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ABSTRACT
Most implementations of Cartesian genetic programming
(CGP) which can be found in the literature are sequen-
tial. However, solving complex design problems by means
of genetic programming requires parallel implementations of
search methods and fitness functions. This paper deals with
the design of highly optimized implementations of CGP and
their detailed evaluation in the task of evolutionary circuit
design. Several sequential implementations of CGP have
been analyzed and the effect of various additional optimiza-
tions has been investigated. Furthermore, the parallelism at
the instruction, data, thread and process level has been ap-
plied in order to take advantage of modern processor archi-
tectures and computer clusters. Combinational adders and
multipliers have been chosen to give a performance compar-
ison with state of the art methods.

Categories and Subject Descriptors
B.6.0 [Hardware]: Logic Design—General ; I.2.8 [Comput-
ing methodologies]: Artificial intelligence—Problem Solv-
ing, Control Methods, and Search

Keywords
Cartesian Genetic Programming, Parallel Computing, SIMD,
AVX, Cluster, Combinational Circuit Design

1. INTRODUCTION
The evolutionary design conducted by means of genetic

programming (GP) is a very computationally demanding
design method. In order to reduce the design time, various
accelerators of genetic programming have been proposed.
The accelerators are typically developed to speed up the
main components of the method – the search algorithm and
the fitness evaluation procedure. While the former case is
usually investigated in the field of parallel and distributed
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evolutionary algorithms, the latter one typically involves ac-
celerating an application specific simulator in which every
candidate phenotype has to be evaluated. The most fa-
mous parallel approaches to GP are represented by Koza’s
Beowulf-style parallel cluster [10] and recently, an approach
developed for the cloud environment [17].

As CGP has been accelerated on GPUs [6] and FPGAs [20],
in this contribution, the parallelism at the instruction, data,
thread and process level has been applied in order to take
advantage of modern processor architectures and computer
clusters. The goal of this paper is to provide a set of paral-
lel CGP implementations that can be used on these widely
accessible parallel computers. The proposed implementa-
tions will be compared and evaluated in the task of adder
and multiplier evolutionary design. The reason for choosing
these two problems is that the literature includes several
case studies that can be used for comparative purposes.

Another important assumption of this study is that CGP
starts with a randomly generated initial population and the
objective is to find a fully functional solution, i.e. an ni-
input/no-output circuit which provides no · 2ni correct out-
put bits when all possible input combinations are evaluated.
In other words, the goal is not in minimizing the number of
gates, delay or other criteria. Note that for the evolution-
ary circuit optimization, in which CGP starts with a fully
functional solution and the goal is to minimize the number
of gates, efficient and fast fitness calculation methods based
on formal functional equivalence checking algorithms have
already been proposed [21]. While such methods are ca-
pable of optimizing circuits having hundreds of inputs and
thousands of gates, only relatively small circuits (with ten
to fifteen inputs and less than 100 gates) have been evolved
so far in the proposed scenario. Finally, this work does not
take into account advanced methods such as divide and con-
quer [18, 16] or self-modifying CGP [7] which allow for reduc-
ing the problem complexity and consequently applying the
standard CGP on sub-problems. Therefore, all techniques
reported in this paper operate on the whole circuit.

Parallel CGP implementations are usually focused on an
efficient phenotype evaluation, which is the most time crit-
ical operation of CGP due to the fact that the circuit eval-
uation time grows exponentially with the number of circuit
inputs. In order to accelerate a candidate circuit evalua-
tion, one can apply a parallel evaluation of multiple training
vectors by means of bit-level instructions [14], circuit pre-
compilation techniques or streaming SIMD extensions (SSE)
of modern processors [22].
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On the other hand, the search algorithm used in the stan-
dard CGP is a simple (1+λ) evolution strategy. A natural
approach to accelerating the search is evaluating λ offspring
on λ processors in parallel. A few attempts were made to
introduce more advanced operators into this search method,
but only a small improvement was reported in [3]. However,
a noticeable improvement can be obtained when the stan-
dard CGP is replaced by parallel coevolutionary CGP [9].

The rest of the paper is organized as follows. Section 2 in-
troduces CGP and its usage as combinational circuit design
method. The implementation of several sequential solutions
is discussed in Section 3. Section 4 deals with the CGP par-
allelisation. Section 5 is dedicated to experiments and the
achieved results. Final conclusions can be found in Section 6.

2. CARTESIAN GENETIC
PROGRAMMING

Cartesian genetic programming has been introduced by
Miller [12] as a branch of genetic programming. Unlike GP
which uses tree representation, an individual in CGP is rep-
resented by a directed acyclic graph which enables the can-
didate solution to have multiple outputs and automatically
reuse intermediate results. This makes CGP very suitable
for design of various kinds of digital circuits, such as arith-
metic and logic circuits, digital filters, etc. [13].

CGP uses a cartesian grid of nr × nc programmable el-
ements (nodes) interconnected by a feed-forward network
(Figure 1). Each node’s input (usually each node has a fixed
number of inputs nni = 2) can be connected either to one
of ni primary inputs or to a node output in the preceding l
columns. By setting the l-back parameter and the grid size,
one can control the area and delay of the circuit. Each node
can be programmed to perform one of nni-input functions
defined in the set Γ (let nf = |Γ|). The no primary circuit
outputs are connected either to the primary inputs or nodes.
The output connectivity can be optionally restricted by the
o-back parameter.

Since all the CGP parameters are fixed, each chromo-
some is encoded using a fixed-sized array of nr · nc · (nni +
1) + no integers. Each primary input is assigned a num-
ber from {0, ..., ni − 1} and the nodes are assigned num-
bers from {ni, ..., ni + nr · nc − 1}. The genotype is of fixed
length, whereas the phenotype is of variable length depend-
ing on the number of inactive nodes, i.e. nodes whose output
is not used by any other node or primary output. Hence,
the genotype-phenotype mapping is not injective. The exis-
tence of genotypes with the same fitness is usually referred
to as neutrality. The role of neutrality has been intensively
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Figure 1: Cartesian genetic programming scheme.

studied [24] and it was shown that for certain problems the
neutrality significantly reduces the computational effort and
helps to find more innovative solutions [11].

In CGP, a simple mutation based (1 + λ) evolutionary
strategy is used as a search mechanism. The population size
1 + λ is usually very small, typically, λ is between 1 and 15.
The initial population is constructed either randomly (evo-
lutionary design) or by mapping of a known solution to the
CGP chromosome (evolutionary optimization) [21]. In each
generation, a randomly selected individual with the best fit-
ness value is passed to the next generation unmodified and
its λ offspring individuals are created by means of point mu-
tation operator which modifies m randomly selected genes
of the chromosome. The mutation rate m is usually set to
modify up to 5 % of the genes. Despite numerous attempts,
no useful crossover operator has been introduced. For some
problem classes (e.g. symbolic regression problem), special
crossover operators have been investigated [3], however, in
the case of digital circuits design, none of them has been
confirmed as useful.

In the case of combinational circuit evolution, the fitness
function corresponds to the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table. In order to obtain a fully working
circuit, all combinations of input values have to be evaluated.
For a circuit with ni inputs and no outputs, 2ni test vectors
need to be fetched to the primary inputs and no ·2ni output
bits have to be verified so as to compute the fitness value.

3. SEQUENTIAL IMPLEMENTATION
Every CGP implementation must process all the 2ni test

vectors on the whole phenotype for the entire population of
individuals and compare all the no outputs to the desired
ones. This requirement directly implies the presence of 3
independent nested loops – the test vector loop, the loop
over all nodes and the population loop. The order of these 3
loops is crucial for the performance and the optimal choice
varies among different implementations. In a very naive im-
plementation, one can process each test vector separately on
all nodes no matter if they are active or not. However, in
order to take advantage of modern superscalar out-of-order
processors, the parallelism at various levels has to be em-
ployed and special attention to memory access policy has to
be paid.

The most fundamental optimization we can apply is the
bit-level parallelism. Instead of separate test vector pro-
cessing, up to 64 test vectors can be processed in parallel
on 64-bit processors thanks to bitwise operations. Further-
more, by introducing the data-level parallelism using SIMD
instructions, 128 or even 256 test vectors can fit into the
SSE or AVX registers respectively.

One of the most commonly used optimization in CGP
is the detection of inactive nodes. Before processing each
individual, the genotype is traversed in the reversed order
and the nodes whose output is never used are marked as
inactive. While processing, all inactive nodes are skipped
and thus only the phenotype is treated.

3.1 Interpreted implementation
The interpreted implementation is very simple, yet for

smaller circuits very efficient. The principle is shown in Al-
gorithm 1. At the beginning, an initial population is created
randomly just like in any other implementation. Then, in
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randomly create and evaluate initial population;
while termination condition is false do

for i in 1 to P do
if i = best ind then

continue;
end
copy ind[best ind] chromosome to ind[i];
mutate ind[i];
analyze ind[i];
foreach node do

foreach test vector do
compute node output value;

end

end
foreach primary output do

ind[i].fit += number of wrong bits;
end
if ind[i].fit > ind[best ind].fit then

best ind := i;
end

end
end

Algorithm 1: Interpreted implementation

every generation, the evaluation of the population is going on
as follows: For each individual not being the best individual
from the previous generation, the chromosome of the best
individual is copied and mutated. After that, the chromo-
some is analyzed in order to find the inactive nodes. For each
active node, all test vectors are processed according to the
node function. The test vector loop is put inside the node
loop because of the overhead of the switch statement the
node function is based on. Besides the overhead, by putting
the test vector loop inside, the compiler is able to optimize
this loop by unrolling. After computing each node’s out-
put value, the primary outputs are checked against desired
values and the number of wrong bits is accumulated. This
can be done very efficiently just by XORing the actual out-
put value and the expected value and counting the number
of ones. Since SSE 4.2, a special instruction POPCNT exists
which allows to count the number of ones with the latency
of 3 clock cycles (on the Intel Sandy Bridge microarchitec-
ture) [4].

Since all of the intermediate results for all test vectors have
to be kept in memory during the evaluation, the memory
usage of the interpreted implementation is not optimal (up
to nr ·nc ·2ni/8 bytes), but it is still efficient for small circuits,
until the required memory size exceeds the cache size.

3.2 Native implementation
By introducing the native implementation, both the mem-

ory requirements and the switch statement overhead can be
significantly reduced. The principle can be seen from Algo-
rithm 2. Just like in the interpreted implementation, each
individual except the previous best one is copied, mutated
and analyzed. The difference lies in the evaluation process

AND XOR NOT ORi0

i1

i2

o0 = (i1&i0)|(i2^(i1&i0))

Figure 2: CGP individual example.

randomly create and evaluate initial population;
while termination condition is false do

for i in 1 to P do
if i = best ind then

continue;
end
copy ind[best ind] chromosome to ind[i];
mutate ind[i];
analyze ind[i];
compile ind[i];

end
foreach test vector do

for i in 1 to P do
if i = best ind then

continue;
end
ind[i].fit += run compiled code;

end

end
for i in 1 to P do

if ind[i].fit > ind[best ind].fit then
best ind := i;

end
end

end
Algorithm 2: Native implementation.

– instead of traversing the chromosome and computing the
node outputs directly, the chromosome is compiled at first.
The compiled program is then executed on each test vector
for each individual in the population. This technique was
first introduced in [22] and the implementation presented
in this paper further improves this principle by introduc-
ing subroutine parameters, native fitness calculation and by
utilizing AVX instructions. Moreover, the native implemen-
tation uses slightly less memory since there is no need to
keep the intermediate results for all test vectors.

Figure 2 depicts a very simple circuit with ni = 3 pri-
mary inputs, no = 1 primary output and nc = 4 nodes.
Listing 1 shows the compiled chromosome from Figure 2 in
64-bit version. The compiled subroutine has 4 parameters
passed on in the 64-bit registers RDI, RSI, RDX and RCX [15]
– the pointers to the primary inputs filled by corresponding
test vectors, node outputs, desired primary outputs and spe-

Listing 1: Native 64b implementation example.
push %rbx ; store RBX

mov 0x08(%rsi),%rbx ; node n0
and 0x00(%rsi),%rbx ; AND
mov %rbx ,0x18(%rdi) ; n0 := i1 AND i0

mov 0x10(%rsi),%rbx ; node n1
xor 0x18(%rdi),%rbx ; XOR
mov %rbx ,0x20(%rdi) ; n1 := i2 XOR n0

mov 0x18(%rdi),%rbx ; node n3
or 0x28(%rdi),%rbx ; OR
mov %rbx ,0x30(%rdi) ; n3 := n0 OR n2

xor %rax ,%rax ; RAX := 0

mov 0x30(%rsi),%rbx ; output 00
xor 0x0(%rdx),%rbx
and 0x0(%rcx),%rbx ; mask m0
popcnt %rbx ,%bdx ; error count
add %rbx ,%rax ; accumulate

pop %rbx ; restore RBX
retq ; return RAX
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cial masks.1 For each node, the first input value is loaded
from the memory to the RBX register and the desired op-
eration is performed (optionally, the second input value is
loaded).2 The node output is then stored back to the mem-
ory. After processing all active nodes, the number of wrong
output bits is accumulated in the RAX register. For each pri-
mary output, the corresponding node output is loaded from
the memory and XORed with the desired value. After apply-
ing the mask, the number of incorrect bits is computed using
the POPCNT instruction and accumulated in the RAX register.
The register RAX is used for integer return values [15], thus
the subroutine returns the number of wrong bits for a given
test vector.

The same example compiled in the AVX version can be
seen in Listing 2. Here, the calling convention is the same
and the register RAX has the same purpose as in the 64-bit
version. The intermediate results are computed in the YMM0

register. The register YMM1 contains just ones and serves for
computing the NOT operation using XOR, since there is not an
AVX instruction for this purpose. Compared to the 64-bit
version, the error computation is more complicated as there
is only a 32-bit and 64-bit POPCNT instruction available.

1After XORing the actual and desired output value, the result is
ANDed with this mask, which enables to specify which output bits
are not considered (we don’t care about their values).
2There is no need to avoid the output dependency thanks to
hardware register renaming.

Listing 2: Native AVX implementation example.
push %rbx ; store RBX

mov 0xXXXXXXXX ,%rax ; RAX := &avx_ones
vmovdqa 0x0(%rax),%ymm1 ; YMM1 := 111 ..111

vmovdqa 0x20(%rsi),%ymm0 ; node n0
vandps 0x0(%rdi),%ymm0 ,%ymm0 ; AND
vmovdqa %ymm0 ,0x60(%rdi) ; n0 := i1 AND i0

vmovdqa 0x40(%rsi),%ymm0 ; node n1
vxorps 0x60(%rdi),%ymm0 ,%ymm0 ; XOR
vmovdqa %ymm0 ,0x80(%rdi) ; n1 := i2 XOR n0

vmovdqa 0x60(%rdi),%ymm0 ; node n3
vorps 0xa0(%rdi),%ymm0 ; OR
vmovdqa %ymm0 ,0xc0(%rdi) ; n3 := n0 OR n2

xor %rax ,%rax ; RAX := 0

mov 0xc0(%rsi),%rbx ; output o0[0]
xor 0x0(%rdx),%rbx
and 0x0(%rcx),%rbx ; mask m0[0]
popcnt %rbx ,%rbx ; error count
add %rbx ,%rax
mov 0xc8(%rsi),%rbx ; output o0[1]
xor 0x8(%rdx),%rbx
and 0x8(%rcx),%rbx ; mask m0[1]
popcnt %rbx ,%rbx ; error count
add %rbx ,%rax
mov 0xd0(%rsi),%rbx ; output o0[2]
xor 0x10(%rdx),%rbx
and 0x10(%rcx),%rbx ; mask m0[2]
popcnt %rbx ,%rbx ; error count
add %rbx ,%rax
mov 0xd8(%rsi),%rbx ; output o0[3]
xor 0x18(%rdx),%rbx
and 0x18(%rcx),%rbx ; mask m0[3]
popcnt %rbx ,%rbx ; error count
add %rbx ,%rax

pop %rbx ; restore RBX
retq ; return RAX

The native implementation enables to introduce more op-
timizations than the interpreted implementation. The fit-
ness computation can be stopped after exceeding the num-
ber of wrong bits matching the best individual. Both native
and interpreted implementations can detect neutral muta-
tions and skip recomputing fitness values for individuals af-
fected only by neutral mutations [5].

The efficiency of the native implementation lies in ex-
ploiting the instruction-level parallelism offered by modern
superscalar out-of-order processors by reducing branch mis-
predictions and cache misses and increasing the arithmetic
intesity.

4. PARALLEL IMPLEMENTATION
Until the beginning of the 21st century, the aim of the

processor architects was to increase the single threaded per-
formance by means of extracting more instruction-level par-
allelism (ILP) and utilizing superscalar out-of-order execu-
tion, sophisticated branch predictors, multi-level cache hier-
archy, etc. However, growing power consumption and lim-
ited ILP extractable from common sequential code together
with increasing transistor density led to the introduction of
multiprocessors [8]. Since then, special attention has to be
paid to parallel computing in order to make use of modern
processor architectures.

4.1 Thread parallelism
The purpose of the thread-level parallelism (TLP) in CGP

is to speed up the whole evolutionary process – both the
fitness calculation and the genetic operators. Both inter-
preted and native parallel implementations are discussed in
this subsection; the OpenMP library has been used for man-
aging the threads.

Algorithm 3 shows the scheme of the interpreted parallel
implementation, very similar to the corresponding sequential
variant. The outer population loop has to be scheduled dy-
namically, because if it were scheduled statically, the thread
responsible for the previous best individual would have less
work than the others resulting in poor load balancing.

The parallelization of the native implementation is some-

randomly create and evaluate initial population;
while termination condition is false do

#pragma omp for schedule(dynamic)
for i in 1 to pop size do

if i = best ind then
continue;

end
copy ind[best ind] chromosome to ind[i];
mutate ind[i];
analyze ind[i];
foreach node do

foreach test vector do
compute node output value;

end

end
foreach primary output do

ind[i].fit += number of wrong bits;
end
#pragma omp critical
if ind[i].fit > ind[best ind].fit then

best ind := i;
end

end
end
Algorithm 3: Parallel interpreted implementation.
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for i in 1 to P foreach test vector foreach i in 1 to P

P threads single threadall threads

Figure 3: Parallel native implementation threading.

randomly create and evaluate initial population;
while termination condition is false do

#pragma omp for
for i in 1 to P do

if i = best ind then
continue;

end
copy ind[best ind] chromosome to ind[i];
mutate ind[i];
analyze ind[i];
compile ind[i];

end
foreach i in 1 to P do

fit[i] = 0;
end
#pragma omp barrier
#pragma omp for nowait
foreach test vector do

foreach i = 1 to P do
if i = best ind then

continue;
end
fit[i] += run compiled code;

end

end
foreach i in 1 to P do

#pragma omp atomic
ind[i].fit += fit[i];

end
#pragma omp barrier
#pragma omp single
for i in 1 to P do

if ind[i].fit > ind[best ind].fit then
best ind := i;

end
end

end
Algorithm 4: Parallel native implementation.

what more complicated, since it consists of three separate
loops, each having a different number of iterations. Figure 3
depicts the threading scheme. At first, a new population
has to be created using up to P threads, then the evaluation
can utilize all the threads (if there are enough test vectors)
and at the end, the new best individual has to be found,
unfortunately by a single thread.

Algorithm 4 shows the overall parallel implementation
principle. A special attention had to be paid for the fit-
ness accumulation across test vectors treated by different
threads. Each thread has its own partial fitness values which
are finally atomically accumulated to the total fitness values
doing a manual reduction over the fitness values (OpenMP
offers only reduction over scalar variables).

4.2 Process parallelism (inter-population)
Spatially structured evolutionary algorithms have been in-

tensively studied in the past and a variety of approaches dif-
fering in the used evolutionary algorithm or communication
topology has emerged [19, 2]. By introducing multiple popu-
lations evolving in parallel, one can increase the population

seed := randomly generated individual;
while termination condition is false do

run evolutionary design starting with seed;
exchange best individuals among islands;
if global best fitness is higher than local then

seed := global best individual;
end

end
Algorithm 5: Isolated islands model.

diversity and thus make the EA more explorative leading
to a higher probability of finding the global optimum for
particular problems.

The combinational circuit design is a very complex prob-
lem, the search space is generally rugged containing lots of
local optima and thus the potential of exploiting parallel
EA is high. Unfortunately, the absence of a crossover op-
erator in CGP is a very limiting factor since most parallel
models take advantage of combining genotypes from differ-
ent isolated populations. Nevertheless, the model of isolated
islands with migration of the best individuals in each popu-
lation can be applied to this problem.

Algorithm 5 describes the parallel evolutionary process.
At the beginning, each population starts with a randomly
generated initial population. Until a perfectly working cir-
cuit is found, the evolutionary process is executed on each
island and after specified number of generations, the best
individual from each island is broadcasted to the other is-
lands. If the global best individual has higher fitness value
than the local best individual, the island is seeded by the
global best one.

After migration, each isolated population is evolving in-
dependently and can explore different areas in the search
space. This makes the search algorithm more effective and
speeds up the evolutionary process.

The implementation is based on the Open MPI library
and can be executed on computer clusters of arbitrary size
as well as on a single multiprocessor giving a great scalability
to the evolutionary design process.

5. EXPERIMENTAL RESULTS
In this section, experiments regarding the implementa-

tion performance are presented and the scalability of the
implementation is demonstrated on selected combinational
circuit design problems. All experiments were performed on
a computer cluster of 112 nodes with the following hard-
ware configuration: 2× 8-core Intel E5-2670, 128 GB RAM,
2× 600 GB 15 k scratch hard disks, connected by gigabit
Ethernet and Infiniband links.

The implementations have been examined by means of the
common metrics: speedup, defined as the ratio of the sequen-
tial implementation execution time to the parallel execution
time, and efficiency, the ratio between the achieved speedup
and the number of threads.

5.1 Sequential implementation efficiency
The performance of the sequential implementations has

been measured in the task of a combinational adder design.
Table 1 and Figure 4 summarize the mean evolution times
obtained from 100 independent runs for individual sequen-
tial implementations. The CGP parameters were set as fol-
lows: population of 5 individuals, nc = 100 nodes, mutation
rate 5 %, Γ = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}. The
goal was not to find a fully functional solution, the evolu-
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Table 1: Sequential implementation performance
(combinational adders, 10 000 generations).

width
evolution time [s]

interpreted native
64b 256b 64b 256b

1 × 1 0.00382 - 0.00477 -
2 × 2 0.00908 - 0.02168 -
3 × 3 0.01994 - 0.04954 -
4 × 4 0.02442 0.02398 0.05497 0.07092
5 × 5 0.04681 0.03215 0.07076 0.08550
6 × 6 0.11488 0.08280 0.11168 0.11109
7 × 7 0.97894 0.40800 0.28149 0.21899
8 × 8 6.27716 2.14536 0.88332 0.55520
9 × 9 32.64657 9.84838 3.63436 2.21870

10 × 10 154.38932 47.59685 14.99801 8.75244

Table 2: Sequential implementation speedup (com-
binational adders, 10 000 generations).

width
speedup [-]

interpreted native
256b 64b 256b

1 × 1 - 0.80084 -
2 × 2 - 0.41882 -
3 × 3 - 0.40250 -
4 × 4 1.01835 0.44424 0.34433
5 × 5 1.45599 0.66153 0.54749
6 × 6 1.38744 1.02865 1.03412
7 × 7 2.39936 3.47771 4.47025
8 × 8 2.92592 7.10633 11.30612
9 × 9 3.31492 8.98276 14.71428

10 × 10 3.24369 10.29399 17.63957

Figure 4: Sequential implementation performance
(combinational adders, 10 000 generations).

Figure 5: Sequential implementation speedup (com-
binational adders, 10 000 generations).

tion has been stopped after reaching 10 000 generations. The
achieved speedup relative to the 64b interpreted implemen-
tation can be seen in Table 2 and Figure 5. The experimen-
tal results indicate that for small circuits, the best imple-
mentation is the 64b interpreted implementation. Starting
with 8 primary inputs, the number of test vectors goes over
the limit of 256 test vectors and the AVX implementation
comes to the foreground. The native AVX implementation
needs even larger circuits to overcome the compilation over-
head and to be sufficiently efficient, however, the achieved
speedup is significant.

5.2 Parallel implementation efficiency
The sequential implementation performance is not sub-

stantially dependent on the number of nodes, which is not
the case of the parallel implementation efficiency. There-
fore, in order to evaluate the parallel speedup and efficiency,
a more complex circuit has been chosen for the experiment,
namely the combinational multiplier with nc = 800 nodes.
The population size was 5 individuals, the evolutionary pro-
cess was stopped after 100 000 generations in the case of
data widths 4–6 bits, 10 000 otherwise. Table 3 summarizes

Table 3: Parallel implementation efficiency.

width threads time [s] speedup [-] efficiency [%]

4 × 4

1 1.092 - -
2 0.705 1.550 77.484
3 0.683 1.598 53.277
4 0.490 2.227 55.677

5 × 5

1 1.409 - -
2 0.857 1.644 82.213
3 0.837 1.683 56.094
4 0.567 2.486 62.149

6 × 6

1 3.616 - -
2 2.048 1.766 88.295
3 1.950 1.855 61.827
4 1.226 2.950 73.751

7 × 7

1 0.584 - -
2 0.372 1.571 78.554
3 0.295 1.983 66.103
4 0.247 2.361 59.033
5 0.212 2.755 55.101
6 0.198 2.947 49.119
7 0.202 2.899 41.410
8 0.196 2.985 37.312

8 × 8

1 1.663 - -
2 0.925 1.797 89.872
3 0.678 2.452 81.745
4 0.539 3.082 77.044
5 0.448 3.710 74.202
6 0.399 4.163 69.385
7 0.380 4.370 62.424
8 0.347 4.786 59.831

9 × 9

1 6.108 - -
2 3.251 1.879 93.945
3 2.202 2.774 92.466
4 1.717 3.556 88.908
5 1.422 4.294 85.879
6 1.230 4.964 82.730
7 1.105 5.529 78.990
8 0.985 6.199 77.482

10 × 10

1 25.825 - -
2 13.455 1.919 95.972
3 9.070 2.847 94.912
4 7.077 3.649 91.231
5 5.840 4.422 88.440
6 4.905 5.265 87.758
7 4.363 5.919 84.553
8 3.842 6.722 84.029
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Figure 6: Parallel implementation efficiency.

the results. For each input data width, 100 independent
runs were performed and the mean evolution time has been
calculated.

The interpreted parallel implementation is limited to λ
threads since each thread treats its own individual. Besides
that, the number of threads should divide λ for the best load
balancing. This is not the case of the native parallel imple-
mentation, however, sufficiently many test vectors need to
be evaluated to fully utilize all eight cores of the E5-2670
processor (Figure 6).

The parallel efficiency is affected by the dynamic frequency
scaling which is present in Intel’s processors. In real deploy-
ment, when all processor cores are fully loaded, the sequen-
tial implementation evinces slightly worse performance due
to lower frequency, hence the parallel efficiency is better. Es-
pecially on multi-socket systems, one must mind the affinity
of the threads, preferably by binding individual threads to
specific processor cores, to reduce cache misses and keep the
memory access time as low as possible.

5.3 Test problems
Three different configurations of the evolutionary algo-

rithm have been examined – standard single-population CGP
optionally parallelized, multi-population CGP with few iso-
lated islands and massively parallel CGP exploiting tens of
islands. The performance of these approaches has been eval-
uated in the task of a combinational adder and multiplier
design, in the literature generally considered as very diffi-
cult tasks [23, 18]. The evolutionary design was stopped
after finding a fully functional solution.

Table 4: Combinational adder design performance.

width
nodes hosts/ time [s]
nr × nc threads mean median std

6 × 6 1 × 100
1/6 39.4644 31.713 27.87117
6/1 12.3851 10.620 7.966
60/1 3.259 2.871 1.608

7 × 7 1 × 150
1/6 142.419 103.722 139.862
6/1 53.479 44.286 37.883
60/1 17.569 16.410 7.864

8 × 8 1 × 200
1/6 367.915 307.545 254.455
6/1 129.546 106.111 76.887
60/1 57.961 48.986 44.527

9 × 9 1 × 250
1/6 3085.891 2802.061 1548.292
6/1 1607.212 1413.261 795.004
60/1 525.032 462.648 250.616

Table 5: Combinational multiplier design perfor-
mance.

width
nodes hosts/ time [s]
nr × nc threads mean median std

2 × 2 1 × 50 1/1 0.00451 0.00333 0.00385
3 × 2 1 × 100 1/1 0.0451 0.0338 0.0319

3 × 3 1 × 200
1/1 1.897 1.469 1.605
6/1 0.530 0.417 0.403

4 × 3 1 × 400
1/4 10.365 8.427 8.726
6/1 5.106 3.979 3.991
60/1 2.457 2.210 1.140

4 × 4 1 × 800
1/4 817.689 874.075 148.275
6/1 538.058 458.494 310.345
60/1 191.175 154.922 141.206

5 × 4 1 × 1200 60/1 761.327 700.151 303.906
5 × 5 1 × 1600 60/2 16452.753

Table 4 shows the statistics for combinational adders of
data widths 6–9 bits calculated on a set of 100 independent
runs for each experimental setup, namely the mean evolu-
tion time, median and standard deviation. In the case of
the multi-population approaches, the migration of the best
individuals occurred every 100 000 generations. It can be ob-
served that the multi-population approach even with few iso-
lated islands significantly reduces the time requirements on
the design process compared to the single-population CGP
using the same computational capacity (6 threads vs. 6 pro-
cesses). By increasing the number of islands, the evolution
time decreases and according to the standard deviation, the
convergence becomes more stable. The stalling effect in the
fitness function, commonly observed when using other ap-
proaches [18, 1], is mitigated as a consequence of a more
explorative search.

The evolutionary design of combinational multipliers is an
even more complex task. No satisfactory results related to
techniques operating on the whole circuit without decompo-
sition have been published so far. While paper [23] reports
only a single complete run for the 4-bit multiplier, with the
aid of the proposed highly optimized CGP implementation,
we can routinely design 4-bit multipliers and moreover, 5-bit
multipliers are feasible as well (Table 5).

6. CONCLUSIONS
In this paper, highly optimized CGP implementations have

been presented. Starting with several sequential versions,
the paper thoroughly examines miscellaneous implementa-
tion aspects and gives detailed performance comparisons of
the proposed approaches. Parallelism at various levels has
been applied in order to speed up the evolutionary design
process. The native implementation based on compilation of
the genotype into machine code exploits the instruction-level
parallelism by reducing program branching and increasing
the arithmetic intensity. A large amount of test vectors can
be evaluated in parallel thanks to the use of AVX instruc-
tions. Besides a thread-parallel version, a process-parallel
implementation based on the isolated islands model has been
proposed.

The performance and scalability has been demonstrated
on the task of combinational adders and multipliers design
which is believed to be a very complex task. No additional
knowledge has been introduced into the design process. All

3Due to the very high computational effort, only a single
experiment has been executed for the 5-bit multiplier.
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experiments started from a randomly generated initial pop-
ulation. In comparison with the previously published results
regarding similar evolutionary design approaches, much more
complex circuits are feasible to be designed with the pro-
posed CGP implementation.

Note that the absence of a crossover operator in CGP is
a potential limiting factor and by inventing a suitable one,
more efficient parallel evolutionary approaches could be ap-
plied. In our future research, we will focus on investigating
more sophisticated spatially structured evolutionary algo-
rithms with the aim of designing even more complex combi-
national circuits on computer clusters.
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