
Evolutionary Design of Approximate Multipliers
Under Different Error Metrics

Zdenek Vasicek and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Approximate circuits are digital circuits which are
intentionally designed in such a way that the specification is
not met in terms of functionality in order to obtain some
improvements in power consumption, performance or area, in
comparison with fully functional circuits. In this paper, we
propose to design approximate circuits using evolutionary design
techniques. In particular, different error metrics are utilized to
assess the circuit functionality. The proposed method begins with
a fully functional circuit which is then intentionally degraded by
Cartesian genetic programming (CGP) to obtain a circuit with a
predefined error. In the second phase, CGP is used to minimize
the number of gates or another error criterion. The effect of
various error metrics on the search performance, area and power
consumption is evaluated in the task of multiplier design.

I. INTRODUCTION

The functional equivalence between the specification and
implementation has always been the first and crucial at-
tribute of any digital circuit. Then the most suitable trade
off has been sought among the secondary (from this point
of view) circuit parameters such as area, delay and power
consumption. Power consumption is currently considered as
the most important circuit parameter in many applications.
Hence various approaches to power reduction are applied at
all design levels, starting from the architecture via the circuit
to the technology [1]. It seems that further reductions can only
be obtained by approximating the original circuit function,
which is the goal of a nascent field of approximate computing.
Another motivation for approximate computing can be seen
in the recently introduced concept of underdesigned and
opportunistic computing which attempts to explore the pos-
sibility of constructing machines naturally exploiting various
imperfections of hardware and capability of some applications
and users to tolerate imperfections in computing [2].

The digital circuits which are intentionally designed in such
a way that the specification is not met in terms of functionality
and some savings are expected in terms of energy, delay
or area are called approximate circuits [3], [4], [5]. They
are suitable for those applications in which errors are not
recognizable as human perception capabilities are limited (e.g.
in multimedia applications), no golden solution is available for
validation of circuit behavior (e.g. in data mining applications),
or users are simply willing to accept some inaccuracies (e.g.
when battery of a mobile phone is almost depleted).

After presenting several approximate circuits that were
created manually [9], designers currently try to develop gen-

eral purpose design methods for approximate circuits. All
currently available methods are error-oriented in the sense
that all logic optimizations leading to an approximate solution
are constrained by a predefined error criterion [6], [3], [7].
The error can be expressed by various metrics such as the
error magnitude, average error magnitude or error probability.
However, these methods do not allow to precisely tune the
error. The design process has to be repeated when a new
requirement on the error is specified.

In our previous work, we introduced an evolutionary gate-
level design method based on Cartesian genetic programming
(CGP) for purposes of approximate circuits construction [8].
We exploited the fact that power consumption is often highly
correlated with occupied resources and the evolutionary design
is capable of constructing partially working solutions even
if sufficient resources (required for finding a fully functional
solution) are not available. Supposing that n is the minimum
number of gates required for a complete functionality, we let
CGP minimize the error providing that only n − 1 gates are
available. The process can be repeated for n − 2, n − 3 etc.
gates. The user thus obtains a set of approximate combina-
tional circuits, each of which typically exhibits different trade
off between the functionality, the number of gates and delay.
This approach can be considered as an area-oriented method
because the user can control the used area (and so power
consumption) more comfortably than by means of the error-
oriented methods.

In this paper, we propose a complementary evolutionary
design approach to our original work [8]. The user is supposed
to define a required error level emax (e.g. the average error
magnitude). CGP, which is seeded by a conventional fully
functional implementation, is utilized to modify the seed in
order to obtain a circuit with predefined emax. After obtaining
that circuit several scenarios can be taken. CGP can minimize
the mean error or the number of gates providing that emax

is guaranteed. We will analyze these scenarios in order to
deliver the most practically useful solutions. The proposed ap-
proach can be classified as error-oriented. The method will be
evaluated in the task of a gate-level combinational multiplier
design. Results will be compared with the conventional fully
functional implementations of multipliers and the approximate
multipliers that have been reported in the literature.



In summary, the key contributions of this article are as
follows:
• We propose a new methodology for approximate circuit

design which exploits the error-oriented evolutionary cir-
cuit design.

• We analyze the impact of different optimization scenarios
on the parameters of evolved approximate circuits.

• We present novel implementations of approximate com-
binational multipliers.

The rest of the paper is organized as follows. Section II
surveys the relevant research. After introducing CGP in Sec-
tion III, the proposed optimization method is presented in
Section III-C. Sections IV-A, IV-B and IV-C contain the
experimental setup, results and discussion. Conclusions are
given in Section V.

II. RELATED WORK

A. Approximate Circuits

Approximate circuits can be constructed by means of volt-
age over-scaling and over-clocking. In this paper, we will
solely employ the methods based on functional approximations
in which circuits are designed in such a way that they do not
fully follow the logic behavior prescribed by the specification.
A good example is a two-bit multiplier which was manually
constructed using 5 gates (with delay of 2 gates). Its output is
correct for 15 out of 16 possible inputs. A usual conventional
solution requires 8 gates and exhibits the delay of 3 gates.
This approximate multiplier has been used in larger approx-
imate multipliers and then employed in approximate image
processing applications [9].

In order to automate the whole design process, the current
trend is to create systematic design methodologies for approx-
imate circuits. The Systematic methodology for Automatic
Logic Synthesis of Approximate circuits (SALSA) starts with
a RT level description of the exact version of the circuit and
an error constraint that specifies the type and amount of error
that the implementation can exhibit [6]. The methodology in-
troduces the so-called Q-function which takes the outputs from
both the original circuit and approximate circuit and decides
if the quality constraints are satisfied. The Q-function outputs
a single Boolean value. The SALSA algorithm attempts to
modify the approximate circuit with the goal of keeping the
output of the Q function unchanged.

Another systematic approach, Substitute-And-SIMplIfy
(SASIMI), tries to identify signal pairs in the circuit that
exhibit the same value with a high probability, and substitutes
one for the other [7]. These substitutions introduce functional
approximations. Unused logic can be eliminated from the
circuit which results in area and power savings. The method is
combined with technology-level optimizations such as down-
sizing of gates on critical paths and voltage scaling which
results in additional significant area and power savings.

B. Evolutionary Circuit Design

The field of evolutionary circuit design has been surveyed
in several papers, e.g. [10], [11], [12]. Some of the works

can be considered as examples of approximate circuits: Miller
evolved finite impulse response filters at the gate level, where
functionality was traded for area [13], and Kneiper et al.
investigated the robustness of evolved classifiers [14] in which
available resources were changing over time. However, these
approaches have not explicitly considered the approximate
computing paradigm.

In our previous paper [8], we evolved approximate imple-
mentations of small combinational circuits (3-bit and 4-bit
adders and single output circuits) using randomly seeded CGP
operating at the gate level, where the goal was to minimize the
error under some area constraints. An inherently multiobjective
approach to evolutionary design of approximate multipli-
erless multiple constant multipliers (MCMs) was proposed
in [15]. Three design objectives—accuracy, area and delay—
were optimized by multiobjective CGP, where the area was
inexpensively estimated as the number of utilized components
and delay as the number of components along the longest path
between the input and the output. In both cases the initial
solutions were generated randomly.

C. Error Functions

To evaluate the quality of a particular w-bit approximate
arithmetic circuit, several error criteria can be used [6], [7].
Let O(i)

orig be an output value of the fully functional circuit
for an input vector i and O

(i)
approx be an output value of

an approximate circuit. Then, the following metrics can be
calculated.

Error magnitude (ewst), sometimes denoted as the worst
case error and defined as

ewst = max
∀i
|O(i)

orig −O
(i)
approx| (1)

represents the fundamental metrics. If used as the optimization
goal (i.e. the condition ewst ≤ K is satisfied during the whole
design process) this metric guarantees that the approximate
output can differ from the correct output by at most K.

Relative error, which is defined as the ratio of the approxi-
mate and original values, and its maximal value (erel) defined
as

erel = max
∀i

|O(i)
orig −O

(i)
approx|

O
(i)
orig

(2)

represents another criterion used to constrain the approximate
circuit to differ from the original one by at most a certain
margin. For a given constant K (0 < K < 1), the validity
of the expression erel ≤ K must be ensured during the
optimization. Note that a special care must be devoted to the
cases for which the output value of the original circuit is equal
to zero.

Average error magnitude (eavg) is defined as the sum of
absolute differences in magnitude between the original and
approximate circuits (i.e. total error etot), averaged over all
inputs:

eavg =
etot
22w

=

∑
∀i |O

(i)
orig −O

(i)
approx|

22w
(3)



Error probability (error rate) defined as the percentage of
inputs vectors for which the approximate output differs from
the original one represents the last commonly used metrics:

eprob =

∑
∀i,O(i)

orig 6=O
(i)
approx

1

22w
(4)

However, this metrics is utilized mostly in conjunction with the
design of an approximate version of a non-arithmetic digital
circuit, i.e. for circuits that do not produce a single binary-
encoded output value.

Instead of the absolute error values ewst and eavg depending
on the utilized bit width w, the corresponding percentage error
values ewst% and eavg% can be utilized. In this case, it is
common to express the percentage error ratio as the percentage
of the maximum value that can occur on the output of the
original circuit:

ewst% = emax/(2
w − 1)2 (5)

eavg% = eavg/(2
w − 1)2 (6)

III. EVOLUTIONARY DESIGN OF APPROXIMATE
MULTIPLIERS

CGP and its various versions are probably the most popular
methods for the evolutionary circuit design [16]. The principle
of CGP and the proposed modification are described in the
following paragraphs.

A. Circuit Representation

In general, CGP represents a candidate circuit by means of
an array of processing nodes arranged in nc columns and nr
rows.

Each circuit has ni primary inputs and no primary outputs.
Γ denotes the set of functions that can be executed by pro-
cessing nodes. CGP utilizes the following encoding scheme.
The primary inputs and processing node outputs are labeled
0, 1, . . . , ni−1 and ni, ni+1, . . . , ni+nc.nr−1, respectively.
Each node input can be connected either to the output of a gate
placed in previous l columns or to one of the primary circuit
inputs. A candidate solution consisting of two-input nodes is
represented in the chromosome by nc.nr triplets (x1, x2, ψ)
determining for each processing node its function ψ ∈ Γ, and
label of nodes x1 and x2 which its inputs are connected to. The
last part of the chromosome contains no integers specifying the
labels of nodes or primary inputs where the primary outputs
are connected to.

In order to encode the approximate circuits, we enable the
primary outputs and the inputs of the processing nodes to be
connected directly to logic constants ’0’ and ’1’. The logic
constants are encoded as two nodes labelled -1 and -2.

Figure 1 demonstrates the principle of CGP encoding. It
can be seen that although 6 gates are available in total, not
all the gates have to be employed in the resulting circuit. This
support of redundancy represents one of the most important
features of CGP encoding [16].

Fig. 1. A candidate 2-bit multiplier, with two inputs a and b and output p,
represented by CGP with parameters: ni = no = 4, nc = 6, nr = 1, l = 4,
Γ = {0AND, 1OR}. Chromosome: 1, 3, 0; 0, 2, 0; 1, 2, 0; 0, 1, 0; 7, 6, 1;
7, 6, 1; 5, 9, 4, -1.

B. Search Strategy

As a search algorithm, CGP employs a (1+λ) evolutionary
strategy [16]. This method consists of the following steps.

1) The initial population of the size 1 + λ is created.
2) The fitness function f is called for each candidate

circuit.
3) The highest-scored candidate circuit is selected as the

new parent. It has to be noted that the previous parent
is never selected as the new parent if there exists at
least one individual which obtained the same fitness
value [16].

4) By applying a mutation operator, λ offspring individuals
are generated from the parent.

5) Steps 2—4 are repeated until the termination condition
is not satisfied.

CGP utilizes a point mutation which modifies up to h
randomly chosen genes. The value of a selected gene is
replaced with a randomly generated new one. Note that only
a limited amount of values can be assigned to each gene. The
range of valid values depends on the gene position and can be
determined in advance. Crossover is not utilized.

C. Proposed method

In order to synthesize approximate w-bit multipliers with
a required error magnitude and optimize the other circuit
parameters (such as the area), the designer has to provide
the required level of error (i.e. the constant K), the metrics
that will be utilized to guarantee the chosen error level,
circuit parameters to be optimized, and a fully functional w-bit
multiplier.

Because we do not have a multiplier satisfying the given
error criterion, the proposed method consists in two phases.
The goal of the first phase is to evolve a multiplier which
shows the error as close as possible to K. To achieve this
objective, the fitness value fL1 is calculated according to
the user requirement, i.e. according to the equation for error
magnitude, average error magnitude or relative error. CGP is
seeded by the fully functional multiplier which is gradually
degraded by CGP until a circuit with the error K is obtained.
CGP then continues by the second phase, in which the second
optimization criterion fL2 is considered. It is guaranteed that
the first optimization criterion is not worsening while the
second criterion is simultaneously improving. The method is
investigated in three scenarios which differ in the optimization
objectives.

The aim of the first scenario (denoted S1) is to synthesize
approximate multipliers showing the required error magnitude



Kwst and simultaneously having a minimal possible average
error. To achieve this goal, the fitness value fL1 is calculated
according to equation 1, while the second fitness value fL2 is
calculated according to equation 3.

The second scenario (S2) is similar to S1, however the goal
is to obtain a solution which occupies the minimum number
of gates for a given error magnitude Kwst. In this case, the
fitness value fL1 is calculated according to equation 1 and the
fitness value fL2 is calculated as the number of gates in a
candidate multiplier.

The goal of the third scenario (S3) is to evolve approximate
multipliers which utilize the minimum number of gates for a
certain average error magnitude Kavg . The fitness value fL1

is calculated according to equation 3 and the fitness value fL2

is calculated as the number of gates in a candidate multiplier.
Note that the evolutionary optimizer is implemented in such

a way that a 5% deviance from the required average error
magnitude is tolerated. This kind of flexibility is introduced
because for some multipliers it is not possible to obtain an
implementation which has exactly the specified average error
magnitude.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

The goal is to obtain an approximate version of a w-bit
multiplier (4 ≤ w ≤ 8) if a fully functional solution and
the required error level K are given. According to the results
published in paper [6], [7], the error level was chosen to
be 10% for Kwst and 0.5% for Kavg . The setting of CGP
parameters, which is valid for all strategies, is as follows: Γ =
{BUF, INV, AND, OR, XOR, NAND, NOR, XNOR}, λ = 5,
h = 1, l = nc = Ng , nr = 1, ni = no = 2w, where Ng is
the number of gates of the fully functional w-bit multiplier.
The values of these parameters are chosen according to our
previous study [8]. The parameters of the fully functional
multipliers (constructed as the ripple carry array multipliers)
which will be serving as the reference circuits in the next
comparisons are given in Table I.

TABLE I
PARAMETERS OF THE ORIGINAL FULLY FUNCTIONAL MULTIPLIERS

w Ng power [uW] area delay [ns]
2 8 53.9 12.0 7.5
3 30 189.3 45.9 28.6
4 64 550.7 98.5 46.4
5 110 1508.9 169.8 64.2
6 168 3185.1 259.6 82.0
7 238 5958.2 368.1 99.8
8 320 10204.7 495.3 117.6

We utilized SIS software [17] to calculate the power con-
sumption, occupied area and delay. The calculations are valid
for the MCNC library [17], Vdd = 5 V and 20 MHz. The
relative area of the used gates is: BUF 0.0, INV 0.67, NAND
and NOR 1.00, AND and OR 1.33, XOR 2.00, XNOR 1.66.
The sum of relative areas of gates used in a particular circuit
will be denoted ’area’. It has to be noted that the utilized

technology is obsolete, however we would like to demonstrate
the relative power consumption with respect to the fully
functional multiplier.

In order to accelerate CGP, we adopted an approach that
have been proposed in [18], and implemented additional
optimizations into CGP including the skipping of evaluation
of neutral mutations and a premature termination of the
fitness computation for unacceptable candidate solutions. The
preliminary experiments showed that the number of candidate
solutions evaluated within a time period increased more than
30 times using these changes. The experiments were carried
out on a cluster consisting of 64-bit Intel Xeon processors
running at 2.4 GHz. The evolutionary optimizer is terminated
when a predefined number of generations gmax is exhausted.
The parameter gmax was chosen such that the time of the
evolutionary optimization of an 8-bit multiplier is less than 1.5
hour. For each scenario and given error-level, 50 independent
evolutionary runs were performed.

B. Evaluation of the proposed methods

In order to evaluate the behavior of the proposed scenarios,
three parameters calculated from all experimental runs are
investigated. (1) The mean number of generations that the
evolutionary optimizer spends in the first level of optimization.
This parameter, denoted as gensL1, gives an insight to the
complexity of the evolutionary design of an approximate
version of the original multiplier that exhibits the required
error level Kwst (valid for S1 and S2) or Kavg (valid for
S3). (2) The mean relative improvement of the occupied area
areaL1 which indicates a percentage change of the number
of utilized gates with respect to the original multiplier, and
(3) areaL2 expressing a change against the candidate solution
produced by the first level of optimization. The results are
summarized in Table II. Note that only some error levels are
shown due to the limited space.

According to the values of gensL1, it is evident that the
design of an approximate multiplier exhibiting the required
error level represents a problem that can be relatively easily
solved. No more than 200 thousand generations in average
are required to accomplish this task. The required candidate
solution can thus be produced within a few minutes of an
evolutionary run. Nevertheless, scenario S3 requires two orders
of magnitude higher number of generations in contrast with
scenarios S1 and S2. This indicates that the discovering of an
approximate circuit with a certain average error magnitude
represents a more difficult problem than the design of an
approximate circuit with a certain error magnitude.

The positive values of areaL1 indicate that the number of
utilized gates is implicitly reduced with the increasing amount
of erroneous responses of a candidate circuit. In all three cases,
the circuits obtained after the first optimization step exhibit a
small improvement of the utilized area. However, a different
situation occurs during the second phase of the optimization.
While S2 and S3 continue in improving of the occupied area,
strategy S1 does not lead to any consequent power reduction.
The reason of this behavior is probably caused by the fact



TABLE II
EVALUATION OF THE PROPOSED METHODS FOR SOME ERROR LEVELS

S1 S2 S3

w Kwst Kwst% gensL1 areaL1 areaL2 gensL1 areaL1 areaL2 Kavg Kavg% gensL1 × 103 areaL1 areaL2

4 6 2.7% 55 ± 79 1.3% 1.1% 29 ± 30 1.8% 28.4% 85 0.1% 115 ± 31 4.8% 2.0%

12 5.3% 33 ± 52 0.9% -0.5% 22 ± 23 1.9% 44.0% 155 0.3% 112 ± 22 7.9% 6.4%

23 10.2% 38 ± 32 5.4% -5.9% 34 ± 35 4.6% 64.6% 281 0.5% 102 ± 6 12.1% 9.7%

5 25 2.6% 46 ± 39 1.9% -1.7% 42 ± 40 2.3% 35.9% 1231 0.1% 119 ± 28 6.0% 7.1%

49 5.1% 52 ± 38 3.4% -3.3% 44 ± 38 3.2% 54.9% 2461 0.3% 116 ± 24 7.6% 13.9%

93 9.7% 54 ± 32 5.5% -5.7% 61 ± 42 6.6% 72.6% 4675 0.5% 115 ± 23 10.8% 21.6%

6 96 2.4% 27 ± 33 0.8% 1.3% 44 ± 113 1.1% 46.3% 24385 0.1% 102 ± 4 7.2% 17.9%

191 4.8% 111 ± 103 6.3% -4.5% 108 ± 103 6.1% 60.6% 44705 0.3% 101 ± 1 7.7% 27.1%

381 9.6% 160 ± 202 9.8% -9.4% 129 ± 104 8.6% 77.6% 81281 0.5% 101 ± 3 8.5% 39.7%

7 401 2.5% 199 ± 571 4.3% 5.8% 113 ± 84 4.1% 53.7% 396385 0.1% 111 ± 18 3.3% 31.2%

801 5.0% 140 ± 213 4.9% 5.6% 170 ± 273 6.0% 67.6% 726705 0.3% 113 ± 16 4.2% 41.4%

1601 9.9% 236 ± 243 12.6% -2.9% 239 ± 347 10.7% 81.7% 1321281 0.5% 114 ± 19 4.1% 55.0%

8 1626 2.5% 196 ± 285 5.8% 15.4% 137 ± 205 4.3% 59.8% 6392215 0.1% 120 ± 19 2.2% 41.0%

3251 5.0% 421 ± 425 12.6% 10.3% 507 ± 664 14.3% 70.1% 11719060 0.3% 113 ± 13 2.5% 52.4%

6501 10.0% 753 ± 1, 916 17.2% 7.4% 858 ± 1, 425 20.7% 80.7% 21307381 0.5% 114 ± 15 2.5% 63.1%

that more gates have to be employed to obtain an approximate
circuit which minimizes two error metrics simultaneously.

C. Parameters of the evolved multipliers

The parameters of the best evolved approximate multipliers
are shown in Figure 2. Firstly, we will compare the methods
in terms of the achieved error and average error magnitudes
(second row). Contrasted with S2, S1 produces multipliers
showing one order of magnitude better average error for the
same worst case error. For example, eavg% = 0.42 for S1
and eavg% = 3.0 for S2 (w = 8 and ewst% = 10). However,
S3 is capable of discovering solutions that have even better
parameters. For example, ewst% = 2.2 for S3, but ewst% = 10
for S1 (w = 8 and eavg% = 0.43). If we compare the solutions
obtained by S2 and S3 on the same interval (i.e. eavg% < 0.5)
the values of error magnitude are very similar (ewst% < 2.0).

The first row of Figure 2 depicts the achieved reduction in
the approximate circuit’s size. From this perspective, strategy
S1 exhibits the worst results. The ratio of reduced gates is
noticeably lower when compared to the other two scenarios.
A significant reduction of the number of utilized gates can
be seen for S2 and S3. The obtained reduction increases with
increasing of the error rate, but its maximal value decreases
with decreasing the bit-with. This fact is probably caused by
decreasing the number of available gates.

The improvement in power consumption is shown in the
third row of Figure 2. We can identify that power consump-
tion decreases with the increasing number of removed gates
regardless of the utilized method. However, this dependency is
observable only for such cases in which the number of reduced
gates exceeds approx. 20%. Below this level, the approximate
multipliers exhibit the same or even worst power consumption
compared to the original fully functional multiplier. This
behavior is noticeable especially in the case of the multipliers
produced by S1 scenario. There are 4-bit multipliers that
require even more than 1.5 higher amount of power.

To conclude this evaluation, it is evident that S1 represents
a scenario which does not offer any advantage. The evolved
solutions do not improve power consumption and even if
S1 produces the results with one order of magnitude better
average error than S2, the similar values can be obtained using
S3.

The obtained results are promising when a comparison with
the results from literature is made. For example, 4-bit (8-bit)
multiplier with eavg% = 2.6, ewst% = 22.2, pwrimpr% = 13
(eavg% = 3.25, ewst% = 22.2, pwrimpr% = 33.1) was
obtained by combining several manually created 2-bit ap-
proximate multipliers [9]. Using our approach, one order of
magnitude better errors were achieved for the equivalent power
reduction (see results of S3). The parameters of the best
evolved 4-bit (8-bit) multiplier are eavg% = 0.41, ewst% =
5.33 for pwrimpr% = 11.38 (eavg% = 0.12, ewst% = 0.63 for
pwrimpr% = 31.6).

The authors of SALSA reported 80% reduction in power
consumption for 8-bit multiplier with ewst% = 10 [6]. In our
case, 96% power reduction was obtained by scenario S2 for
the same error level. Using SASIMI approach, approx. 45%
power improvement was achieved for 8-bit multiplier with
eavg% = 0.5 [7]. A solution with the same average error
magnitude showing 79% power reduction was discovered by
S3. However, as the authors utilized a different technology
and unspecified fully functional multipliers, it is not feasible
to provide a fair comparison of the achieved power reduction.

V. CONCLUSIONS

In this paper, a two-phase design method based on CGP
optimized for synthesis of approximate circuits was introduced
and evaluated. We provided an analysis of three error-oriented
design scenarios and discussed their properties from the per-
spective of the obtained results. In addition to that, it was
shown that the proposed design technique is able to generate



Fig. 2. Parameters of the best evolved approximate multipliers produced by the proposed optimization scenarios

multipliers that are unreachable using the technique based on
combining of small 2-bit approximate multipliers.

Our future research will be focused on a detailed com-
parison of various approaches to the approximate circuit
design and reducing of the computation requirements of the
evolutionary approach.

VI. ACKNOWLEDGMENTS

This work was supported by the Czech science foundation
project 14-04197S, Brno University of Technology project
FIT-S-14-2297 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] V. Venkatachalam and M. Franz, “Power reduction techniques for
microprocessor systems,” ACM Computing Surveys, vol. 37, no. 3, pp.
195–237, 2005.

[2] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar,
S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 32, no. 1, pp. 8–23, 2013.

[3] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Design, Automation and Test in Europe, DATE 2010.
IEEE, 2010, pp. 957–960.

[4] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in
2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2011, pp. 667–673.

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. of the 18th IEEE Eu-
ropean Test Symposium. IEEE, 2013, pp. 1–6.

[6] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC ’12. ACM,
2012, pp. 796–801.

[7] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1–6.

[8] L. Sekanina and Z. Vasicek, “Approximate circuits by means of evolv-
able hardware,” in 2013 IEEE International Conference on Evolvable
Systems, ser. Proceedings of the 2013 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE CIS, 2013, pp. 21–28.

[9] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[10] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolutionary
computation to design and optimize hardware systems,” IEEE Compu-
tational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[11] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware:
past, present and the path to a promising future,” Genetic Programming
and Evolvable Machines, vol. 12, no. 3, pp. 183–215, 2011.

[12] L. Sekanina, “Evolvable hardware,” in Handbook of Natural Computing.
Springer Verlag, 2012, pp. 1657–1705.

[13] J. F. Miller, “On the filtering properties of evolved gate arrays,” in
1st NASA-DoD Workshop on Evolvable Hardware. IEEE Computer
Society, 1999, pp. 2–11.

[14] T. Knieper, P. Kaufmann, K. Glette, M. Platzner, and J. Torresen,
“Coping with resource fluctuations: The run-time reconfigurable func-
tional unit row classifier architecture,” in Proc. of the 9th Int. Conf. on
Evolvable Systems: ¿From Biology to Hardware, ser. LNCS, vol. 6274.
Springer, 2010, pp. 250–261.

[15] J. Petrlik and L. Sekanina, “Multiobjective evolution of approximate
multiple constant multipliers,” in IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. IEEE
Computer Society, 2013, pp. 116–119.

[16] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[17] E. M. Sentovich, “Sis: A system for sequential circuit synthesis, Uni-

versity of California, Berkeley,” 1992.
[18] Z. Vasicek and K. Slany, “Efficient phenotype evaluation in cartesian

genetic programming,” in Proc. of the 15th European Conference on
Genetic Programming, ser. LNCS 7244. Springer Verlag, 2012, pp.
266–278.


