing all 8 input values, all successive
values will be zeroes and the zero flag of the input module will be set, so the
architecture can take appropriate action. The evolution parameters are listed in
Table 2. In this experiment a new module type was involved. The comparator
module (CMP) has two inputs and two outputs and when executed, it sends the
smaller value to the first output and the greater one to the second output. The
functionality fitness component is defined as the number of correct outputs from
16 semi–randomly generated 8–tuples.



Table 2. Evolution parameters used for the Maximum experiment

Parameter Value

Population size 50
Max. generation count 20,000
Crossover probability 0.05
Mutation probability 0.7
Max. logical time 500
Max. program length 10
Modules used 8xIN, 8xCMP

Results. After performing 3,000 independent runs the results were analyzed.
Out of the total number of 3,000 runs over 62 % have successfully found a
solution, with the computational effort of 1,026,114. The evolution was able
to find various completely different solutions, including sequential and parallel
solutions. We have sorted the results by their area fitness and speed fitness.
The fitness values were scaled to range < 0, 100 > for better readability. The
nondominated solutions are depicted in Fig. 3.
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Fig. 3. The best fully–functional solutions of the maximum experiment

To show the progress of the evolution, two subsets of runs were selected.
The first subset contained only the runs, which led to a minimal area solution
(the rightmost ones in Fig. 3). Maximal values of the speed fitness and the area
fitness were considered and the average value for each generation was computed.
Fig. 4 shows that both speed fitness and area fitness grow rapidly during initial
generations and then drop. This is implied by the fact that the individuals with
higher functionality override other individuals even if they have higher speed
and area fitness. When the functionality reaches a satisfactory level, the area
fitness starts to grow, while the speed fitness still decreases. This corresponds to
the expected trade-off between the area and speed.

The second subset is composed of the runs, that led to solutions with maximal
speed. Fig. 5 shows that the speed fitness grows as expected, but after approx-
imately 10,000 generations the area fitness also grows, so it appears there is no
trade-off. After the investigation of the results we found out that the individuals
tend to use more resources than needed at the beginning and the resources are
optimized during later generations. The trade-off, however, still exists.
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Another interesting fact discovered during the analysis was that some so-
lutions were general and could process an arbitrary number of values, whereas
other solutions were limited to 8 input values. The general solutions were likely
to appear among the solutions with smaller area, as the evolution had to develop
a loop to process all the inputs, whereas large area solutions could process all
the inputs by one instruction and then output the result.

4.3 Parity

This problem was chosen because it is one of typical problems solved using
various evolutionary circuit design techniques. Another reason was to find out,
whether some modifications speeding up the evaluation could be used.

Problem Description. In this experiment, the goal is to find an architecture,
which computes parity of the binary inputs provided. The parameters used for
the experiment were the same as in the previous case, but the comparator mod-
ules were substituted by XOR modules. The functionality fitness component in
this case was the number of correct outputs.

Results. After performing 3,000 independent runs of LGP we evaluated the
results and found out that the computational effort is 2,358,430. That was quite
interesting as this value is more than twice as large as in the previous experiment,
though the problem is quite similar and XOR modules have just one output,
whereas the comparator has two outputs.

After some investigation we recognized that problem is significantly influ-
enced by the definition of the fitness function. Because the XOR function gives
just two possible results for each input combination (i.e. 0 or 1), even bad solu-
tions can get quite high fitness. For example, when the output is zero all the time
during the simulation, half of the input combinations are evaluated as correct.
Therefore the right solution has to have a relatively high fitness value before it
is considered as better than some of the bad solutions. Despite these problems



many solutions with various area/speed trade-off were found. The parameters of
the best fully–functional solutions are depicted in Fig. 6.
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Fig. 6. The best fully–functional solutions of the parity experiment

Fig. 7 shows one of evolved solutions which is fast and resource consuming,
but optimized for n = 8 and does not process any subsequent inputs. On the
other hand, the solution depicted in Fig. 8 is slower and less expensive. It is also
a general solution, as the inputs are loaded in a loop until there are no more
inputs available. The computational effort can hardly be compared with other
evolutionary techniques as they usually do not use the XOR module, but try
to force the evolution to compose the solution from NAND and NOR modules.
Such comparison will be one of our goals in the upcoming research.
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Fig. 7. Parallel solution for parity

EXEC MODS // Execute modules by topology

JSMOD4 -1 // Repeat while the inputs are available

OUT reg2

HW Part

SW Part

IN4
XOR1

REG2
REG2

Fig. 8. Sequential solution for parity

5 Conclusions

In this paper, we extended our platform for development of small application-
specific digital embedded architectures by supporting variable module intercon-
nections and multiple input reading mechanisms. LGP was used to evolve a
program for the controller together with a suitable organization of hardware
modules. The proposed extension was evaluated by evolving a simple iterative



division algorithm. An important conclusion is that the platform can automati-
cally synthesize multiple implementations, including a purely sequential solution
and highly optimized parallel solutions, for a given specification

In our future research, we will deal with more complex iterative problems
and their evolution on the proposed platform. However, accelerating the whole
design process will be the first inevitable step.
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