
Evolving Multiplication as Emergent Behavior
in Cellular Automata Using Conditionally Matching Rules

Michal Bidlo

Abstract— In this paper a special representation technique
called conditionally matching rules will be applied in order to
design computational processes in uniform cellular automata.
The goal is to verify abilities of this approach in combination
with genetic algorithm on the problem of disigning various
cellular automata that exhibit a given computational process.
The principle of a computational process in a cellular automa-
ton is to interpret some cells as input bits and some (possibly
other) cells as output bits (i.e. the result of the computation).
The genetic algorithm is applied to find a suitable transition
function of a cellular automaton according to which the given
computation could be observed during its development for all
the possible binary combinations stored in the input cells. Both
the input values and the result is represented by state values of
cells. The input of the computation will be represented by the
initial state of the cellular automaton. After a finite number
of development steps the cells representing the output bits
are expected to contain the result of the computation. A set
of experiments will be performed considering various setups
of the evolutionary system and arrangements of the target
computation. It will be shown that non-trivial computations
can be realized in a uniform two-dimensional cellular array.

I. INTRODUCTION

Cellular automata (CA) represent a biologically inspired
dynamical system with a discrete time and space. Cells
represent basic computational elements of a CA. At a given
moment each cell possesses a value representing its state
from a finite set of states. The cell states can be considered as
data (information) units processed by the cellular automaton.
The concept of cellular automata was originally invented by
Ulam and von Neumann in 1966 [1] for studying the behavior
of complex systems.

A two-dimensional (2D) cellular automaton consists of
a regular grid of cells that are arranged into a regular
matrix (mesh). In each (discrete) developmental step of the
CA the states of all the cell are updated synchronously in
parallel according to a local transition function. The next
state of a given cell depends on the combination of states
in its neighborhood (including the cell itself). A sequence of
updating the cell states during discrete time steps represents
development of the cellular automaton.

For the purposes of this paper the following concept
of the cellular automata will be considered. The cellular
neighborhood of each cell is represented by a 9-tuple (3x3
cells) consisting of the investigated (central) cell and its
immediate neighbors in the horizontal, vertical and diagonal
directions. Since only finite-size cellular automata can be
practically implemented, boundary conditions will be defined

Michal Bidlo is with the Faculty of Information Technology, Brno Uni-
versity of Technology, IT4Innovations Centre of Excellence, Božetěchova
2, 61266 Brno, Czech Republic, email: bidlom@fit.vutbr.cz.

for the cells at the border of the cellular mesh. In this paper
zero boundary conditions will be applied which means that
non-existing neighbors of the border cells are considered as
notional cells in a permanent state 0.

Conventionally the local transition function is represented
by a table that specifies the next state of a cell for all the pos-
sible combinations of states in its neighborhood. However, if
the number of cell states or the size of the cellular neighbor-
hood increases, then the number of such combinations grows
exponentially and thus the representation and design of the
transition function becomes a challenging task.

In order to overcome this issue, a new technique for repre-
senting the transition functions was introduced by Bidlo et al.
and called as Conditionally Matching Rules (CMR) [2]. This
approach is fundamentally inspired by the conventional table-
based representation. It means that the CMR encoding allows
to specify the transition rules as usual in the table-based
approach but, in addition to that, more general rules can
be formulated whose interpretation covers several common
rules in a single CMR. In particular, a conditionally matching
rule consists of a conditional part and a next state. The
conditional part encodes a series of pairs — a condition
function and a state value — whose number corresponds
to the number of cells in the cellular neighborhood. The
structure of a CMR is illustrated in the upper part of Figure
1. A local transition function of a CA consists of a finite
sequence of conditionally matching rules. The process of
determining the next state of a cell using the CMR-based
transition function is the following. The CMRs are evaluated
sequentially one after another until a CMR matches the states
in the cellular neighborhood. In order to determine a CMR
match, each rule of its conditional part is evaluated with
respect to the corresponding cell state in the neighborhood
(see Figure 1). If all the conditions are satisfied, then the next
state from the matching CMR represents the result of the
transition function (i.e. the new state of the investigated cell)
and none of the remaining CMRs in the sequence needs to
be evaluated. If none of the CMRs representing the transition
function matches, then the cell keeps its current state. The
experiments showed that if the CMR approach is utilized
to represent transition functions, then more complex cellular
automata can be effectively evolved in comparison with the
traditional representation [2]. Hence the advanced features
and abilities of the CMR representation are worth the next
investigation.

In addition to a wide range of applications utilizing cellular
automata to solve some specific tasks (e.g. modeling com-
plex biological and physical systems, artificial live, random
number generation and many others [3]), cellular automata



Fig. 1. Structure and interpretation of a conditionally matching rule

also represent a platform to perform computations. Various
concepts of computation performed in cellular automata
have been studied both theoretically and practically (i.e.
using real implementations in FPGAs or as application-
specific circuits [4][5]). The importance of undertaking such
kind of research is motivated especially by the fact that
cellular automata represent (in many cases) homogeneous
and massive parallel computing platform with typically local
interactions of cells. The issue of homogeneity may be
important in a process of designing large systems whose
elements (computational units – cells), for example, perform
a given function that, in cooperation with each other, realizes
a specific (emergent) behavior. An advantage of such system
may be its scalability (it is easy to connect additional cells
with the same function) or a possibility of repair in case of a
cell failure. Advanced concepts may consider specializations
of different cells during the system functioning. This idea
is mostly inspired by multicellular (biological) systems in
which a target organism can grow during its life and the cells
change their kind with respect to a location in the organism
or on the basis of external conditions. Some studies and
applications of these issues (in a more general conception
referred as computation development) were published in [6].
Computational universality of cellular automata was proven
for the first time by their inventor John von Neumann in [1].
His CA worked with 29 cell states which was later reduced
to 8 states by Codd [7]. Lindgren and Nordahl demonstrated
that even 1D cellular automaton can be utilized as universal
computing platform (i.e. a platform that is able to simulate
the computation using Turing machine). They proposed a
proof of universality for the 7-state 1D CA with 3-cell
neighborhood and 4-state 1D CA with 5-cell neighborhood
[8]. Sipper showed that 2D binary non-uniform cellular
automata are able to perform computations by demonstrat-
ing how to realize computationally complete set of logic
functions and their interconnection [4]. Uniform 2D binary
cellular automaton was demonstrated to be a computationally
universal platform using the popular Conway’s Game of

Life rules [9]. The idea was to utilize some “living” cell
structures like glider guns, gliders, periodic patterns etc. to
simulate the computational process of Turing machine. These
structures represent a means for implementing basic logic
gates, synchronization mechanism and memory elements
which represent fundamental components of a universal
computer. Another interesting computationally universal 2D
CA is represented by the rules of Langton’s ant [10]. His
CA represents a model with simple transition rules that
is able to exhibit complex emergent behavior. A proof of
universality of Langton’s ant was proposed in [11]. Other
(not necessarily universal) cellular automata able to perform
specific compatational tasks were also published (e.g. Lang-
ton’s loop implementing self-replication [12], Tempesti loop
which added an ability of construction [13] and others).

The goal of this paper is to show that various CA setups
together with some appropriate evolutionary system setups
are able to design transition functions allowing us to perform
a specific computational task in the CA. In particular, we
propose two sets of condition functions for the CMR in
combination with various input and output cell arrangements
in order to design CA whose development exhibits 2x2-
bit multiplication. The objective of studying various CMR
setups is to determine how the different sets of condition
functions influence the ability of the evolutionary algorithm
to find a solution of a given task in cellular automata. The
experiments will be evaluated with respect to the success rate
and computational effort of the evolutionary design process.
Features and abilities of the obtained results will be discussed
with respect to a future research.

II. SETUP OF CONDITIONALLY MATCHING RULE

The original concept of the conditionally matching rules
introduced in [2] considered ordinary relational operators
equal to (==), not equal to (! =), greater or equal than
(>=), less or equal than (<=) and a don’t care mask (?)
as the set of conditions. In case of binary cellular automata,
where the state of a cell can be either 0 or 1, each condition
in a CMR actually represent a function with two binary
inputs (where one bit represents the state of a cell from the
cellular neighborhood, the other is a state value specified
in the conditional part). The function calculates a single-bit
output indicating whether the given part of the CMR matches
the corresponding cell state. Table I shows results of the
aforementioned functions for all their possible input values.

Since there are 4 possible input combinations, 24 = 16
different functions exist in total which could be used as
condition functions in CMRs. Our previous experiments
showed that it is not suitable to consider all the 16 functions
because the space of the transition functions becomes very
huge and the problem of finding a specific behavior of the
CA represents a challenging task. Therefore, the selection
of a subset of condition functions represents a reasonable
solution. However, the main question is how to select this
subset for the CMR in order to allow efficient design of
transition functions for cellular automata. In [2] it was
demonstrated that the subset of functions summarized in



TABLE I
THE TRUTH TABLE FOR THE ORIGINAL CONDITION FUNCTIONS ==, ! =,

>=, <= AND A DON’T CARE ?. IF THE RESULT OF A CONDITION

FUNCTION IS 1, THEN THE APPROPRIATE CELL STATE MATCHES THE

STATE SPECIFIED IN THE CONDITIONAL PART WITH RESPECT TO THIS

FUNCTION. SCELL DENOTES THE STATE OF A CELL IN THE CELLULAR

NEIGHBORHOOD, SCMR REPRESENTS THE STATE SPECIFIED WITHIN A

CONDITION IN THE CMR.

Inputs to condition function Condition function
SCELL SCMR == ! = ≤ ≥ ?

0 0 1 0 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 1 1 1

Table I represents one of the possible choices in order to
achieve non-trivial behavior in binary 2D cellular automata.
This subset was chosen experimentally on the basis of
analyzing the target CA behavior (the replication and pattern
transformation task).

In order to determine whether a more suitable subset
of condition functions exists, the following approach was
considered for the experiments presented in this paper. There
are in total 216 = 65536 different subsets considering the
complete set of 16 condition functions. It is possible to per-
form exhaustive search through all the subsets and evaluate
the number of different functions that can be realized using
the proposed CMR-based representation. For the purposes of
this paper, the problem of calculating single-output binary
functions with 9 inputs was considered in order to evaluate
each subset of the condition functions. In fact, this setup
is identical to exploring transition functions for 2D uniform
binary cellular automata with 9-cell Moore neighborhood.
Since it is impossible to perform in a reasonable time the
exhaustive search of all tle possible 9-input functions, the
evaluation was performed by generating 1 billion random
samples of CMR sequences (considering the number of
CMRs from 1 to 8). This experiment showed that one of
the highest numbers of different functions can be generated
using the subset of condition functions summarized in Table
II. As evident, the resulting subset of condition functions
contains, in addition to the relational operators <= and
>=, the identity function of the cell state (let us denote
it as id(SCELL) where SCELL represents the cell state),
the negation of SCELL (not(SCELL)) and does not contain
don’t care mask (?). Note that in this experiment no specific
function (or CA behavior) was required, only the number of
various functions was observed. The goal of this experiment
was to identify a subset of condition functions for the CMR
representation that would be potentially able to solve as wide
set of tasks as possible.

Figure 2 shows an example of transition function repre-
sented by three conditionally matching rules. The CMRs
utilize the condition functions from Table II. In order to
determine the next state of the investigated cell (denoted by
the thick rectangle in Figure 2), the CMRs are evaluated

TABLE II
THE TRUTH TABLE FOR A NEW SET OF CONDITION FUNCTIONS THAT

MAY POTENTIALLY BE ABLE TO GENERATE A WIDER RANGE OF

FUNCTIONS USING THE CMR REPRESENTATION.

Inputs to condition function Condition function
SCELL SCMR id(SCELL) not(SCELL) ≤ ≥

0 0 0 1 1 1
0 1 0 1 1 0
1 0 1 0 0 1
1 1 1 0 1 1

sequentially one after another in order to find a CMR that
matches the state of the cellular neighborhood. For the CMR
#1 it can be seen that condition (2) — the identity function
— does not match because the state of cell (2) in the
neighborhood has state 0. Therefore, CMR #1 can not be
applied to determine the next state. Considering the CMR #2,
it can be verified that this CMR fulfills all its conditions with
respect to the states in the cellular neighborhood (the rule (1)
satisfies the condition SCELL >= 1 because SCELL(1) = 1,
the rule (2) after its evaluation matches the state of cell (2)
because not(SCELL(2)) = not(0) = 1 and so on). Therefore,
the CMR #2 will be applied to determine the next state of
the investigated cell, i.e. its new state will be 0.

Fig. 2. Example of a transition function represented by conditionally
matching rules. Note that the identity function (id) and negation (not) do not
need any state value in the conditional part of the CMR because the decision
of matching their part of CMR is based only on evaluating the appropriate
cell state in the cellular neighborhood. The thick rectangle denotes the cell
for which the new state ought to be calculated.

III. EVOLUTIONARY SYSTEM SETUP

Genetic algorithm (GA) was utilized for the evolution of
CMR-based transition functions in order to realize 2x2-bit
multiplication in 2D uniform binary cellular automata.

The population consists of 16 individuals (chromosomes)
that are initialized randomly at the beginning of the evo-
lutionary process. Each chromosome represents a candidate
transition function represented as a finite sequence of CMRs.



The structure of each CMR is identical to that shown in
the top part of Figure 1. Each CMR is encoded as a finite
sequence of integers representing the conditional parts (i.e.
the states and condition functions) and the next state.

The fitness function implements the following multipli-
cation scheme in the cellular automata for evaluating the
chromosomes. A binary input test vector (representing the
operands to be multiplied) is generated into the given cells
(let’s call them the input cells) as the initial state of the CA.
For 2x2-bit multiplication there are 4 input cells, i.e. two 2-
bit operands. All the other cells are initialized by the state
0. Now the CA performs 16 development steps according
to the transition function encoded in the chromosome after
which the result of multiplication is verified as a sequence of
states of the given (output) cells. For 2x2-bit multiplication
there are 4 output cells, i.e. a 4-bit product. The fitness value
is increased by one for every correct bit of the result with
respect to the input vector. The evaluation is performed for
all the possible input test vectors. For 2x2-bit multiplication
there are n = 24 = 16 input test vectors and p = 4 bits of
the product. Therefore, the maximal fitness for the 2x2-bit
multiplication Fmult = n× p = 16× 4 = 64. Moreover, we
required the cells of the result to keep the states representing
the product during the subsequent CA development. Hence
the cell states representing the product are compared to the
values after performing one more step of the CA for each
of the input test vectors. If all the output cells keep their
resulting states, the fitness is increased by one. Note that the
input values are usually modified during the CA development
(there is no requirement to keep them within the input cells).
The maximal value of the complete fitness can be expressed
as Fmax = Fmult + n = 64 + 16 = 80.

Each step of the evolution is performed by generating
offspring from parent chromosomes using a mutation op-
erator until an entire new population is created. The parent
chromosome is selected using tournament operator out of T
chromosomes randomly chosen from the actual population,
i.e. the fittest individual from the group of T chromosomes
becomes the parent. The parameter T is referred to as
the base of the tournament selection operator. The parent
undergoes mutation as follows. A random integer M in the
range from 1 to 4 is generated. Then M random positions
within the parent chromosome are selected. The offspring
is created by replacing the actual genes at these positions
by new randomly generated values. No crossover operator is
applied.

In order to explore the possibilities of realizing the pro-
posed multiplication scheme, several sets of experiments
were performed considering various setups. The two sets
of condition functions presented in Table I and II were
investigated within the evolutionary process. The GA was
parametrized by the base of the tournament operator for T =
2, 4, 6, 8. The number of CMRs (#CMRs) of the transition
function was considered for #CMRs = 6, 8, 10, 12. For
each combination of these parameters, several setups of the
input and output cells were considered as shown in Figure

Fig. 3. The setups for input and output cell arrangements in cellular
automata: (a) separated, (b) alternating, (c) diagonal, (d) shared. In each
of the setups, a and b denote the input cells whose states represent values
for the 2-bit operands, p denote the output cells in which the resulting
product is expected after the CA development. Note that in the shared setup
(d) the result is expected in the same cells as the input operands.

3. The cellular automaton consisting of 10x10 cells was
used for the evaluation of the chromosomes. The structure
containing the input and output cells is located in the middle
of the CA. The reason for choosing larger CA is not to strictly
limit the computation process by the boundary conditions
(required for finite-size CAs).

For each set of experiments (specified by the aforemen-
tioned parameters and cell setups) 100 independent evolu-
tionary runs were performed. The evolution is terminated if
the desired behavior of the candidate CA is observed (i.e. a
chromosome with the maximal fitness value is found) or if
a limit of 100 thousands generations is reached.

IV. EXPERIMENTAL RESULTS

In this section we propose an overview of the experimental
results obtained from the evolutionary system described in
Section III. For each set of experiments the success rate and
computational effort (measured as the number of generations
of the GA needed to find a solution) were evaluated. The
experiments showed that it is possible to realize the given
computational task in uniform 2D binary cellular automata.
We also determined that the required behavior discovered by
the evolution may not be limited to a specific CA size.

The results of evolution using the original condition func-
tions from Table I are shown in Table IIIa. The results
of the application of the new set of condition functions
from Table II are summarized in TableIIIb. In each set of
experiments the success rate and computational effort of
the evolutionary process was investigated with respect to
the base of tournament selection (T ) and the number of
conditionally matching rules (#CMRs) of the transition
function. As the results show for both sets of the condition
functions, the success rate tends to increase with increasing
the #CMRs which indicates that although a larger search
space is needed to explore (with potentially higher amount
of target solutions), then the evolution is able to explore it
effectively and in many cases even with less computational
effort (expressed by the number of generations Avg.#gen).
Similar trend can also be observed for the increasing the
base of tournament selection T . This parameter actually
increases the selection pressure during evolution (the higher
the T the higher the selection pressure) which means that the
individuals with higher fitness are able to generate offspring
chromosomes towards the target solutions within the search



TABLE III
STATISTICAL RESULTS OF THE EVOLUTIONARY EXPERIMENTS PERFORMED FOR VARIOUS NUMBERS OF CONDITIONALLY MATCHING RULES

(#CMRs) AND VARIOUS BASE VALUES OF THE TOURNAMENT SELECTION IN GA (T ). THE SUCCESS RATE (Succ.) AND AVERAGE NUMBER OF

GENERATIONS (Avg.#gen) NEEDED TO FIND A WORKING SOLUTION WERE MEASURED. Std. dev. DENOTE THE STANDARD DEVIATION CALCULATED

FROM THE NUMBER OF GENERATIONS OF THE SUCCESSFUL EVOLUTIONARY RUNS.

space. However, the comparison of the results in Table III
shows that in most cases the success rate is lower for the
new set of condition functions from part (b) in comparison
with the original set – part (a). This result is surprising
because the new function set was evaluated to be able to
realize a wide range of functions as described in Section II.
Therefore, it is not possible to conclude that this function
set would be generally more efficient than other sets. The
lower success rate may be caused by the fact that the new

function set in combination with the CMR approach repre-
sents a search space in which the target functions (regarding
the multiplication task) are rather rare in comparison with
the original set of condition functions. The optimal set of
condition functions is thus evidently specific for a particular
problem. Therefore, a more suitable function set may exist
for solving the multiplication problem in cellular automata.
However, to discover such optimal set still remains an open
question.



Fig. 4. Example of an evolved CA development performing the multipli-
cation 3 × 3 = 9. White cell in the CA represents the state 0, black cell
represents the state 1. The input operands as well as the resulting product are
considered in direct binary representation using the cell states (the operands
a = b = (11)bin = (3)dec, the product p = (1001)bin = (9)dec). Both
the operand bits and product bits are interpreted from MSB to LSB as from
left to right.

Fig. 5. Example of a CMR-based transition function discovered by
GA using the function set from Table II. This transition function realizes
multiplication in the CA from Figure 4. One row in this figure represents a
CMR. The converted table-based representation consists of 31 conventional
rules.

Nonetheless, both the proposed sets of condition functions
allowed us to find some working solutions for different
input and output cell configurations illustrated in Figure
3. As evident from Table III, the success rate is highly
influenced by the cell setup. It can be seen that the highest
success rates (greater than 60%) were achieved using the
shared and alternating cell setups. The other setups (diagonal
and separated) exhibit substantially lower success rates. The
following reasons may be given for this result. If the input
and output cells are close to each other, then the CA needs
less steps to produce the result (i.e. the input values can be
processed rather locally). On the other hand, if the inputs are
distributed in a larger area or if the result is expected away
from the inputs, then a more complex transition function
is needed in order to process the inputs and transfer the
resulting values to the output cells (the CA needs more steps
to produce the result).

Figure 4 shows an example of evolved CA development
performing the multiplication of two 2-bit operands. The ap-
propriate CMR-based transition function discovered by GA
is shown in Figure 5. The CA was initialized by the operand
values within the input cells according to the shared cell
setup shown in Figure 3d. In this case the CA needs 4 steps
to produce the final product. As evident from Figure 4, the
state of the output cells become stable during the subsequent
CA development as required within the evolutionary process.
In addition to the fact that the CA provides correct results
for all the possible input operands, its development seems
chaotic. However, an interesting emergent behavior can be
observed when a larger CA is considered. For example, a
final state of a 40x40-cell CA after the 30th development
step is shown in Figure 6 with the input/output cells marked
by p. The same task (i.e. to calculate the expression 3 × 3)
was considered according to the setup from Figure 3d and
the evolved transition function from Figure 5. Interestingly,
the global CA behavior is similar to that produced by some
typical rules of the elementary 1D cellular automata (for
example, using the rules 22, 122 or 126 according to Wolfram
code [3]). In our case, the pattern in Figure 6 was generated
within a 2D CA by a successive “growth” of the cells
upwards, developing a structure very similar to Sierpinski
triangle. Although this structure can be obtained in a 1D
CA using relatively simple rules from an initial seed, the
transition functions obtained in this paper do not seem to
be trivial. Similar emergent behavior can be observed within
the development from a random initial state in a CA with
enough area of 0-state cells available above the randomly
initialized cells (see Figure 7). One of the open questions
related to this issue is whether such emergent behavior could
provide us with some advantages to perform (advanced) CA-
based computation (e.g. using a specific operand encoding or
interpretation of the CA development).

Another example of a successful multiplication in CA is
illustrated in Figure 8 using the diagonal cell setup according
to Figure 3c. This CA was discovered using the set of
condition functions from Table I, the evolved transition
function is shown in Figure 9. In this case the CA needs
10 steps to produce the result. After stabilizing the states of
the output cells, the CA development exhibits an emergent
pattern expanding from top to bottom and from left to right.
In addition, a simple vertical line of state-1 cells grows
upwards. We have determined that the number of those
vertical lines depends on the number of 1’s in the resulting
product. This growing structure is very important in this
particular CA because it contains the crucial states of the
result. An example of the multiplication 3× 3 = 9 is shown
in Figure 10. As evident there are two 1s in the resulting
product ((9)dec = (1001)bin) so that two state-1 lines grow
upwards. The emerging pattern can be observed in the bottom
part of Figure 10.

V. CONCLUSIONS

This paper presented a continuation of research regarding
the evolutionary design of 2D uniform cellular automata



Fig. 6. The state of the 40x40-cell CA after the 30th development step
performing the same multiplication task as shown in Figure 4 according
to the transition function from Figure 5. The output cells containing the
resulting product are denoted by p. These four cells were also initialized
before the CA development by the values of the input operands. This is a
final stable state of the CA that does not change anymore.

Fig. 7. An emergent pattern developed by 2D CA from some randomly
initialized cells at the bottom of the cellular array. The CA develops
according to the evolved transition function from Figure 5.

Fig. 8. Example of the development of CA performing the multiplication
2 × 2 = 4 using a diagonal input and output cell arrangement. White cell
in the CA represents the state 0, black cell represents the state 1. The input
operands are considered in the direct binary representation using the cell
states (a = b = (10)bin = (2)dec, the product p = (0100)bin = (4)dec).
The operand bits are interpreted at the main diagonal from MSB to LSB
(from top-left to bottom-right), the product is interpreted at the antidiagonal
from MSB to LSB (from bottom-left to top-right).

Fig. 9. Example of a CMR-based transition function discovered by
GA using the function set from Table I. This transition function realizes
multiplication in the CA from Figure 8. One row in this figure represents a
CMR. The converted table-based representation consists of 73 conventional
rules.



Fig. 10. Emergent behavior of the CA controlled by the transition function
from Figure 9. The result of the product 3 × 3 = 9 is shown within the
cells marked by two dots in the upper-left part of the CA. The diagonal cell
setup was considered according to Figure 3c.

using conditionally matching rules. We focused on a case
study whose objective was to design CA that are able to
perform multiplication of two 2-bit operands. Several sets
of experiments were presented considering various setups of
both the evolutionary system (using the genetic algorithm)
and cellular automata. In particular, two different sets of
condition functions for realizing the transition rules of the
CA were investigated in combination with various input and
output cell arrangements in the CA. The experiments showed
that the success rate of discovering a working solution is
highly dependent on that cell arrangement. Moreover it
also depends on the set of functions considered for the
conditionally matching rules. Surprisingly, the experiments
exhibit lower success rate in case of the condition functions
that were identified in a separate experiment as potentially
promising to solve a wide range of tasks. However, all
sets of experiments provided some working solutions with
interesting features.

The first is that the evolved transition functions are not
limited to a CA of a specific size (i.e. the considered multi-
plication task may perfectly be solved in a larger CA even
with more areas with the input and output cell structures).
The second interesting phenomenon is the emergent global
behavior (developed patterns) of the resulting CA in which
a well-organized structures can be observed in addition to
the primary computational task. A detailed analysis of some
evolved results showed that such well-organized patterns of
various complexity is a common feature of CA exhibiting the
required computation. An interesting fact of these patterns is
that they are very similar to some typical structures generated
by one-dimensional cellular automata.

One of the questions that may arise from this investigation
may be whether the process of multiplication could be
simplified or optimized (e.g. to minimize the number of
rules of the converted conventional transition function). Since
massive parallel and homogeneous platforms may be very
important in the future (especially in nanotechnology, molec-
ular computing systems and similar areas), the principles of
elementary approaches to studying the design, optimization
and functioning of such systems are definitely worth the
subsequent research.

The observations from the obtained results propose some
issues for the future research in this area. For example,
the selection of optimal set of condition functions in order
to effectively design CA for solving a specific task still
represents a challenging task. The in-depth analysis of the
evolved functions and the possibilities of their applications
in a wider context of the cellular platforms will also be
investigated. Our ongoing experiments are devoted to the
research of conditionally matching rules for efficient design
of non-binary cellular automata.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foun-
dation project 14-04197S, BUT project FIT-S-14-2297
and the IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070, funded by the European Regional
Development Fund and the national budget of the Czech
Republic via the Research and Development for Innovations
Operational Programme, as well as Czech Ministry of Ed-
ucation, Youth and Sports via the project Large Research,
Development and Innovations Infrastructures (LM2011033).

REFERENCES

[1] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[2] M. Bidlo and Z. Vasicek, “Evolution of cellular automata with con-
ditionally matching rules,” in 2013 IEEE Congress on Evolutionary
Computation (CEC 2013). IEEE Computer Society, 2013, pp. 1178–
1185.

[3] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[4] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[5] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp.
387–416, 2005.

[6] S. Kumar and P. J. Bentley (eds.), On Growth, Form and Computers.
Elsevier Academic Press, 2003.

[7] E. F. Codd, Cellular Automata. Academic Press, New York, 1968.
[8] K. Lindgren and M. G. Nordahl, “Universal computation in simple

one-dimensional cellular automata,” Complex Systems, vol. 4, no. 3,
pp. 299–318, 1990.

[9] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for
Your Mathematical Plays, Vol. 2. A. K. Peters/CRC Press, 1982.

[10] C. G. Langton, “Studying artificial life with cellular automata,” Phys-
ica D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 120–149, 1986.

[11] A. Gajardo, A. Moreira, and E. Goles, “Complexity of langton’s ant,”
Discrete Applied Mathematics, vol. 117, no. 1–3, pp. 41–50, 2002.

[12] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–144, 1984.

[13] G. Tempesti, “A new self-reproducing cellular automaton capable of
construction and computation,” in Advances in Artificial Life, Proc. 3rd
European Conference on Artificial Life, ser. Lecture Notes in Artificial
Intelligence, vol. 929. Springer Verlag, 1995, pp. 555–563.


